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An infinite graph G is called dominating if its vertices can be labelled
with natural numbers in such a way that for every function f : ω → ω
there is a ray in G whose sequence of labels eventually exceeds f . Con-
versely, G is called bounded if for every labelling of its vertices with
natural numbers there exists a function f : ω →ω which eventually ex-
ceeds the labelling along any ray in G. This expository paper describes
recent classifications of the dominating and the bounded graphs by
forbidden topological minors, and indicates some connections of these
results to infinite games.

Introduction

If f and g are functions from ω to ω, we say that f dominates g if f(n) � g(n)
for all but finitely many n ∈ ω. A family F of ω→ ω functions is called a
dominating family if every function g: ω → ω is dominated by some f ∈ F .
The least cardinality of a dominating family is denoted by d.

Similarly, a family F of functions from ω to ω is said to be bounded by a
function g: ω → ω if g dominates every f ∈ F ; if no such g exists, F is called
unbounded . The least cardinality of an unbounded family is denoted by b.

It is not difficult to see that any unbounded family of functions must be
uncountable. Indeed, if F = { fn | n ∈ ω } is a countable family of ω→ω func-
tions, then g: ω→ω defined by g(n) := max { f0(n), . . . , fn(n) } is a bounding
function for F . Thus, b > ω. Since any dominating family is clearly unbounded,
we further have b � d. Finally, the set of all ω→ω functions clearly defines a
dominating family; since there are exactly continuum many ω→ ω functions,
we have

ω < b � d � 2ω.

Set theorists have traditionally been interested in the question of when
the above inequalities may be strict, and how b and d compare with other
cardinals between ω and 2ω. In other words, it has been asked just how much
the cardinality of a family of functions has to be constrained in order to force
it to become bounded or to cease to be dominating. This question depends
on the axioms of set theory assumed, and we shall not pursue it further here.
Instead, we shall ask how we can force a family of functions to become bounded
(or to cease to be dominating) by restricting the independence of its members.

This can be done naturally as follows. We shall label the vertices of an in-
finite graph with integers, and consider as our family of functions the labellings
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along one-way infinite paths, or rays, in this graph. Depending on how much
different rays in the graph intersect, it may turn out that their labellings can
never form a dominating or an unbounded family, even when the graph contains
continuum many distinct rays.

To be precise, let us say that a graph G is dominating if there exists a
labelling 
: V (G) → ω of its vertices such that for every f : ω→ ω there is a
ray v0v1 . . . in G with 
(vn) � f(n) for all but finitely many n. Similarly,
G is called bounded if for every labelling 
: V (G)→ ω there exists a function
f : ω→ω such that, whenever v0v1 . . . is a ray in G, we have 
(vn) � f(n) for
all but finitely many n. If G is a graph with a fixed labelling, we shall not
always distinguish between a ray in G and its sequence of labels, so that we
may speak of functions dominating rays and vice versa.

Note that, by definition, supergraphs of dominating graphs are again domi-
nating, and subgraphs of bounded graphs are again bounded. We may therefore
hope to classify the bounded and the dominating graphs by identifying some
particular ‘minimal’ prototypes of unbounded or dominating graphs, and show-
ing that a graph is unbounded or dominating if and only if it contains one of
the respective prototypes. In fact, we shall see that a graph is bounded if and
only if it contains none of four specified graphs as a topological minor. The
dominating graphs will be characterized similarly.

The prototype unbounded or dominating graphs appearing in these char-
acterizations will be discussed in Section 1, together with some other examples.
In Section 2 we present the two classification theorems, and take a glance at
how they are proved. Section 3 introduces a framework for the definition of in-
finite games related to the domination of functions arising from rays in labelled
graphs; two specific games, the dominating game and the bounding game, are
analysed and winning strategies given.

The notation used will be standard; see e.g. [ 1 ]. When a graph G contains
a subdivision of a graph H as a subgraph, we also say that H is a topological
minor of G. If P is a path containing vertices u and v, we write uP , Pv and
uPv for the obvious subpaths of P starting in u and/or ending in v.

1. Examples

In this section we collect together a few typical examples of graphs that are,
or fail to be, bounded or dominating. Note that any dominating graph is
automatically unbounded.

We have already seen that any unbounded family of functions must be
uncountable. If a graph contains only countably many rays, it is therefore
trivially bounded.

For a more interesting example of bounded graphs, consider any connected
locally finite graph G, and pick a labelling. For each vertex v ∈ G, we may
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define a function fv: ω→ω by setting fv(n) to be the maximum of all the labels
of vertices at distance at most n from v. Clearly, fv dominates (the labelling
along) every ray in G that starts at v. Since G has only countably many
vertices, there exists a function f which dominates every fv with v ∈ V (G),
and hence every ray in G. Therefore G is bounded.

On the other hand, it is not difficult to find graphs that are unbounded or
even dominating. For example, the union of d disjoint rays is dominating, and
the union of b disjoint rays is unbounded: just label each ray by a different
member of some dominating or unbounded family of functions.

So how about countable unbounded graphs? The complete graph Kω on
a countably infinite set of vertices is clearly dominating. Indeed, consider any
labelling 
 that uses arbitrarily large labels: then, for any f : ω→ ω, we may
find a ray v0v1 . . . with 
(vn) > f(n) for every n. Similarly, the ω-regular tree
Tω is dominating, and hence unbounded: just label its vertices injectively, i.e.
so that any two labels are different.

In fact, any subdivision T of Tω is unbounded. To see this, let again

: V (T )→ω be any injective labelling, and let f : ω→ω be any given function.
We may then choose a ray v0v1 . . . in T as follows. If n = 0 or vn−1 is a branch
vertex of T , choose vn so that 
(vn) > f(n); this can be done, because 
 is
injective. Otherwise let vn be any hitherto unused neighbour of vn−1. (This
vertex is unique unless n = 1.) Since any ray in T contains infinitely many
branch vertices, we see that 
(vn) > f(n) for infinitely many n, and hence that
T is unbounded.

It is an interesting fact that, by contrast, subdivisions of Tω need not be
dominating. Indeed, consider any enumeration e: ω→E(Tω) of the edges of Tω,
and let T be the tree obtained from Tω by subdividing e(n) exactly n times for
each n.

Proposition 1.1. T is not dominating.

Proof. Let 
: V (T )→ω be any labelling of the vertices of T . Let f : ω→ω be
an increasing function satisfying f(n) > max { 
(v) | v ∈ e(n) } for all n ∈ ω.
We show that, for any ray R = v0v1 . . . in T and any i ∈ ω, there exists a k > i

with f(k) > 
(vk).
Given such R and i, choose j, k ∈ ω with i < j < k so that vjvk = e(n)

for some n. Then R traces out the subdivided edge e(n), so in particular we
have k � |vjRvk| = n+2. Since f is increasing and f(n) > 
(vk) by definition
of f , this gives f(k) � f(n) > 
(vk) as desired. �

If, as we have seen, Tω is dominating but subdivisions of it need not be,
can we say exactly which kinds of subdivision of Tω yield a dominating graph?
Indeed we can: as Theorem 2.3 of Section 2 will show, a subdivision of Tω is
dominating if and only if it contains a particularly simple subdivision of Tω, to
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be called ‘uniform’, in which for every branch vertex there exists a bound on
how often the edges incident with this vertex in Tω have been subdivided.

More precisely, let us call a subdivision T of Tω uniform if it has a branch
vertex r, called its root , such that whenever v is a branch vertex, all the sub-
divided edges at v that are not contained in the unique path from v to r have
the same length.

Proposition 1.2. Uniform subdivisions of Tω are dominating.

Proof. Let T be a uniform subdivision of Tω, with root r say. Let 
: V (T )→
ω be any injective labelling; we show that for every function f : ω→ω there is
a ray R in T which dominates f .

Since any ray in T is a concatenation of paths that are subdivided edges
of Tω, we may define R = v0v1 . . . inductively by choosing these subdivided
edges one at a time. Let v0 = r. Suppose that vn has been defined for every
n � m, and that vm is a branch vertex of T . Then all the (infinitely many)
subdivided edges at vm that are not contained in the portion of R defined so
far have the same length k, and so we can find one of them, say s0 . . . sk where
s0 = vm, such that 
(si) � f(m+ i) whenever 0 < i � k. Setting vm+i = si,
we obtain 
(vm+i) � f(m+ i) for all these i; moreover, vm+k is again a branch
vertex of T . This completes the induction step, and hence the construction
of R. Since 
(vn) � f(n) for every n > 0, it is clear that R dominates f . �

Surprisingly, there is yet another way to obtain a dominating graph from a
subdivision of Tω: by taking b disjoint copies of it. Note that d disjoint copies
are trivially dominating, since each of them contains a ray; it can be shown,
however, that b subdivisions of Tω, which need not be isomorphic, suffice:

Proposition 1.3. [ 5 ] If a graph is the union of b disjoint subdivisions of Tω,

then it is dominating. �

We have now seen all the examples of dominating graphs that will be
needed for our classification theorem in Section 2: Theorem 2.3 says that a
graph is dominating if and only if it contains a uniform subdivision of Tω,
b disjoint subdivisions of Tω, or d disjoint rays.

For the classification of bounded graphs, however, there are two more
prototypical unbounded graphs that may occur. One of these is the graph B
obtained from a ray v0v1 . . . by adding, for each n ∈ ω, a countably infinite set
of independent v3n+1–v3n+3 paths of length 2 (Fig. 1).

To show that B is unbounded, let 
 be any injective labelling of V (B), and
assume we are given a function f : ω→ ω. Let us specify a ray R = u0u1 . . .

as follows. Put u0 := v0 and u1 := v1. For u2, we have an infinite choice of
neighbours of v1, all labelled differently. We may thus choose as u2 a neighbour
of v1 whose label is greater than f(2). We continue with u3 := v3 and u4 := v4,
where again we have an infinite choice for u5. Proceeding in this manner, we
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FIGURE 1. The prototype bundle graph B

may choose R in such a way that 
(un) exceeds f(n) for every third value of n,
and thus f fails to dominate R.

In a similar way one can show that every subdivision of B is unbounded;
any subdivision of B will be called a bundle graph.

Our last example is similar to B. Let F be the graph obtained from a ray
V = v0v1 . . . by adding disjoint rays P2, P4, P6, . . . with Pk ∩ V = { vk }, and
joining v2n+1 to all the new vertices of P2n+2 for every n ∈ ω (Fig. 2).

FIGURE 2. The prototype fan graph F

F is again unbounded, the proof being essentially the same as for B. In-
deed, given any injective labelling and any function f : ω→ω, we can easily find
a ray R through F whose labels exceed the corresponding values of f again and
again. All we have to ensure when defining R is that we start at v0, and never
use an edge of one of the paths Pk in its ‘upward’ direction. (This would force
us to trace out the entire tail of Pk, leaving us unable to return to a vertex of
type v2n+1 with an infinite choice ahead.)

In a similar way one can show that every subdivision of F is unbounded;
any subdivision of F will be called a fan graph.

It is perhaps remarkable that F can be made bounded by what would
seem to be an inessential change. If the ‘fans’ in F are flipped horizontally, i.e.
if the vertices v2n+1 are joined to all the vertices of P2n rather than to those
of P2n+2 (add a ray P0), the resulting graph is bounded. This example is due
to Halin [ 6 ]; the reader may find it amusing to prove its boundedness without
using Theorem 2.1 below.
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2. The classification theorems

In this section we state the results from [ 3 ] and [ 5 ] which characterize the
bounded and the dominating graphs by forbidden configurations, and give some
indications of how these theorems are proved. The full proof of the bounded
graph theorem is too complex to be sketched in detail, but we shall give an
outline of the main ideas involved. For the dominating graph theorem, we shall
be able to give a fairly accurate sketch of what may be the most typical case.

Let us begin with the bounded graph theorem, which was proved in [ 3 ].
The result was conjectured by Halin almost 30 years ago, but only few partial
results used to be known. Recall that Tω, B and F denote the ω-regular tree,
the prototype bundle graph and the prototype fan graph, respectively, and let
Ib denote the union of b disjoint rays.

Theorem 2.1. (Bounded graph theorem)
A graph is bounded if and only if it contains none of the following graphs as a

topological minor: Ib; Tω; B; F .

The bounded graph theorem has some fundamental implications for the
concept of boundedness for graphs. Let us mention two of these. First, the
theorem implies that the boundedness or unboundedness of a graph depends
only on its countable subgraphs: unless the graph contains b disjoint rays—
in which case it is trivially unbounded—it is bounded if and only if all its
countable subgraphs are bounded.

Secondly, the translation of the original problem of bounding ω→ω func-
tions to a problem on graphs has been successful, in that the unboundedness of
a graph is shown to be a truly structural graph property, not one of the existence
of particularly intricate labellings: if a (countable) graph is unbounded then,
by the bounded graph theorem, this is witnessed by any injective labelling.

As for the proof of the bounded graph theorem, we have already seen the
forward implication: the graphs Ib, Tω, B and F and their subdivisions are
unbounded, and so they cannot be subgraphs of a bounded graph. For the
converse implication, let us first get some intuition for why these four types
of subgraph might be natural ones to occur inside an arbitrary unbounded
graph G.

If G has b or more components each containing a ray, we have G ⊇ Ib. If
not, it suffices to show that every such component is bounded: by definition
of b, there will then be a bounding function for all of G.

We may thus assume that G is connected. As we saw earlier, locally finite
connected graphs are bounded, so G will have vertices of infinite degree. Let
v be such a vertex, and assume that G contains infinitely many rays starting
at v. (This is not an enormous assumption, given that G contains enough rays
to make it unbounded.) Could it be that these rays can be chosen independent,
i.e. so that any two of them meet only in v? If so, their union might be viewed
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as the beginning of a subdivided Tω: unless v is an atypical vertex of G (in
which case the unboundedness of G would not depend on it), there should
be another vertex of infinite degree on one of the rays and a similar set of
independent rays issuing from it. If this process continues for long enough, it
is not unreasonable to assume that the union of all the rays involved contains
a subdivision of a graph in which every vertex has infinite degree—a graph
which is easily shown to contain a copy of Tω.

Suppose now that there is no infinite set of independent rays starting at v.
Then, by Ramsey’s theorem, there is an infinite set of rays from v such that
every two of them meet also in some other vertex. Now if v is the only vertex
that lies on infinitely many of these rays, then it is easy to find a ‘fan’ in
their union. Indeed, let R be one of the rays, and notice that for every finite
set of vertices we may find another ray from v avoiding this set. We may thus
inductively select an infinite sequence of initial segments of further rays from v,
which avoid R except for their two endvertices, and which meet pairwise only
in v.

We may therefore assume that there exists a vertex w which lies on in-
finitely many rays from v. We thus have an infinite set of v–w paths in G whose
second vertices are distinct. Using König’s infinity lemma, it is not difficult to
select an infinite subset of these paths forming either a ‘bundle’ or a (backward)
‘fan’ (Fig. 3).

FIGURE 3. Infinitely many v–w paths forming a
bundle or a fan

The main purpose of the above considerations was to see that fans and
bundles, as well as disjoint or infinitely branching rays, are indeed natural
ingredients of unbounded graphs. It must be said, however, that these con-
siderations have not taken us anywhere near a proof of the bounded graph
theorem. Indeed, one might well find various fans and bundles in an unbound-
ed graph: the problem is that, in general, they will be far from disjoint. The
difficulty in proving the theorem lies in the task of finding some structure in
the graph that enables us to construct an infinite sequence of disjoint bundles
or fans, as tidily threaded on a ray as in the graphs B and F .

To get to the heart of the proof, let us recall the proofs of the unbounded-
ness of bundle graphs, fan graphs and subdivisions of Tω, and see what these
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proofs have in common.
In the case of a subdivision T of Tω, we just took any injective labelling

of T and observed that, for any given function f : ω→ ω, we could easily find
a ray R through T which was not dominated by f . Indeed, no matter how we
had chosen an initial segment of R, we would be able to get to another branch
vertex of T , where we would have an infinite choice of labels for the next vertex
of R. This label could thus be chosen larger than the corresponding term in f .

For a bundle graph or a fan graph, finding such a ray R was hardly more
difficult. All we had to make sure of was that the paths P we considered for
initial segments of R belonged to a certain family P: a family of paths which
could, again and again, be extended to reach unused vertices of infinite degree.
In the bundle graph B, P consisted of the paths from left to right; in the fan
graph F , of those towards the right and down the spines of the fans.

The idea of finding such a family of paths in an unbounded graph G is
central to the proof of the bounded graph theorem, so let us give it a precise
form. Let us call a family P of finite paths in G a good family if

for every path P ∈ P there exists an n ∈ ω such that P has

infinitely many extensions in P of length n.
(∗)

Note that the existence of a good family of paths in G implies that G is
unbounded. Indeed, if in condition (∗) we choose n minimal, then there exist
infinitely many extensions P ′ ∈ P of P that agree up to their nth (= penulti-
mate) vertex and differ pairwise at their last vertex. Thus if P is viewed as the
beginning of a ray R being constructed to elude a given function f (as in our
discussion of B and F ), then the (n+ 1)th vertex of this ray can be selected
from an infinite choice, and therefore in such a way that its label exceeds the
corresponding term in f . In this manner we may construct R inductively as
the limit of a nested sequence of paths from P.

Moreover, if G contains a bundle graph, a fan graph or a subdivision of Tω,
then clearly G contains a good family of paths. Thus if the bounded graph
theorem is true, then any graph G not containing Ib satisfies the following
implications (which in turn imply the bounded graph theorem):

G is unbounded ⇒ G contains a good
family of paths

⇒ G contains Tω, B or F
as a topological minor

It is therefore reasonable to expect that the proof of the bounded graph
theorem could be carved up into two chunks, verifying these two implications
separately. This is indeed the basic structure of the proof as given in [ 3 ]. In
practice it turns out to be convenient for the proof of the second implication to
strengthen the definition of a good family considerably, but for simplicity we
shall here work with the definition given above. The only visible effect of this
simplification will be that the first implication will appear to be easier to prove
for graphs of cardinality < b than for arbitrary graphs. This is not actually
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the case, i.e. the ideas outlined below for the ‘case’ of |G| � b would in fact be
essential ingredients even of a proof for countable graphs only.

In order to prove the first implication, let us try to find a good family of
paths in G by induction: starting with the family P0 of all finite paths in G,
let us recursively discard any paths P from this family that violate the defining
condition (∗) for a good family, and hope that eventually we will be left with a
family that is indeed good. More precisely, let us define subfamilies Pα of P0,
for all ordinals α > 0, as follows.

Suppose first that α is a successor, say α = β + 1. If Pβ contains a path
P =: Pβ which violates (∗) (i.e., a path P such that, for each n ∈ ω, Pβ contains
only finitely many extensions of P of length n), let Pα be obtained from Pβ by
deleting Pβ and all its extensions P ′ ∈ Pβ . If Pβ contains no such path P , let
Pα := Pβ . If α is a limit, let Pα :=

⋂
β<α Pβ .

Clearly, there exists an α of cardinality at most |P0| such that Pα+1 = Pα;
let α∗ be the least such α, and set Pα∗ =: P. Clearly P satisfies condition (∗),
and is therefore a good family if and only if it is non-empty. To complete the
proof of the first implication, we thus have to show that P �= ∅.

We now prove that P �= ∅, under the additional assumption that α∗ < b.
The problem of how P0, and hence α∗, might be reduced to cardinality < b

without the risk of ending up with P = ∅, will be addressed afterwards.
Suppose P = ∅; we show that G is bounded, contrary to our assump-

tion. Let 
: V (G)→ω be an arbitrary labelling of G. We shall define functions
fα: ω→ω, one for each α < α∗, so that any function f∗ that dominates every fα

will bound G; such a function f∗ exists by our assumption that α∗ < b.
For each α < α∗, let the kth term of fα be defined as

fα(k) :=
{

(vk) if k � |Pα|
max { 
(t(P )) | P ∈ Pα\Pα+1 and |P | = k } if k > |Pα| ,

where vk is the kth vertex of Pα and t(P ) is the last vertex of P . Recall
that, by definition, Pα has only finitely many extensions P ∈ Pα of any given
length; since Pα\Pα+1 is precisely the set of Pα and all its extensions in Pα,
the maximum used above is therefore just the maximum of a finite set.

To show that f∗ bounds G, let R ⊂ G be any ray. Since every initial
segment of R is in P0, but P = ∅ by assumption, each initial segment of R is
discarded at some (non-limit) step in the recursive definition of P; let α < α∗ be
minimal such that Pα\Pα+1 contains an initial segment of R. Then Pα is itself
an initial segment of R. Moreover, all the extensions of Pα in R are also in Pα

(by the minimality of α), and were hence discarded together with Pα. Thus,
Pα\Pα+1 contains every initial segment of R of length k � |Pα|. Therefore fα

dominates R, by definition of fα, and so f∗ dominates R as claimed.

To complete the proof of our ‘first implication’ (i.e. that any unbounded
G �⊇ Ib contains a good family of paths), let us now see how we can replace P0
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in the above recursion with a smaller starting family. This family should still
be large enough to contain a good family (provided that G is unbounded), but
small enough to allow the recursion to be completed in fewer than b steps.

To achieve this, we make use of a structure theorem for connected graphs
not containing a topological Kω minor; note that we may assume this for G, as
otherwise G contains a subdivision of Tω (and, in particular, a good family of
paths). Let T ⊂ G be a tree, with root r say, and let us call a ray R ⊂ T normal
if it starts at r. The tree T will be called a skeleton of G if, for each normal
ray R, we can assign to every vertex of G a vertex in R, called its R-height , so
that the following conditions are satisfied:

(i) if t is a vertex on T , then the R-height of t is the vertex of R closest to
t in T ;

(ii) if v is a vertex of G\T and v is joined to a vertex t ∈ T\R by a path
whose interior avoids T , then the R-height of v equals the R-height of t;

(iii) if a vertex v has R-height x and a vertex w has R-height different from x,
then the path rTx separates v from w in G.

Thus, if T is a skeleton of G and R ⊂ T is a normal ray, and if C is a component
of G\R containing the branch B of T , say, then every vertex of C has the same
R-height, namely the unique vertex of R to which B is attached in T .

Our structure theorem for graphs without a topological Kω minor, which
builds on work of Jung and Halin and is proved using simplicial decompositions
of graphs (see [ 2 ]), can now be expressed as follows:

Theorem 2.2. If G is connected and contains neither Ib nor a subdivision

of Kω as a subgraph, then G has a skeleton T of order < b such that every ray

in G meets some ray in T infinitely often.

Intuitively, Theorem 2.2 says that G contains a ‘small’ skeleton, and that
the rest of G is ‘wrapped around’ this skeleton in a bounded sort of way. The
reason why this will be useful to us is that, roughly speaking, it allows us to
distinguish two cases. Either G is wrapped around T tightly, in which case
there is a good family of paths all staying close to the skeleton; since the
skeleton itself has order < b, these paths can be extracted recursively from a
family P0 of order < b, as desired. Alternatively, the wrapping around T will
be bulky in many places of different R-height (for some normal ray R). We
may then extract a fan or a bundle at every such place, and combine them into
a fan graph or a bundle graph: as the R-heights of different fans or bundles
are distinct, they will be pairwise disjoint. (Recall that keeping fans or bundles
disjoint is one of the main problems in the entire proof.)

Let us make these ideas more precise. When s and t are comparable
vertices of T , i.e. if (say) s lies on the unique r–t path in T , let us say that
there is thick padding around T at the pair (s, t) if G contains infinitely many
(not necessarily independent) s–t paths whose interiors avoid T ; otherwise we
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shall speak of thin padding at (s, t). Note that the s–t paths in the padding at
(s, t) need not be linked up with each other in G\T ; in particular, their vertices
may have different heights with respect to a normal ray R.

Recall from our introductory discussion that any union of infinitely many
s–t paths with distinct second vertices contains a bundle or a fan (Fig. 3). Using
similar arguments, it is not difficult to show that if T has thick padding around
it at (s, t), then somewhere ‘inside this padding’ (i.e., using no vertices of T
other than s and t), there must be a bundle; note that there cannot be a fan
there since, by Theorem 2.2, G\T contains no ray.

We now come to the distinction between the two cases of whether G is
‘wrapped around T tightly’ or not. Suppose first that, for every normal ray R,
the padding around R becomes thin eventually, i.e. there are only finitely many
non-overlapping pairs of vertices of R at which there is thick padding. We may
then restrict the starting family P0 for our recursion to paths which leave T
only at pairs where the padding is thin; in other words, whenever P ∈ P0 is
such that sP t is a path of length � 2 and sP t∩T = { s, t }, the set of all such
s–t paths in G is finite. Each path in P0 is then determined by its sequence of
vertices on T and the finite choices of connecting paths between these vertices,
so we have |P0| � |T | < b as desired.

We may therefore assume that T contains a normal ray R with thick
padding at infinitely many non-overlapping pairs of its vertices. Let us select
an infinite sequence of such pairs and extract a bundle from the padding at
each of these pairs. Let us call such a bundle wide if the set of R-heights of its
vertices is finite; otherwise let it be tall . Then there is an infinite subsequence
of our pairs such that either each one of the associated bundles is wide, or each
of these bundles is tall.

If every bundle is wide, we may select a further subsequence of pairs such
that the R-heights of bundles associated with different pairs are disjoint; with a
bit of work, these bundles may then be combined into a bundle graph. Suppose
finally that every bundle in the sequence is tall. It is not difficult to show that
the endvertices of such a bundle (i.e. its two vertices of infinite degree) must be
on R. Thus, R has infinitely many vertices—two for each bundle—every one
of which has neighbours of arbitrarily large R-height. Choosing appropriate
disjoint connecting paths between these neighbours and their respective R-
heights on R, we obtain a graph that is easily seen to contain a subdivision
of Kω. This contradicts our assumptions about G, completing the proof of the
‘first implication’.

The proof of the second implication, the fact that if G contains a good
family of paths then it contains a bundle graph, a fan graph or a subdivision
of Tω, makes up about two thirds of the proof of the bounded graph theorem.
The techniques used are largely similar to those outlined above. It is assumed
that G is connected and has no topological Kω minor, and therefore contains
a skeleton. The skeleton may then be used to keep different fans and bundles

11



separated by their R-heights, for suitable normal rays R; thus, if sufficiently
many fans or bundles can be found, these may be combined to a bundle graph
or a fan graph.

Let us then mention briefly how these fans or bundles are generated. Let P
be a good family of paths in G. The essential structure of P can be represented
by a graph T , which looks very similar to a Tω, and which acts as something
like a covering tree for the paths P ∈ P in G. If G resembles T closely, it can
be shown to contain a subdivision of Tω. On the other hand, if the paths of P
intersect a lot more (in G) than do their lifts in T , they generate sufficiently
many bundles or fans to make a bundle graph or a fan graph in G. The
distinction between the latter two cases depends on the relationship between
T and the skeleton T of G.

To see how T is obtained, let us first select a simple subfamily of P, which
will still be a good family. We start with any path P0 ∈ P. By condition (∗),
P0 has infinitely many extensions in P of some common length n. Among
these, select infinitely many that agree up to their penultimate vertices; this
can be done if n is first chosen minimal. In the same way, we then find an
infinite set of extensions for each of these new paths, again (in each case) of
some common length and agreeing up to their penultimate vertices. In ω steps,
we have constructed a subfamily Q of P which is still good, and which clearly
has a structure similar to a subdivision of Tω: let Q′ be the closure of Q under
taking initial segments, set V (T ) = Q′, and join vertices P, P ′ ∈ Q′ by an edge
whenever P ′ is an extension of P by one vertex. The tree T obtained in this
way is a subdivision of Tω, except for its ‘long root’ made up of vertices that
are proper initial segments of P0.

Let π: V (T )→ V (G) be the map that assigns to each P ∈ V (T ) its last
vertex. Then if p is the first vertex of P0, and the trivial path { p } ∈ V (T ) is
taken to be the root of T , we see that π maps each path of the form { p }T P
to the path P ⊂ G in a natural way. Conversely, each path P = v0 . . . vn ∈ Q′

lifts uniquely to the path in T with vertices Pvi, i = 0, . . . , n.
Now let P be a branch vertex of T , with π(P ) = v say, and consider the

subdivided edges at P pointing away from the root { p }. If these subdivided
edges project under π to paths in G that are disjoint except for their com-
mon initial vertex v, then these paths might be used in the construction of a
subdivided Tω in G.

On the other hand, it might be the case that G has a vertex w such that
every subdivided edge of T at P contains a vertex Q with π(Q) = w. In
this case, the subdivided edges at P have initial segments which project to an
infinite set of v–w paths in G. As we saw earlier, the union of such a set of
paths makes up a bundle or a fan.

Using an easy Ramsey type argument, we may now assume that all the
branch vertices of T behave in the same way; then either we obtain a subdi-
vision of Tω in G straight away, or else we obtain a bundle or a fan for each
branch vertex of T . Using a number of similar Ramsey type arguments, this
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infinite set of configurations in G (fans or bundles) can then be streamlined in
several ways. Eventually we end up with a set of configurations that are not
only either all fans or all bundles, but which are compatible (with respect to
their position towards the skeleton T ) in many other ways too. (In particular,
these fans or bundles will be pairwise disjoint.) In this way we eventually obtain
a fan graph or a bundle graph in G, completing the proof of the bounded graph
theorem. �

We now turn to the dominating graph theorem, proved in [ 5 ]. Its proof
is much shorter than that of the bounded graph theorem, and we shall be able
to give a fairly complete sketch of the most typical case.

Theorem 2.3. (Dominating graph theorem)
A graph G is dominating if and only if it satisfies one of the following three

conditions:

(i) G contains a uniform subdivision of Tω;

(ii) G contains b disjoint subdivisions of Tω;

(iii) G contains d disjoint rays.

We prove the theorem under the set theoretic assumption that b = d. This
is a comparatively weak assumption, much weaker, say, than Martin’s axiom
or even the continuum hypothesis. Note that case (ii) of the theorem is now
redundant, since d subdivisions of Tω contain d disjoint rays.

We have already seen that uniform subdivisions of Tω and unions of d

disjoint rays are dominating; it remains to prove that if G is dominating then
G contains one of these two types of subgraph.

The basic idea of the proof is similar to the way in which we obtained a
good family of paths for the bounded graph theorem. We recursively define a
rank function ρ on some or all of the vertices of G, with the following property.
If any vertex remains unranked, i.e. if the recursion ends before ρ is defined on
all of V (G), then G contains a uniform subdivision of Tω; if ρ gets defined for
every vertex, then either G contains d disjoint rays or G is not dominating.

Set ρ(v) = 0 for all vertices v that have finite degree in G. Now let α > 0
be given, and suppose that for every β < α we have assigned to some vertices
the ρ-value β. Set ρ(v) = α for all those vertices v for which

- ρ(v) is still undefined, and

- whenever P is a set of finite paths from v, pairwise disjoint except for v,
all of the same length, and each ending in a vertex which has not been
given any ρ-value β < α, then P is finite.

If there is no such vertex v, we terminate the recursive definition of ρ, and leave
ρ undefined for any remaining vertices of G.

It is not difficult to see that if ρ remains undefined for some vertices v ∈ G,
then G contains a uniform subdivision of Tω. Indeed, the definition of ρ implies
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that for every such v there exists an infinite set of paths from v, pairwise disjoint
except for v, all of the same length, and each ending in a vertex for which ρ
is also undefined. It is now easy to use all these paths as subdivided edges to
build a uniform subdivision of Tω, choosing them inductively in ω steps and so
that the portion of the tree constructed remains connected at all times: then at
each point of the construction only finitely many vertices have been used, but
there is always an infinite set of disjoint paths from which the next subdivided
edge can be chosen.

Let us therefore assume that ρ(v) is defined for all v ∈ V (G), and that G
contains no union of d disjoint rays; we shall show that G is not dominating.
Let 
: V (G) → ω be any labelling; we now have to find a function f : ω→ ω

which is not dominated by any ray in G.
Let a path P from u to w in G be called upward if

ρ(w) = max { ρ(v) : v ∈ P }.

We first show the following.

(2.3.1) For each u ∈ V (G) and each integer m, there are only finitely many

vertices w such that G contains an upward path of length m from u

to w.

Suppose the contrary, and consider a vertex u, an integerm, and an infinite
set {wn : n ∈ ω } such that for each n there is an upward path Pn of length m
from u to wn. Choose k � m maximal so that there exist a vertex v and an
infinite set P ⊂ {Pn : n ∈ ω } such that v is the kth vertex in every P ∈ P.
(Note that k exists, because every Pn starts at u.) We shall now select an
infinite sequence {Pni

: i ∈ ω } of paths from P so that any two of these paths
are disjoint after v; since each Pn is an upward path, and hence ρ(v) ≤ ρ(wn)
for every n, this will contradict the definition of ρ(v).

Let Pn0 be any path from P. Now suppose Pn0 , . . . , Pni have been chosen,
and let U be the union of their vertex sets. By the maximality of k, there are
at most finitely many paths in P that contain a vertex from U after v; let Pni+1

be any other path from P. It is then clear that the full sequence {Pni : i ∈ ω }
has the required disjointness property. This completes the proof of (2.3.1).

We now define the function f which will show that G is not dominating.
Let U be the vertex set of the union of some maximal set of disjoint rays in G.
By assumption there are fewer than d rays in this set, so |U | < d. Note also
that every ray in G meets U in infinitely many vertices. Using (2.3.1) we may
define, for each u ∈ U , a function fu: ω→ω such that fu(m) > 
(w) for every
m ∈ ω and every vertex w to which u can be linked by an upward path of
length m. By our hypothesis that b = d > |U |, there exists an ω→ω function
which dominates each of the functions fu; let f be such a function. Redefining
f(n) as max { f(k) : k ≤ n } if necessary, we may assume that f is increasing.
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Now let R = v0v1 . . . be any ray in G; we have to show that f(k) > 
(vk) for
infinitely many k ∈ ω. Using the fact that the ordinal sequence ρ(v0), ρ(v1), . . .
cannot contain an infinite decreasing sequence, it is not difficult to see that we
can find an infinite increasing sequence { ki : i ∈ ω } such that ρ(vki) ≤ ρ(vki+1)
for each i, and ρ(vj) < ρ(vki) whenever ki < j < ki+1. Now pick k∗ � k0 so
that u := vk∗ ∈ U . Note that, for each ki > k∗, the path uRvki is an upward
path of length ki − k∗.

Since f dominates fu, there is some K ∈ ω such that fu(k) ≤ f(k) for all
k ≥ K. But then


(vki
) < fu(ki − k∗) ≤ f(ki − k∗) ≤ f(ki)

for all i with ki−k∗ ≥K, by definition of fu = fvk∗ . Thus R fails to dominate f ,
as required. �

3. Domination games

As is well known, Adam and Eve used to play the following game. For a given
graph G, Adam first chooses a labelling 
:V (G) → ω. Then the two players
move alternately: Eve, who moves first, plays a natural number, Adam a ver-
tex of G. In this way, Eve creates a function e:ω→ω, while Adam creates an
ω-sequence of vertices.

In the bounding game, Adam tries to escape domination by Eve: he wins
if and only if he succeeds in constructing a ray A ⊂ G that is not dominated
by Eve’s function e. Thus, playing Adam’s part in the bounding game is like
an interactive version of trying to prove that G is unbounded. (The difference
is that now Adam does not know what Eve will play in future moves; for a
proof that G is unbounded, it would be sufficient to be able to construct an
undominated ray with respect to any ω→ ω function given complete at the
start.)

It is clear that if G is bounded, then Eve has a winning strategy: once
Adam has chosen his labelling of G, she just plays a bounding function with
respect to this labelling, without ever paying attention to what Adam is doing.
On the other hand, Eve may still have a winning strategy when G is unbound-
ed. For example, Eve has a winning strategy for the graph Ib: she plays any
number in her first move, waits to see from which component of Ib Adam picks
his first vertex, and then plays a winning strategy for that component. (Recall
that each component of Ib is a ray, and is therefore bounded.) Since Adam can
only construct a ray if he stays in that component, Eve will win the game.

The following result from [ 4 ] shows that the example of Ib does indeed
mark the difference between the graphs that are unbounded and those for which
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Adam has a winning strategy in the bounding game. Its proof in [ 4 ] gives an
explicit winning strategy for either Adam or Eve, as appropriate.

Theorem 3.1. Adam has a winning strategy in the bounding game on G if

and only if G contains one of the graphs Tω, B and F as a topological minor.

The dominating game is defined like the bounding game, except that now
Adam tries to construct his ray A in such a way that it actually dominates
the function e created by Eve (and is not just not dominated by it). Again,
it is clear that if Adam has a winning strategy in the dominating game on G
then G must be a dominating graph. However, unlike the similarity between
the bounding game and the bounded graph theorem, it turns out to be much
harder for Adam to win the dominating game on G than it is to prove that G is
a dominating graph: the following result from [ 4 ] implies that the dominating
game can be won by Eve on ‘most’ subdivisions of Tω, including uniform ones,
as well as on disjoint unions of these (cf. Theorem 2.3).

Theorem 3.2. Adam has a winning strategy on a graph G if and only if

G ⊇ Tω. Otherwise Eve has a winning strategy.

Proof. It is clear that Adam has a winning strategy if G ⊇ Tω: he chooses a
labelling that is injective on this Tω, and is then able to beat Eve in every move.
We shall assume that G �⊇ Tω, and show that Eve has a winning strategy.

As in the proof of the dominating graph theorem, we start by recursively
defining a rank function ρ on some or all of the vertices of G. For each ordinal α,
give rank α =: ρ(v) to all vertices v such that all but finitely many neighbours
of v have rank < α. If any vertex remains unranked, then each of these vertices
has infinitely many unranked neighbours, and we may construct a Tω ⊂ G from
these vertices by induction (in ω steps, as in the proof of Theorem 2.3).

Thus, sinceG �⊇ Tω by assumption, ρ gets defined for every vertex ofG. We
may now choose a winning strategy for Eve as follows. Let 
 be the labelling
of G chosen by Adam at the start of the game, and let Eve’s first move be
arbitrary. Later, if Adam’s last chosen vertex is v, let Eve play the number

1 + max { 
(w) | w is a neighbour of v and ρ(w) � ρ(v) };

by definition of ρ(v), the maximum above is just one over a finite set.
Now consider a run of the game in which Eve plays the above strategy.

If Adam fails to construct a ray, then Eve wins by definition. So assume that
Adam does indeed construct a ray A ⊂ G. Since there is no infinite descending
sequence of ordinals, A has infinitely many vertices whose rank is at most that
of its successor on A. But Eve beats Adam on all these successors, so A fails
to dominate her sequence e. Thus, Eve’s strategy is indeed a winning strategy.

�
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