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An infinite graph is called bounded if for every labelling of its vertices
with natural numbers there exists a sequence of natural numbers which
eventually exceeds the labelling along any ray in the graph. We prove
an old conjecture of Halin, which characterizes the bounded graphs in
terms of four forbidden topological subgraphs.

1. Introduction

Let σ, τ : N → N be two sequences of natural numbers. We say that σ domi-
nates τ if σ(n) � τ(n) for every n greater than some n0 ∈ N. Now let G be an
infinite graph, and assume the vertices of G are labelled with natural numbers,
say by f : V (G)→N. Then each ray (one-way infinite path) R = x0x1 . . . in G

gives rise to a sequence τR := (f(x0), f(x1), . . .); we say that σ dominates R if
σ dominates this sequence τR. We may then ask whether or not there exists
a sequence σ: N → N which dominates all the rays in G simultaneously. If
this is the case, we say that the labelling f of G is bounded by σ; if not, f is
unbounded .

An unlabelled graph G is said to be bounded if every labelling of its vertices
is bounded. Thus, G is bounded if and only if for every labelling f : V (G)→N

there exists a sequence σ: N→N which dominates every ray in G with respect
to f . If not, G will be called unbounded .

Our main aim in this paper is to give a proof of what has become known
as the ‘bounded graph conjecture’ [ 5 ]. This conjecture, proposed by Halin
in 1964 (see [ 5 ]) but first published in [ 4 ], characterizes the bounded graphs
by the exclusion of four simple prototypes of unbounded graphs as topolo-
gical subgraphs. Not surprisingly, this characterization has some fundamental
implications for the concept of boundedness.

Before we state the bounded graph conjecture in detail, let us look at a
few examples of bounded and unbounded graphs. Kω, the complete graph on
a countably infinite set of vertices, is clearly unbounded: choose any labelling
that uses infinitely many distinct labels, and there will be rays whose labellings
grow faster than any fixed N→N sequence.

Another trivial example of an unbounded graph is the following. For a
cardinal κ, let Iκ denote the disjoint union of κ rays. Then Iκ is unbounded for
every κ � 2ω. Indeed, since there are only 2ω different N→N sequences, we can
accommodate every possible sequence as the labelling of one of the rays of Iκ.
The overall labelling of Iκ then is clearly unbounded, and so Iκ is unbounded.
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This trivial uncountable example of an unbounded graph is in fact the
only uncountable aspect of the whole bounded graph problem: as we shall see,
the task of classifying the bounded or unbounded graphs without uncountably
many disjoint rays is an entirely ‘countable’ problem. (Indeed, we shall find
that such a graph is bounded if and only if all its countable subgraphs are
bounded (Corollary 7.3).)

Let us then look at some further countable examples. A graph with only
countably many rays is bounded, due to the following well-known observation:

Lemma 1.1. Every countable family of sequences σn: N→N (n ∈ N) is dom-

inated by a common sequence σ: N→N.

Proof. For each n ∈ N, set σ(n) := max {σ0(n), . . . , σn(n) }. �

For example, a single ray contains only countably many distinct rays as sub-
graphs (namely, all its ‘tails’), and is therefore bounded.

A similar argument shows that, more generally, every locally finite con-
nected graph G is bounded. Indeed, given a labelling f and any fixed vertex v

of G, it is easy to construct a sequence σv which dominates all the rays in G

starting at v; then Lemma 1.1 provides a sequence which dominates all these
(countably many) sequences σv, and hence bounds f .

The example of Kω may suggest that countable graphs have to be dense in
order to be unbounded. However, this is not the case. Tω, the tree of countably
infinite regular degree,* is also unbounded. To show this, we have to find a
labelling f : V (Tω) → N such that no N → N sequence dominates all the rays
in Tω with respect to f . This is easily done. In fact, all we ask is that f be
injective, i.e. that all the vertices of Tω be labelled differently. Given σ: N→N,
we then choose a ray in Tω as follows. Let x0 be any vertex of Tω whose label
is greater than σ(0). Since f is injective, x0 has a neighbour x1 whose label
exceeds σ(1). Continuing in this manner, we find a ray x0x1 . . . ⊂ Tω such that
f(xn) > σ(n) for every n, so this ray is certainly not dominated by σ.

The following example of an unbounded graph is based on the same idea.
Let B be the graph obtained from a ray v0v1 . . . by adding, for each n ∈ N,
a countably infinite set of independent v3n+1–v3n+3 paths of length 2 (Fig. 1).
Any subdivision of B will be called a bundle graph. (See §2 for the definition
of subdivision etc.)

To show that B is unbounded, let f be any injective labelling of B, and
assume we are given a sequence σ: N→N. Let us specify a ray R = x0x1 . . .

as follows. Put x0 := v0 and x1 := v1. For x2, we have an infinite choice of
neighbours of v1, all labelled differently. We may thus choose as x2 a neighbour
of v1 whose label is greater than σ(2). We continue with x3 := v3 and x4 := v4,
where again we have an infinite choice for x5. Proceeding in this manner, we

* This means that every vertex of Tω has exactly ω neighbours; see §2.
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FIGURE 1. The prototype bundle graph B

may choose R in such a way that f(xn) exceeds σ(n) for every third value of n,
and thus σ fails to dominate R.

Our last example is similar to B. Let F be the graph obtained from a ray
V = v0v1 . . . by adding disjoint rays P2, P4, P6, . . . with Pk ∩ V = { vk }, and
joining v2n+1 to all the new vertices of P2n+2 for every n ∈ N (Fig. 2). Any
subdivision of F will be called a fan graph.

FIGURE 2. The prototype fan graph F

F is again unbounded, the proof being essentially the same as for B. In-
deed, given any injective labelling f : V (F ) → N and any sequence σ: N → N,
we can easily find a ray R through F whose labels exceed the corresponding
values of σ again and again. All we have to ensure when defining R is that
we start at v0, and never use an edge of one of the paths Pk in its ‘upward’
direction. (This would force us to trace out the entire tail of Pk, leaving us
unable to return to a vertex of type v2n+1 with an infinite choice ahead.)

It is perhaps remarkable that F can be made bounded by what would seem
to be an inessential change. If the ‘fans’ in F are flipped horizontally, i.e. if the
vertices v2n+1 are joined to all the vertices of P2n rather than to those of P2n+2

(add a ray P0), the resulting graph is bounded. (This example is due to Halin;
he found it so discouraging that it prompted him to doubt the possibility of a
proof of his conjecture by elementary methods [ 5 ].)

We are now ready to state Halin’s conjecture. If a graph G has a sub-
graph isomorphic to a subdivision of a graph X, we say that X is a topological
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subgraph of G.

Bounded Graph Conjecture. (Halin)
Assume the Continuum Hypothesis. A graph is bounded if and only if it

contains none of the following graphs as a topological subgraph: Iω1 ; Tω; B; F .

The forward implication of the conjecture should be obvious: we have
seen that the graphs I2ω , Tω, B and F are all unbounded; these proofs remain
essentially the same for subdivisions of the latter three graphs (and identical
for Iω1 = I2ω ), and it is clear that no bounded graph can have an unbounded
subgraph.

A word concerning the Continuum Hypothesis (CH). When Halin original-
ly proposed the bounded graph conjecture (in connection with Rado’s seminal
paper on Universal graphs and universal functions [ 9 ]), it was understood to
refer to countable graphs only, and Tω, B and F were the only forbidden (topo-
logical) subgraphs. There was no mention of CH. Halin later strengthened the
conjecture to include graphs of any cardinality, which resulted in the additional
exclusion of I2ω . This in turn suggested the assumption of CH, as it seemed
unclear whether or not Iκ is bounded when κ is a cardinal strictly between ω

and 2ω.
In fact, it is well-known among set theorists that this latter question is

independent of the usual axioms of set theory. Martin’s Axiom, for example,
implies that every Iκ with κ < 2ω is bounded, but it is consistent with ZFC
that there exist κ < 2ω for which Iκ is unbounded.

It should be stressed that our proof of the bounded graph conjecture is
entirely free from such set theoretic considerations. To make this possible, we
take the following (standard) approach. We shall define a cardinal b in such
a way that it is the least cardinal κ for which Iκ is unbounded (whatever the
value of that cardinal may be), and then prove—without assuming CH—that
a graph is bounded if and only if it contains none of Ib, Tω, B or F as a
topological subgraph. Since ω < b � 2ω, and hence ω1 = b = 2ω with CH, this
in particular implies the bounded graph conjecture as stated above.

It turns out that we need to show very little about b to make this ap-
proach work. However, any reader who prefers to work with countable sets and
is willing to accept CH will lose nothing by substituting ‘countable’ whenever
he reads ‘< b’.

Before we get down to the proof of the bounded graph conjecture, let us
look at some of its immediate implications. (See also §7.) As a first corollary,
the conjecture implies that subdivisions of bounded graphs are again bound-
ed, and that subdivisions of unbounded graphs are unbounded. The first of
these two statements may not be unexpected: for countable graphs it follows
without much effort from the definition of boundedness. The second assertion
is more surprising. Indeed, it would seem that there should be graphs which
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are unbounded largely because they are dense (as our example of Kω), so that
subdividing their edges sufficiently often might make them bounded.

Together with the obvious fact that subgraphs of bounded graphs are
bounded, the assertion that subdivisions of unbounded graphs are again un-
bounded is equivalent to saying that boundedness is closed under taking to-
pological subgraphs. We shall also derive a forbidden minor version of the
bounded graph conjecture (Theorem 7.7), together with a corollary saying that
boundedness is closed under taking minors (with finite branch sets).

Another consequence of the bounded graph conjecture is the fact that
a graph is bounded if and only if all its countable subgraphs are bounded—
unless, of course, it contains uncountably many disjoint rays, in which case
it is trivially unbounded (assuming CH). Thus, boundedness is shown to be
an essentially ‘countable’ property, irrespective of the cardinality of the graph
considered.

Finally, the bounded graph conjecture implies that if a countable graph
admits any unbounded labelling at all, then all its injective labellings are un-
bounded. (Recall that the latter is true for subdivisions of Tω, and for bundle
and fan graphs.) It is therefore never difficult to find an unbounded labelling
for an unbounded graph: its unboundedness lies properly in its structure, not
in the complication of any particular labelling.

On the face of it, the bounded graph conjecture seems rather a bold conjec-
ture to make. There appears to be nothing special about the four unbounded
graphs which it claims are the only prototypes—indeed it would seem that
playing with a few examples should reveal many more similar ‘minimal’ un-
bounded graphs. This may partly explain the fact that over the last 25 years
there seem to have been few serious attempts at proving the conjecture.

Halin himself published his own partial results only very recently. In a pa-
per written in 1986 [ 4 ], he proves the bounded graph conjecture for countable
trees. Note that of the four forbidden graphs from the conjecture this involves
only Tω; graphs of the other three types cannot even occur in a countable tree.
A few years later, Halin extended this theorem to graphs whose blocks are
rayless [ 5 ] (see also [ 2 ]). The extended result still involves only three of the
four forbidden configurations, as fan graphs cannot occur. A very recent result
of Halin, also found in [ 5 ], confirms the bounded graph conjecture for graphs
not containing an infinite set of disjoint rays. (This last theorem builds on
Halin’s well-known structural characterization of these graphs by ‘chain-like’
decompositions.)

The following may help to motivate the bounded graph conjecture a little
better, taking some of the arbitrariness out of its list of forbidden configu-
rations. (It will also be used later, for a proof of Lemma 2.3.) Let G be a
connected unbounded graph. Since locally finite connected graphs are bound-
ed, G has a vertex v of infinite degree. Let us assume that every edge incident
with v can be extended to a ray (which is not an enormous assumption), and
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let R0, R1, . . . be an infinite set of rays all starting at v. Can R0, R1, . . . be
chosen pairwise independent (i.e., disjoint except for v)? If so, they might be
seen as the beginning of a subdivided Tω in G, and we might try to find similar
rays starting at other vertices of the Rn to continue the construction.

If the rays R0, R1, . . . cannot be chosen independent, it seems reasonable
to expect that we can choose them in such a way that there exists a finite set
of vertices, and hence a single vertex w, which each of them meets. We may
now apply König’s theorem (see §2) to combine suitable initial segments of the
rays Rn into what might be the first ‘bundle’ of a bundle graph, or the first
‘fan’ of a fan graph in G.

Indeed, let us choose initial segments Pn of the Rn as follows. Let P0 be
the initial segment of R0 that ends at w. Having defined P0, . . . , Pn for some
n ∈ N, let Pn+1 be the initial segment of Rn+1 which ends at the first vertex of
Rn+1 that is in P0 ∪ . . .∪Pn. Let this vertex be called wn+1, and let k(n+ 1)
be the minimal k for which wn+1 ∈ Pk. Call Pk(n+1) the predecessor of Pn+1.

Let T be the tree whose vertices are the paths Pn (n ∈ N), and in which
each vertex Pn (for n = 1, 2, . . .) is joined by an edge to its predecessor Pk(n).
By König’s theorem, T contains a ray or has a vertex of infinite degree. If T

has a vertex of infinite degree, Pk say, then Pk contains a vertex x such that
wn = x for infinitely many n > k. The paths Pn with wn = x are pairwise
independent (i.e., disjoint except for v and x), and they form a ‘bundle’ (Fig. 3).

On the other hand if T contains a ray, without loss of generality starting
at P0, then the union of the paths Pn ⊂ G which are the vertices of this ray
are easily seen to form a ‘fan’ (Fig. 3). (Note that, by the construction of T , if
Pm succeeds Pn on the ray in T then m > n, so Pn is the predecessor of Pm.)

FIGURE 3. A bundle or a fan on a path Pk = v . . . w

The main purpose of the above considerations is to persuade the reader
that fans and bundles are indeed natural ingredients of unbounded graphs. It
must be said, however, that these considerations have not taken us anywhere
near a proof of the bounded graph conjecture. Indeed, one might well find var-
ious fans and bundles in an unbounded graph: the problem is that, in general,
they will be far from disjoint. Our task will thus be to prove that unbounded
graphs must contain fans and bundles in such abundance that it is possible to
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select an infinite set of them as tidily threaded on a ray as in the graphs B

and F .

The paper is organized as follows. We begin with a short section on no-
tation and basic lemmas. This is followed by a section on normal spanning
trees, the main structural tool in our proof, and another which contains two
simple Ramsey-type lemmas concerning partitions of Tω. The bounded graph
conjecture is then proved in Sections 5 and 6, with a concluding section listing
some immediate corollaries.

2. Notation and basic lemmas

All the graphs considered in this paper are undirected and simple, i.e. have
neither loops nor multiple edges. The axiom of choice is assumed throughout
the paper. The set of natural numbers, N, includes 0. The first infinite ordinal
is denoted by ω, the first uncountable ordinal by ω1.

Let G be a graph. The edge set of G will be denoted by E(G), its vertex
set by V (G), and its number of vertices by |G|. When H is a subgraph of G,
denoted by H ⊂ G, we may simply say that G contains H. If xy is an edge
(for x, y ∈ V (G)), then y is a neighbour of x, and the two vertices are adjacent .
The neighbourhood of a vertex is the set of its neighbours. G is locally finite if
the degree of each vertex, the number of its neighbours, is finite.

A path may be finite or infinite; its length is its number of edges. A path
of length 0 is trivial . A one-way infinite path is a ray , and a graph is rayless if
it contains no ray. Any infinite connected subgraph of a ray R is a tail of R.
We usually write a path as the sequence of its vertices, which gives these a
natural order. It then makes sense to say that a path starts or ends at some
particular vertex, that one vertex precedes another on it, and so on.

If P = x1 . . . xn is a path, we write P̊ for the interior of P , the sub-
path x2 . . . xn−1. The vertices of P̊ are the inner vertices of P . Similarly, if
1 � i � j � n, we set Pxi := x1 . . . xi, Px̊i := x1 . . . xi−1, xiPxj := xi . . . xj ,
xjP := xj . . . xn and x̊jP := xj+1 . . . xn for subpaths of P . Analogous notation
will be used for rays and for trees (so that xTy is the unique path from x to y in
the tree T ), and for the concatenation of paths. For example, if x is a common
vertex of two paths P and Q, then PxQ denotes the ‘walk’ Px∪xQ. The path
Pxi defined above is an initial segment of P , and P an extension of Pxi. Note
that a finite path is an initial segment of itself.

For X,Y ⊂ G, we call a finite path P ⊂ G an X–Y path if its endvertices
are in X and Y , respectively, and its inner vertices lie in G � (X ∪ Y ). When
X or Y consists of only one vertex, we speak of (say) x–Y or X–y paths rather
than {x } –Y or X– { y } paths.

If X ⊂ V (G), we write G [X ] for the subgraph of G induced by the vertices
in X. For H ⊂ G and x ∈ G, we write H [x ] for the subgraph of H induced
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by those of its vertices y for which G contains an x–y path that has no vertices
in H other than y. In particular, if x is a vertex of H then H [x ] is just the
singleton {x }. On the other hand, if x /∈ H and C is the component of G\H
containing x, then H [x ] contains precisely those vertices of H that have a
neighbour in C.

Two or more paths are independent if their interiors are disjoint. If A, B

and X are subgraphs of G or subsets of V (G), we say that X separates A from
B in G if every A–B path in G contains a vertex of X. We use this notation
even when A and B are not disjoint; of course, X must then contain A∩B.

When T is a tree (an acyclic connected graph), we shall often pick a root
r ∈ V (T ), and call T rooted at r. This induces a natural partial order on V (T ),
in which x � y iff x lies on the unique r–y path rTy in T . Informally, we think
of this order as expressing the vertices’ heights in T ; we may then speak of
y being above x if y > x, call it an upper neighbour of x if it is above x and
adjacent to it, and so on.

Note that, for each vertex z ∈ T , the set of all vertices x � z is linearly or-
dered; the subgraph it spans in T will be denoted by 
z�. The down-closure 
U�
of a set U ⊂ V (T ) is the graph

⋃
{ 
u� | u ∈ U } ⊂ T . For any vertex v of T ,

the subtree of T spanned by all the vertices x � v will be denoted by T�v.
Similarly, we write T>v for T�v

� { v }.
If T ⊂ G and V (T ) = V (G), then T is said to span the graph G. The

order � on V (T ) thus becomes an order on V (G); if we wish to be more specific,
we may denote it by �T .

A subdivision of a graph X, denoted by TX, is any graph obtained from X

by replacing its edges with independent paths of lengths � 1. The original ver-
tices of X are then called the branch vertices of the TX; the other vertices of
the TX are its subdividing vertices. X is a topological subgraph of any graph
containing a TX. If X is a tree rooted at some vertex r, then any TX will
again be assumed to be rooted at r; the order on V (X) is thus embedded in
the tree order on the vertices of the TX.

The following definition and lemma will not be needed until §7. They are
included here for completeness, but the reader may wish to skip straight to
König’s theorem further below.

In analogy to our notation concerning topological subgraphs, we say that
a graph H is an HX (where ‘H’ comes from ‘homomorphism’) if its vertex
set admits a partition {Vx | x ∈ V (X) } into subsets Vx spanning connected
subgraphs in H so that H contains a Vx–Vy edge if and only if x and y are
adjacent in X. The sets Vx are called the branch sets of H. A graph X ′ is
said to be a minor of H if H has a subgraph H ′ such that H ′ = HX ′ (or,
equivalently, if H = HX with X ′ ⊂ X).

Lemma 2.1. Let X be a topological subgraph of a graph G. If X is countable

or locally finite, then X is a minor of G with all branch sets finite.
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Proof. By assumption, the components of X all have countable vertex sets;
choose an enumeration for each of them. Let H be a TX contained in G.
For each x ∈ V (X), let Vx be the subset of V (H) that consists of x and any
subdividing vertices on x–y edges of X for which y precedes x in their common
component of X. Note that each Vx is finite, and that it spans a connected
subgraph in H. Hence, H is an HX as required. �

The following theorem of König [ 7 ], a simpler version of his well-known
Infinity Lemma, is a standard tool which we shall use frequently:

König’s Theorem. Every infinite connected graph contains either a vertex

of infinite degree or a ray. �

We conclude with some less standard teminology.
It will often be useful to be able to combine several sequences of nat-

ural numbers into one fast growing sequence which dominates them all. For
σ: N→N, let σ′, σ′′: N→N be defined by setting σ′(n) := max{σ(0), . . . , σ(n) }
and σ′′(n) := σ′(2n). Then σ′′ dominates σ′, which in turn dominates σ. The
sequence σ′′ will be called the majorant of σ. More generally, let F be a family
of N→N sequences dominated simultaneously by a sequence σ. We shall then
also refer to the majorant σ′′ of σ as a majorant of the family F . Note that,
by Lemma 1.1, every countable family of N→N sequences has a majorant.

The majorant of a single sequence is thus obtained by first making it mono-
tonically increasing and then doubling its growth rate. It therefore ‘catches up’
with the original sequence even when shifted forward by any constant number
of terms. This is the idea behind the following lemma, which is essentially due
to Halin [ 5 ]:

Lemma 2.2. Let F be a family of N → N sequences, and let G be a graph

with a labelling V (G)→N. If R,R′ ⊂ G are rays sharing a tail, and if some

σ ∈ F dominates R, then any majorant of F dominates R′. �

Let a and b be distinct vertices of a graph G. The union of an infinite set of
independent a–b paths of lengths � 2 will be called a bundle from a to b, or an
a–b bundle. The interior of any of those paths is a fibre of the bundle; note that
these fibres are pairwise disjoint. The interior of a bundle is the union of its
fibres. An a–b bundle B is said to be on a path P if B∩P = { a, b }, a precedes
b on P , and aPb has length at least 2. If {B1, . . . , Bn } is a (possibly empty)
set of disjoint bundles on a common path P , arranged in such a way that the
first vertex of P is in none of the Bi and both vertices of Bi ∩P precede both
vertices of Bi+1 ∩ P on P for all i < n, then the union of P and the Bi is a
partial bundle graph on P .

Similarly, the union of a ray R with initial vertex b and infinitely many
paths from a vertex a /∈ R to R � { b } is called a fan from a to b, or an a–b

9



fan, if those paths are pairwise disjoint except for a and have no inner vertices
on R. The ray R in such a fan is called its spine; the a–R paths are its spokes.
The interior of a fan F from a to b is the graph F � { a, b }. F is said to be
on a path P if F ∩ P = { a, b } and a precedes b on P . If {F1, . . . , Fn } is a
(possibly empty) set of disjoint fans on a common path P , arranged in such a
way that the first vertex of P is in none of the Fi and both vertices of Fi ∩P

precede both vertices of Fi+1 ∩P on P for all i < n, then the union of P and
the Fi is a partial fan graph on P .

Using these terms, we can now write down as a lemma a precise summary
of the observations we made at the end of the Introduction. The proof of the
lemma was sketched there; the details are left to the reader.

Lemma 2.3. Let a and b be distinct vertices of a graph G, and let P be an

infinite set of a–b paths in G whose second vertices are pairwise distinct. The

union
⋃
P of these paths then contains a bundle B or a fan F . Moreover:

(i) The bundle B can be chosen as an a–x bundle on a path P ∈ P (where

x is some vertex on P ), and so that every a–x path in B is an initial

segment of a path in P.

(ii) The fan F—with spine R, spokes S0, S1, . . ., and Sn ∩R =: { vn } for

each n—can be chosen so that vn precedes vm on R whenever n < m,

and each of the paths SnvnRvn−1 is an initial segment of a path in P
(where v−1 is the starting vertex of R). �

3. Normal spanning trees

In this section we introduce and develop the main structural tool for our proof,
the concept of a normal spanning tree. A rooted spanning tree T of a graph G

is called normal if the endvertices of every edge of G are comparable in the tree
order �T which T induces on V (G). Thus, if r is the root of T and xy ∈ E(G),
then either x lies on the r–y path in T or y lies on the r–x path in T . Intuitively,
all the edges of G are ‘along’ branches of T , never ‘across’.

It is easy to see that all finite connected graphs have normal spanning trees
(obtained, for example, by a ‘depth-first search’). Jung [ 6 ] characterized the
infinite graphs having normal spanning trees; his characterization implies that
every countable connected graph contains such a tree. Starting from Jung’s
result and using the theory of simplicial decompositions of graphs—see [ 1 ]—
Halin [ 3 ] was able to prove the following:

Theorem 3.1. (Halin)
If G is connected and G ⊇ TKω, then G has a normal spanning tree.
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When we come to prove that an unbounded graph G must contain one of the
four topological subgraphs listed in the bounded graph conjecture, we may thus
assume that G has a normal spanning tree: if not, it would contain a TKω,
and hence a TTω, as desired.

We now collect together a number of simple facts about normal spanning
trees to be used later. All these are easy to prove, and they should help the
reader develop an intuition for the properties of a normal spanning tree.

Let G be a fixed graph, and assume that G contains a normal spanning
tree T with root r. Any reference to an order on the vertices of G (such as
‘above’, ‘below’, down-closures 
x� and so on) will be assumed to refer to the
order �T induced by T . A ray in G will be called a normal ray if it starts at
r and is contained in T . The union of all normal rays, clearly a subtree of T ,
will be denoted by T ′.

Our first lemma translates the local defining property for T (that every
edge of G runs vertically along T ) into a more global separation property of G:

Lemma 3.2. Let x, y ∈ V (G). Then 
x�∩
y� = 
inf {x, y }� separates x from

y in G.

Proof. Let P = x1 . . . xn be an x–y path in G, and put z := inf {x, y }; we
have to show that P meets 
z�. This is trivial if x and y are comparable, so
let us assume they are incomparable. Let w be the upper neighbour of z such
that w � x. Then w � y; let xi be the last vertex of P with w � xi. Then
xi+1 ∈ 
z�, because T is normal. �

Note that if x ∈ T ′ then 
x� ⊂ T ′. Lemma 3.2 thus implies the following:

Lemma 3.3. If P = x . . . y is a T ′–T ′ path in G, then x and y are comparable

in S.

Proof. If x and y are incomparable, then neither of them is in 
x� ∩ 
y�, and
so P̊ ∩ 
x� ∩ 
y� = ∅ by Lemma 3.2. Since 
x� ∩ 
y� ⊂ T ′, this means that P

is not a T ′–T ′ path. �

Note that Lemma 3.2 does not imply that the interior of an x–y path
meets 
x� ∩ 
y�. The T ′–T ′ path in Lemma 3.3, for example, may have a
non-empty interior lying in G\T ′ somewhere above x and y.

Let S be a subtree of T rooted at r. (In applications, S will be either a
normal ray or equal to T ′.) Our next lemma says that any vertex of S which
is ‘directly accessible’ from some vertex x /∈ S (by a path in G whose interior
avoids S) must lie below x.

Lemma 3.4. Let S be a subtree of T rooted at r, and let x ∈ V (G). Then

S [x ] ⊂ 
x�.

11



Proof. If x ∈ S, then S [x ] = {x } ⊂ 
x�. If x /∈ S, let P = x . . . y be an x–
S path in G. By Lemma 3.2, P meets 
x� ∩ 
y� ⊂ S, while P̊ ∩S = ∅ by the
choice of P . Hence P ∩
x� ∩ 
y� = { y }, so y ∈ 
x� as required. �

Lemma 3.4 implies that, if x is a vertex and R is a normal ray in G, the
vertex set of R [x ] is a finite chain in �T . Let us define the R-height of x,
denoted by ht(x;R), to be the unique maximal vertex of R [x ]. For example,
the R-height of a vertex h ∈ R is h itself; the other vertices of R-height h are
precisely those vertices which lie above h but not above any vertex of h̊R.

The concept of height will provide essential help in organizing our con-
structions of subgraphs of G such as fan and bundle graphs. For H ⊂ G or
H ⊂ V (G), we shall say that the R-height of (the vertices in) H is bounded
if R has a vertex h such that ht(x;R) � h for every vertex x ∈ H. Another
subgraph H ′ ⊂ G (or H ′ ⊂ V (G)) is H-clear with respect to R if the R-height
of each vertex of H ′ is strictly greater than the R-height of every vertex in H.
Then, for example, if we are trying to find a fan graph in G and H is a partial
fan graph constructed so far (on the path P , say), we shall aim to extend P

into H ′ and continue our construction there; we can then be sure that fans
constructed at later stages will not interfere with earlier fans.

The first assertion in our next lemma is immediate from the definition of
R-height. The second is a consequence of the fact that, by definition, the graph
R [x ] coincides for all vertices x in a common component of G\R.

Lemma 3.5. Let x, y ∈ G, and let R be a normal ray.

(i) If y ∈ R [x ], then ht(x;R) � y = ht(y;R).

(ii) If x and y are in a common component of G\R, then ht(x;R) = ht(y;R).
�

If R and R′ are normal rays, and if x ∈ R\R′ and y ∈ R′\R, then R∩R′

separates x from y in G (by Lemma 3.2). This observation extends to any pair
of vertices whose R-height and R′-height, respectively, is sufficiently large:

Lemma 3.6. Let R and R′ be distinct normal rays; set z := max (R ∩R′).
Suppose that x, y ∈ V (G) are such that ht(x;R) > z and ht(y;R′) > z. Then


z� = R∩R′ separates x from y in G.

Proof. Write u := ht(x;R) and v := ht(y;R′), and let P be any x–y path
in G. Moreover, let x . . . u be an x–R path and y . . . v a y–R′ path in G. Since
the walk u . . . xPy . . . v meets R ∩R′ (by Lemma 3.2) but neither x . . . u nor
y . . . v meets R∩R′ (by definition), P meets R∩R′ as claimed. �

Our next lemma asserts that if the R-height of x /∈ R is sufficiently large,
then its R′-height is the same as that of the vertices on R\R′ itself, namely
z = max (R∩R′).

12



Lemma 3.7. Let R and R′ be distinct normal rays, z := max (R ∩R′), and

x ∈ V (G). If ht(x;R) > z then ht(x;R′) = z.

Proof. Let P be an x–R path in G whose last vertex y is above z. Then PyRz

is an x – (R ∩R′) path, so ht(x;R′) � z by definition. Now if ht(x;R′) > z

then Lemma 3.6, applied with y = x, would give that 
z� separates x from x,
a contradiction. Hence ht(x;R′) = z, as claimed. �

If R is a normal ray and H is any subgraph of G, let us say that the R-
height of H tends to infinity if for each h ∈ R only finitely many vertices of H

have R-height � h. Lemma 3.7 then has the following immediate consequence:

Lemma 3.8. If R and R′ are distinct normal rays, and if the R-height of

H ⊂ G tends to infinity, then the R′-height of H is bounded. �

If R is any ray in G and R′ is a normal ray, let us say that R follows R′

if |R∩R′| = ∞.

Lemma 3.9. Every ray in G follows a unique normal ray.

Proof. Let R ⊂ G be a ray. By Lemma 3.6, R can follow at most one normal
ray. We show that such a ray exists, by constructing a normal ray x0x1 . . .

which R meets infinitely often. Let us assume that R starts at the root r of T ;
since this can be achieved by adding or deleting finitely many vertices of R,
there will be no loss of generality.

Let x0 := r. Suppose vertices x0, . . . , xn have been chosen so that they
induce an increasing path in T and infinitely many vertices of R lie above xn.
Since R can pass through 
xn� only finitely often, Lemma 3.2 implies that
xn has a unique upper neighbour y in T such that R has infinitely many
vertices above y; put xn+1 := y.

In order to show that R meets x0x1 . . . infinitely often, suppose xn is the
last vertex of R that belongs to {x0, x1, . . . }. (For the existence of such a
vertex, recall that x0 = r ∈ R by assumption.) Let y be the next vertex on R,
and let m be the r–y distance in T . Then y and xm have the same distance
from r in T , and y = xm. Hence y and xm must be incomparable. By definition
of xm, yR contains a vertex x above xm. By Lemma 3.2, then, yR meets


x� ∩ 
y� ⊂ 
xm� = {x0, . . . , xm } ,

contrary to the choice of xn. �

Note that, since normal rays are contained in T ′, Lemma 3.9 implies in par-
ticular that G\T ′ is rayless.

Our next lemma says that if a ray R follows a normal ray R′, then, in
terms of R′-height, the vertices of R behave like those of R′ itself:

13



Lemma 3.10. Let R ⊂ G be a ray, and let R′ be the normal ray it follows.

Then the R′-height of R tends to infinity.

Proof. Let x ∈ R′ be given; we have to show that at most finitely many
vertices of R have R′-height � x. Let U := { v ∈ V (G) | ht(v;R′) � x }. Then

x� separates x̊R′ from U ; recall that R′ [ v ] ⊂ 
x� for v ∈ U , by definition
of ht(v;R′). Since R meets xR′ infinitely often, this implies that V (R)∩U is
finite. �

Our last lemma shows how vertices with neighbourhoods of unbounded
R-height can be used to find a copy of TKω in G.

Lemma 3.11. Let R be a normal ray.

(i) If the neighbourhood of a vertex x ∈ G has unbounded R-height, then x

is on R.

(ii) If G has infinitely many vertices with neighbourhoods of unbounded R-

height, then G contains a TKω.

Proof. (i) If x is not in R, then the R-height of each of its neighbours is at
most its own R-height, by Lemma 3.5.

(ii) Starting with X0 := ∅, let us define inductively a nested sequence
X0 ⊂ X1 ⊂ . . . of subgraphs of G so that, for each n, Xn � TKn and the
neighbourhood of any branch vertex of Xn has unbounded R-height. Let n > 0,
and suppose that Xn−1 � TKn−1 has already been defined. Let x1, . . . , xn−1

be the branch vertices of Xn−1; the neighbourhoods of these vertices all have
unbounded R-heights. Since Xn−1 is finite, G\Xn−1 contains a vertex xn whose
neighbourhood has unbounded R-height.

Let us define independent paths P1, . . . , Pn−1 joining xn to x1, . . . , xn−1,
respectively. Let i ∈ { 1, . . . , n− 1 } be given, and assume that Pj has been
defined for all j < i. Let yi and yn be neighbours of xi and xn, respectively,
whose R-heights zi and zn exceed the R-heights of all the vertices in

Xi−1
n := Xn−1 ∪

⋃
j<i

Pj .

Let yi . . . zi be a yi–R path and yn . . . zn a yn–R path in G. Note that the ver-
tices on these two paths have uniform R-heights of zi and zn, respectively. Let
Pi be an xi–xn path whose interior is contained in the walk yi . . . ziRzn . . . yn.
Then the vertices of P̊i have R-heights between zi and zn, so P̊i avoids Xi−1

n .
Putting

Xn := Xn−1 ∪
⋃
i<n

Pi ,

we see that Xn � TKn as intended. Moreover, the branch vertices of Xn include
those of Xn−1, and they all have neighbourhoods of unbounded R-height. This
completes the induction step. It is clear that

⋃
n∈N

Xn is isomorphic to TKω.
�
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4. Partitions of Tω

In this section we collect for convenience two simple Ramsey-type lemmas,
which will be needed repeatedly later.

Both our lemmas are about finding TTω subtrees in a TTω. If T � TTω,
a colouring of T will be any map whose domain is the set of branch vertices
of T ; the images of such a colouring are called colours. T is monochromatic (or
red , blue etc.) if all its branch vertices are coloured by (mapped to) the same
colour (red, blue etc.), and T is injectively coloured if no two of its branch
vertices have the same colour.

The proof of our first lemma is straightforward.

Lemma 4.1. If T is a rooted TTω with a red-blue colouring, then T contains

either a red TTω of the form T�v (for some branch vertex v of T ) or a blue TTω

(whose minimal vertex is one of its branch vertices). �

As a point of reference, let T ∗ be a fixed copy of a rooted Tω, given with an
enumeration e∗1, e

∗
2, . . . of its edges such that, for each n ∈ N, the graph T ∗

n ⊂ T ∗

consisting of the root of T ∗ and the edges e∗1, . . . , e
∗
n (together with their end-

vertices) is connected. Such an enumeration clearly exists; for example, one
could first list the edges of T ∗ using any enumeration, and then assemble T ∗,
starting from the root, by adding at each of ω steps the minimal edge from the
list that keeps the covered portion of T ∗ connected. The nth edge e on the list
will then be added after no more than k(n) steps, where k(n) is the sum of
the list positions of all the edges on the path P in T ∗ from the root to the far
endvertex of e (induction on the length of P ).

We shall use this standard construction of T ∗ in the proof of Lemma 4.2
below, and again in §6. Note that, for each n, exactly one of the two endvertices
of e∗n is in T ∗

n−1. This vertex will be denoted by x∗
n, the other endvertex of e∗n

by y∗n.

Lemma 4.2. Any coloured rooted TTω contains either a monochromatic TTω

or an injectively coloured TTω, whose minimal vertex (in either case) is among

its branch vertices.

Proof. Let T be a coloured TTω. Assume first that the colouring of T has the
following property:

(4.3) For each vertex v ∈ T , the subtree T�v uses infinitely many colours.

Following the standard construction of T ∗, we build up an injectively coloured
TTω =: T ′ ⊂ T , say with branch vertices xn and yn corresponding to the
vertices x∗

n and y∗n of T ∗, as follows. We start by picking any branch vertex
of T as x1. Later, whenever we come to choose a subdivided edge xn . . . yn of T ′

corresponding to an edge e∗n of T ∗, we first select an upper neighbour v of xn
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that does not lie in the (finite) part of T ′ constructed so far. We then use (4.3)
to choose yn among the branch vertices of T�v so that its colour differs from
the (finitely many) colours used by branch vertices of T ′ selected earlier, and
let xn . . . yn be the unique xn–yn path in T .

Suppose now that (4.3) fails, i.e. that T has a vertex v such that T�v uses
only finitely many colours. Without loss of generality, v is a branch vertex. We
may now obtain a monochromatic TTω inside T�v by repeated application of
Lemma 4.1: we just partition the colours used into two classes called ‘red’ and
‘blue’, apply the lemma and iterate. �

For a thorough study of Ramsey-type properties of Tω, the reader is re-
ferred to Prömel and Voigt [ 8 ].

5. Good families

In our introductory discussion of the three countable types of forbidden sub-
graph in the bounded graph conjecture, the TTω, the bundle graph, and the
fan graph, we noticed that the proofs of these graphs’ own unboundedness were
very similar. In the case of Tω, we just took any injective labelling and observed
that, for any given sequence σ: N→N, we could easily find a ray R through Tω

which was not dominated by σ. Indeed, no matter how we had chosen an initial
segment of R, we would have an infinite choice of labels for the next vertex
of R, which could thus be chosen larger than the corresponding term in σ.

For a bundle graph or a fan graph, finding such a ray R was hardly more
difficult. All we had to make sure of was that the paths P we considered for
initial segments of R belonged to a certain family P: a family of paths which
could, again and again, be extended to reach unused vertices of infinite degree.
In the bundle graph B, P consisted of the paths from left to right; in the fan
graph F , of those towards the right and down the spines of the fans.

The idea of finding such a family of paths in an unbounded graph is cen-
tral to our proof of the bounded graph conjecture. Our aim in this section,
essentially, is to prove that in every unbounded graph such a family of paths
exists. In the next section we shall show that one can always reconstruct one
of the forbidden subgraphs from the paths in that family.

Let us make precise the kind of family of paths in which we are interested,
so that we can state exactly what we shall prove in this section. Let G be
an arbitrary connected graph with a normal spanning tree T , and let T ′ ⊂ T

be the union of all normal rays in G. Call a pair (x, y) of distinct vertices
of T ′ good if G contains only finitely many T ′–T ′ paths from x to y, and bad
otherwise. A non-empty family P of finite paths in G will be called a good
family if it satisfies the following four conditions:
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(i) for every path P ∈ P there exists an n ∈ N such that P has infinitely
many extensions in P of length n;

(ii) if P ∈ P, x, y ∈ V (P ), and xPy is a T ′–T ′ path in G of length � 2 (i.e.
with at least 2 edges), then (x, y) is a good pair;

(iii) every path P ∈ P starts at the root of T ;

(iv) if P ∈ P and Q is an initial segment of P , then Q ∈ P.

Note that the essence of a good family is contained in condition (i): if we
choose n minimal, then infinitely many extensions P ′ ∈ P of P agree up to
their nth (= penultimate) vertex and differ pairwise at their last vertex. Thus,
if P is viewed as the beginning of a ray R being constructed to elude a given
sequence σ (as in our discussion above), then the (n + 1)th vertex of this ray
can be selected from an infinite choice, and therefore in such a way that its
label exceeds the corresponding term in σ. (So, by condition (i) alone, the
existence of a good family of paths in G implies that G is unbounded.)

Condition (ii) says, less formally, that paths of a good family leave and
return to T ′ only at good pairs of vertices. This assumption is also vital to our
proof: it ensures that subgraphs constructable from the paths in a good family
have many vertices on T ′—for example, we shall see that any vertex of infinite
degree has to be on T ′—which will give us the amount of control over these
subgraphs that we shall need.

Conditions (iii) and (iv) are normalization conditions; they are not essen-
tial, but they will make it easier to handle good families.

Recall that, if κ is a cardinal, Iκ denotes the disjoint union of κ rays. Let
us define b to be the least cardinal κ such that there exists a family of κ distinct
N → N sequences which are not dominated simultaneously by any N → N se-
quence. (This cardinal b is commonly known as the bounding number). Then,
in particular, every family of fewer than b sequences has a majorant. Note also
that ω < b � 2ω by Lemma 1.1.

As is easy to check, b is regular , i.e. b is not the union (sum) of fewer than
b cardinals < b. Moreover, since Iκ contains exactly ω ·κ = κ rays whenever κ

is an infinite cardinal, b is also the least cardinal such that Ib is unbounded.
We can now state the theorem which we shall prove in this section.

Theorem 5.1. Let G be an unbounded graph with a normal spanning tree,

and suppose that G contains neither an Ib nor a bundle graph. Then there

exists a good family of paths in G.

Proof. As usual, let the normal spanning tree of G be denoted by T , and the
union of all normal rays in G by T ′.

Let us show straight away that

(5.2) |T ′| < b .
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Since T ′ is connected and b is regular, it suffices to show that each vertex v ∈

T ′ has degree < b in T ′. Let W be the set of upper neighbours of v in T ′ and,
for each w ∈ W , let Rw be any normal ray containing w. Then the tails wRw

for w ∈ W are pairwise disjoint. Since G ⊇ Ib by assumption, this means that
v has degree < b, as claimed.

The proof of the theorem is organized as follows. We begin by constructing
a family P of paths in G which satisfies the four defining conditions of a good
family, but which will not, a priori, be known to be non-empty. Such a family
is easily obtained: we shall start with the family P0 of all paths in G which
have any chance of eventually being in P (omitting, for example, any paths
which violate condition (ii)), and then recursively discard those paths from
this family which fail to meet the extendability condition (i).

The main part of the proof will be to show that P is indeed non-empty
and therefore a good family. The key here will be that the recursion by which
P is obtained takes fewer than b steps. At each step α, we shall find a sequence
σα: N→N which dominates all those rays in G whose initial segments were all
in P0, and for which some initial segment was discarded at step α. Then, by
the definition of b, there will be a sequence σ which dominates all such rays in
G simultaneously. Since G is by assumption unbounded, and therefore contains
a ray R which is not dominated by σ, this means that the initial segments of
such a ray R (after some normalization) are either still in P when the recursion
ends, or were not all in P0 at the start of the recursion. In the former case P
will be non-empty, as desired. In the latter case, it will turn out that R leaves
and returns to T ′ infinitely often at bad pairs (x, y); we shall then be able to
construct a bundle graph in G along R (typically with the bundles occurring
between these x and y), in contradiction to our assumptions.

Let us define P precisely. Let Q0 be the set of all paths P ⊂ G starting at
the root of T and ending on T ′ which only leave T ′ at good pairs of vertices,
i.e., which have the property that if xPy is a T ′–T ′ path in G of length � 2
then (x, y) is a good pair. Let P0 be the set of all initial segments of paths
in Q0; note that P0 includes Q0. Then P0 satisfies conditions (ii), (iii) and (iv)
from the definition of a good family.

We claim that |P0| < b. As clearly |P0| = |Q0|, it suffices to show that
|Q0| < b. Now, each path P ∈ Q0 is determined by its (finite) sequence of ver-
tices on T ′ and the choice of its subpaths xPy for successive x, y ∈ V (P )∩V (T ′).
As |T ′| < b, there are only < b finite sequences of vertices of T ′, and since each
xPy has length � 2 only if (x, y) is good, the choice of subpaths xPy is finite
for each pair (x, y). Hence |Q0| < b, as required.

For all ordinals α > 0, let us inductively define subsets Pα of P0, as follows.
Suppose first that α is a successor, say α = β+1. If Pβ contains a path P =: Pβ

which violates (i) in the definition of a good family (i.e., a path P such that,
for each n ∈ N, Pβ contains only finitely many extensions of P of length n),
let Pα be obtained from Pβ by deleting Pβ and all its extensions P ′ ∈ Pβ . If

18



Pβ contains no such path P , let Pα := Pβ . If α is a limit, let Pα :=
⋂

β<α Pβ .
Since |P0| < b, there exists an α < b such that Pα+1 = Pα; let α∗ be the

least such α, and set Pα∗ =: P. Since each Pα satisfies conditions (ii), (iii)
and (iv) from the definition of a good family, and since P = Pα∗ in addition
satisfies condition (i), we see that P is a good family if and only if it is non-
empty. To complete the proof, then, it suffices to show that if P is empty then
G contains a bundle graph, contrary to our assumption.

Let us suppose that P is indeed empty. We shall first prove that G contains
a ray R which leaves T ′ infinitely often at bad pairs (x, y), and then use R to
find a bundle graph in G.

(5.3) There exists a ray R ⊂ G which contains infinitely many T ′–T ′ paths

xRy such that (x, y) is a bad pair of vertices.*

To prove (5.3), let us suppose for a contradiction that any ray in G leaves
T ′ only finitely often at bad pairs of vertices. We show that G is bounded,
contrary to our assumptions.

Let f : V (G)→N be an arbitrary labelling of G. We shall define sequences
σα: N→N, one for each α < α∗, whose majorant σ∗ will bound G. For each
α < α∗, let the kth term of σα be defined as

σα(k) :=
{

f(xk) if k � |Pα|
max { f(v(P )) | P ∈ Pα\Pα+1 and |P | = k } if k > |Pα| ,

where xk is the kth vertex of Pα and v(P ) is the last vertex of P . Recall
that, by definition, Pα has only finitely many extensions P ∈ Pα of any given
length; since Pα\Pα+1 is precisely the set of Pα and all its extensions in Pα,
the maximum used above is therefore just the maximum of a finite set. Finally,
let σ∗ be the majorant of {σα | α < α∗ }; it exists, because α∗ < b.

To show that σ∗ bounds G, let R ⊂ G be any ray. By assumption, R leaves
T ′ only finitely often at bad pairs of vertices; let R′ be a tail of R which leaves
T ′ only at good pairs. (Recall that since R follows a normal ray (Lemma 3.9),
it never leaves T ′ altogether.) Let Q be a path in T ′ from the root of T to R′,
and let v be the last vertex of Q. Then the ray R′′ := QvR′ (= QvR) still
leaves T ′ at good pairs only, so every initial segment of R′′ is in P0.

Now since P = ∅ by assumption, each initial segment of R′′ is discarded at
some (non-limit) step in the recursive definition of P; let α < α∗ be minimal
such that Pα\Pα+1 contains an initial segment of R′′. Then Pα is itself an
initial segment of R′′. Moreover, all the extensions of Pα in R′′ are also in Pα

(by the minimality of α), and were hence discarded together with Pα. Thus,

* As the reader may expect (and the proof of (5.3) will indeed show), the paths xRy can
be chosen so as to have lengths � 2. However, this will not be needed when (5.3) is used
below.
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Pα\Pα+1 contains every initial segment of R′′ of length k � |Pα|. Therefore
σα dominates R′′, by definition of σα.

By Lemma 2.2, this implies that σ∗ dominates R, so σ∗ bounds G as
claimed. As this contradicts our assumption that G is unbounded, we have
thus completed the proof of (5.3).

Let R ⊂ G be a ray as in (5.3). Let (x1, y1), (x2, y2), . . . be an infinite
sequence of disjoint bad pairs of vertices, such that xi precedes yi on R for
each i and yi precedes xj on R for i < j. For each i, let Hi be the union of all
T ′–T ′ paths in G from xi to yi; note that, since (xi, yi) is bad, Hi is infinite.
We remark that the graphs Hi are not necessarily disjoint, and that Hi may
well meet R even outside the segment xiRyi.

For each i, let us find a bundle Bi ⊂ Hi, say from a vertex x′
i to a vertex y′i,

together with (possibly trivial) disjoint paths Ci = xi . . . x
′
i and C ′

i = y′i . . . yi

in Hi which avoid the interior of Bi. (These paths will be called the connectors
of Bi; Fig. 4.)

FIGURE 4. The bundles Bi and their connectors

To define Bi for a given i, recall that since G\T ′ is rayless (Lemma 3.9),
Hi too is rayless. Since Hi is infinite and connected, it has a vertex v of infinite
degree, by König’s theorem. As Hi is the union of xi–yi paths, each of the edges
e = uv incident with v is contained in such a path P (e). Now if v precedes u

on P (e) for infinitely many of these edges e then, by Lemma 2.3, the union of
their paths P (e) contains a v–w bundle B (for some w) on the segment vP of
one of these paths P . (Lemma 2.3 does not give a fan, because Hi is rayless.)
Put Ci := Pv and C ′

i := wP in this case, and let Bi be obtained from B

by deleting those fibres which meet Pv. On the other hand, if u precedes v

on P (e) for infinitely many of the edges e, then the union of the corresponding
paths P (e) contains a w–v bundle B (for some w) on the segment Pv of one of
these paths P (apply Lemma 2.3 ‘backwards’). In that case, we let Ci := Pw

and C ′
i := vP , and let Bi be obtained from B by deleting those fibres which

meet vP . (This construction of a bundle in a graph such as Hi is due to
Halin [ 5 ].)

Now that we have defined an infinite sequence of bundles along our ray R,
it may seem that obtaining a bundle graph from them would be only a small
step away. As remarked earlier, however, the subgraphs Hi containing our
bundles need not be disjoint. In fact, it might even happen that two of the
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bundles, as well as their connectors, coincide (except for the two vertices xi

and yi).
We shall deal with this problem as follows. By Lemma 3.9, R follows

some normal ray R′. A natural way to ensure that different bundles Bi are
disjoint, therefore, is to separate them by their R′-height: if we can find an
infinite subsequence i1, i2, . . . spaced out sufficiently that each Bik

is Bij -clear
with respect to R′ for every j < k, then these bundles Bik

will indeed define
a bundle graph along R. For this approach to work it is essential, of course,
that the R′-height of each bundle Bik

be bounded. Unfortunately, this is not
necessarily the case—so let us deal with this problem first.

Suppose there are infinitely many i such that the R′-height of Bi is un-
bounded. Since (Hi\{xi, yi })∩T ′ = ∅, every fibre of Bi is disjoint from R′, and
so the vertices of each individual fibre have constant R′-height. If the R′-height
of Bi is unbounded, this implies that x′

i has a neighbourhood of unbounded R′-
height, and hence that x′

i = xi (Lemma 3.11 (i)). If this happens for infinitely
many i, the corresponding vertices xi—which are all distinct—form an infinite
set of vertices each with a neighbourhood of unbounded R′-height. Then G

contains a TKω (and hence a bundle graph) by Lemma 3.11 (ii).

We may therefore assume from now on:

(5.4) The R′-height of Bi is bounded for all but finitely many i.

Using R, the bundles Bi and their connectors Ci and C ′
i, let us construct

a bundle graph in G inductively, adding one bundle at a time. More formally,
let us construct by induction on n a nested sequence (Gn)n∈N of graphs with
the following properties:

(i) Gn is a partial bundle graph (with n bundles), on a path Pn which ends
in a vertex tn ∈ R;

(ii) Pn has a vertex sn = tn such that all the bundles of Gn are between
vertices preceding sn on Pn;

(iii) snPn ⊂ R, and sn precedes tn on R;

(iv) tnR is Sn-clear with respect to R′, where Sn := Gn\̊snPn.

(See Figure 5.)

FIGURE 5. The partial bundle graph Gn

21



Condition (iv) means that every vertex on R from tn onwards has R′-height
strictly greater than the R′-height of any vertex in Gn up to sn. So in particular,
the R′-height of Sn, and hence that of Gn = Sn ∪ snRtn, is bounded:

(5.5) Gn has bounded R′-height.

To define G0, let s0 be the first vertex of R, and put G0 := P0 := Rt0 where
t0 ∈ R is chosen so that t0R is { s0 }-clear with respect to R′; this can be done
by Lemma 3.10 (which we shall use freely in our further construction). Suppose
now we have defined Gk, for k = 0, . . . , n, in accordance with conditions (i)–(iv).
We shall now define Gn+1.

By (5.4) and (5.5), choose i ∈ N so that Bi has bounded R′-height and
xiR is Gn-clear with respect to R′. Note that tnRxi meets Gn only in tn: it
avoids Sn by (iv), and it meets snRtn only in tn, because sn precedes tn on R

by (iii) and tn precedes xi on R by the choice of xi. Note that also

H ′
i := (Ci ∪Bi ∪C ′

i) � {xi, yi }

is Gn-clear with respect to R′: since each v ∈ H ′
i can be connected to xi by a

v–T ′ path, the R′-height of v is at least that of xi (Lemma 3.5).
Using our assumption that Bi (and hence H ′

i) has bounded R′-height,
choose u ∈ yiR so that uR is X-clear with respect to R′, where

X := Gn ∪H ′
i .

Let B′
i be obtained from Bi by removing those fibres that have a vertex on tnRu;

as there are at most finitely many such fibres, B′
i is still a bundle. The interior

of B′
i then avoids tnRu, and it also avoids Gn (because H ′

i does, and H ′
i contains

the interior of B′
i).

The connectors Ci and C ′
i, however, may still meet tnRxi or yiRu. Let

x′′
i be the last vertex on Ci that is in tnRu, and let y′′i be the first vertex on

C ′
i that is in tnRu (Fig. 6). Rename x′′

i and y′′i as a and b, where a precedes b

on R, and set

U := Gn ∪ tnRa∪ (x′′
i Cix

′
i ∪B′

i ∪ y′iC
′
iy

′′
i )∪ bRu .

Then U is a partial bundle graph, with n + 1 bundles, whose R′-height is
bounded.

In order to complete the induction step formally, set sn+1 := u, and
choose tn+1 ∈ uR so that tn+1R is U -clear with respect to R′. Note that
uRtn+1 ∩U = {u }, because U ⊂ X ∪Ru and uRtn+1 is X-clear by the choice
of u. Set Gn+1 := U ∪uRtn+1, and let

Pn+1 := Pn ∪ tnRa∪ (x′′
i Cix

′
i ∪F ∪ y′iC

′
iy

′′
i )∪ bRtn+1 ,
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FIGURE 6. Disentangling R and H ′
i

where F is some x′
i–y

′
i path in B′

i. Then Gn+1 is a partial bundle graph on Pn+1,
satisfying conditions (i)–(iv) for n+ 1.

The graph
⋃

n∈N
Gn, finally, is a bundle graph as desired. This completes

the proof of Theorem 5.1. �

6. Fans and bundles from a good family tree

This section is devoted to the proof of the following theorem.

Theorem 6.1. Let G be a graph with a normal spanning tree, and suppose

there exists a good family of paths in G. Then G contains a TTω, a bundle

graph, or a fan graph.

Proof. As before, let the normal spanning tree of G be denoted by T , and the
union of all normal rays by T ′. Let P be a good family of paths in G. The
method of our proof is as follows.

We shall represent the structure of P by a certain tree T , which will act
as something like a covering space for the paths P ∈ P in G. Thus, the paths
of P will ‘lift’ to paths in T , which will be arranged in such a way as to reflect
the relation of extension between their projections in P.

Our main task will be to study the relationship between T and G. If G

(more precisely, the subgraph
⋃
P of G) resembles T closely, we shall try to

find a tree of type TTω in G. On the other hand, if the paths of P intersect
a lot more (in G) than do their lifts in T , we shall seek to construct a bundle
graph or a fan graph in G. The distinction between the latter two cases will
depend on the relationship between T and our normal spanning tree T of G.

Recall that the essence of the fact that P is a good family of paths lies in
its extension property, condition (i) of the definition of a good family: for each
of its paths, P contains infinitely many extensions of some common length.
We start by ‘pruning’ P to a subfamily containing no more paths than the
extension property requires.
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To be precise, let us define subsets Q0,Q1, . . . of P as follows. Pick any
non-trivial path P0 ∈ P, and set Q0 := {P0 }. Having defined Q0, . . . ,Qn, we
want Qn+1 to be a set of extensions of the paths in Qn just large enough to
witness the fact that Qn ⊂ P. For each P ∈ Qn, take the minimal k such that
P has infinitely many extensions of length k in P. Then infinitely many of
these extensions agree up to their penultimate vertices: recall that P is closed
under taking initial segments. We may thus choose infinitely many extensions
P (0), P (1), . . . of P in P, each of length k, which differ only in their last vertices.
Set

Qn+1 := {P (i) | P ∈ Qn, i ∈ N } ,

and continue inductively. If we now let Q be the set of all initial segments of
paths in

⋃
n∈N

Qn, we see that Q is a good family.
In structure, Q is rather similar to a TTω. Let us make this precise. Call

a graph H a long-rooted TTω if H is a subdivision of a rooted tree whose root r

has degree 1 and all of whose other vertices have countably infinite degree. The
edge incident with r in this tree then corresponds to a path P in H, which will
be called the long root of H. (Thus, P is the unique path r . . . x ⊂ H for which
H\Px̊ � TTω.) To avoid confusion, we may refer to r itself as the root vertex
of H.

Now define a tree T as follows. The vertex set of T is Q itself. For
P, P ′ ∈ Q, we join P to P ′ by an edge whenever P ′ is an extension of P

with |P ′| = |P | + 1, i.e. if P may be obtained from P ′ by removing its last
vertex. Then T is a long-rooted TTω, whose root vertex φ is the trivial path
consisting of the first vertex of P0 (which in turn is the root of T ). Note that,
for α, β ∈ V (T ), we have α �T β if and only if α is an initial segment of β.

Any long-rooted TTω contained in T and also rooted at φ will be called
a good family tree. Clearly, the vertex set of such a good family tree is again
a good family of paths in G. In fact, the only property of T we shall ever use
is that it is a good family tree: we shall repeatedly prune T to a smaller good
family tree T ′, and then rename T ′ as T .

For α ∈ V (T ), let v(α) denote the last vertex of the path α. Note that
if β is another vertex of T and β <T α, then the path β ⊂ G is a proper
initial segment of the path α, and so v(β) = v(α). Likewise, v(α) and v(β)
will be distinct if the paths α and β were picked for Q at the same step n,
and as extensions P (i) of the same path P ∈ Qn−1. We may therefore note the
following:

(6.2) If T ′ is a good family tree, and if α, β ∈ V (T ′) are either comparable or

upper neighbours of the same vertex γ ∈ T ′, then v(α) = v(β).

By virtue of (6.2), v can be interpreted as mapping increasing paths π ⊂ T
to ‘real’ paths P ⊂ G. For example, if π = ξ0 . . . ξn is a φ–α path in T , then
v(π) is the path v(ξ0) . . . v(ξn) in G, which is none other than the path α ⊂ G

24



itself. More generally, if π ⊂ T is an increasing path from α to β, and if
v(α) =: a, then v(π) is precisely the subpath aβ of the path β ⊂ G. When T ′

is any subgraph of T other than a path, we may use v(T ′) informally to denote
the set { v(α) | α ∈ T ′ } ⊂ V (G).

Let T ′ be a good family tree. We shall call α ∈ V (T ′) a burst vertex of T ′

if α has infinite degree. (Thus, the burst vertices of T ′ are precisely its branch
vertices other than φ when T ′ is viewed as a long-rooted TTω.) When α ∈ T ′ is
a burst vertex, the burst at α in T ′ is the union of all the paths α . . . γ ⊂ T ′ such
that γ is minimal among the burst vertices above α. These paths will be called
the segments of the burst; the burst itself will be denoted by BT ′(α). When
T ′ = T or the precise choice of the good family tree considered is irrelevant, we
may abbreviate BT ′(α) to B(α). Thus, a burst B(α) is a subdivided infinite
star, contained in T and centred at α, its segments being the star’s subdivided
edges.

Let us call a burst B(α) blocked by a vertex b ∈ G if infinitely many of its
segments contain a vertex β = α with v(β) = b. If B(α) is not blocked by any
vertex of G, it will be called free.

Passing to a good family tree T ′ ⊂ T if necessary, we may assume that
the following is true for T :

(6.3) Whenever a burst B(α) is blocked, there is a vertex bα ∈ G such that every
segment π of B(α) contains a (unique) vertex βπ = α with v(βπ) = bα.

Moreover, since any segment of a burst BT ′(α) in a good family tree T ′ contains
a segment of BT (α), we see that (6.3) is in fact true for all good family trees.
(Recall that any good family tree is a subtree of T .)

Let α0 be the lowest burst vertex in T . Then 
α0� is the long root of T ,
and T �α0 � TTω. Applying Lemma 4.1 to T �α0 , we see that either there is
a burst vertex α ∈ T such that all bursts at vertices in T ≥α =: T̃ are free, or
T �α0 has a subtree T̃ � TTω (whose minimal vertex is a branch vertex) such
that for every branch vertex α of T̃ the burst BT (α) is blocked. In either case,
let T ′ be obtained from T̃ by adding the φ–T̃ path in T as a long root. Then
T ′ is a good family tree. Moreover, in the first case every burst in T ′ is free,
while in the second case (6.3) implies that every burst in T ′ is blocked. Hence,
passing to this good family tree T ′, we may assume that either all bursts in T
are blocked or all bursts in T are free.

Let us quickly dispose of the case when all bursts are free, by showing
how to find a TTω in G. If all the bursts in T are free then, for every finite
set F ⊂ V (G) and every burst vertex α, there is a segment of B(α) such that
for every vertex β = α on this segment we have v(β) ∈ F . Using (6.2), and
following the method of the proof of Lemma 4.2, we may thus construct a good
family tree T ′ ⊂ T on which the function v is injective. (Choose segments
π = α . . . γ inductively as in the standard construction of T ∗ � Tω, in such
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a way that v(α̊π) is disjoint from v(π′) for the—finitely many—segments π′

chosen earlier.) The image of T ′ under v then spans a long-rooted TTω in G.
We may therefore assume from now on that all bursts in T are blocked.

By (6.3), this assumption carries over to all good family trees:

(6.4) If T ′ is a good family tree and α is a burst vertex of T ′, then BT ′(α) is

blocked by the vertex bα ∈ G.

Let us continue our investigation of the bursts in good family trees. We
claim the following:

(6.5) If α is a burst vertex in a good family tree T ′, then v(α) ∈ T ′.

Indeed, suppose that v(α) /∈ T ′. Let β be the highest vertex of T ′ below
α such that v(β) ∈ T ′; β exists, because v(φ) ∈ T ′. Let π0, π1, . . . be the
segments of BT ′(α), and for each n ∈ N let ρn be a ray in T ′ which starts at
β and contains πn. Since these rays are increasing in T ′, they correspond to
rays v(ρn) =: Rn in G (recall the remark following (6.2)). Each of the rays
Rn starts at v(β); let tn = v(τn) be its first inner vertex on T ′. This vertex
tn exists by Lemma 3.9, and it comes after v(α) on Rn by the choice of β.
Moreover, the vertices tn are all in T ′ [ v(α) ], which is finite by Lemma 3.4.
Therefore infinitely many of the tn are the same (t, say), and the corresponding
paths Pn := Rnt form an infinite family of T ′–T ′ paths in G from v(β) to t.
The paths Pn are distinct, because v is injective on the set of upper neighbours
of α in T ′. Therefore (v(β), t) is a bad pair. Since Pn is a subpath of the
path τn ∈ V (T ′) (for any n), this contradicts the fact that V (T ′) is a good
family of paths in G. This completes the proof of (6.5).

Let α ∈ T be a burst vertex. Let us show that v(α̊πβ̊π)∩ T ′ = ∅ for all
but finitely many exceptional segments π of B(α). In other words: for almost
every segment of B(α) the corresponding path in G meets T ′ before it hits the
blocking vertex bα.

Suppose, for a contradiction, that B(α) has infinitely many segments
π0, π1, . . . such that v(α̊πnβ̊πn

)∩T ′ = ∅ for every n. We argue as in the proof
of (6.5). For each n, let Pn := v(πn), and let tn be the first vertex on bαPn

that is in T ′; such a vertex exists, because the last vertex of Pn corresponds
to another burst vertex of T , and is therefore in T ′ by (6.5). Since each of the
vertices tn is in T ′ [ bα ], which is finite, infinitely many of them are the same:
t, say. The corresponding paths Pnt are therefore T ′–T ′ paths in G from v(α)
to t; they are distinct, because the upper neighbours of α in T have distinct
images under v. Hence (v(α), t) is a bad pair, a contradiction.

For every burst vertex α, let us remove from T the finitely many excep-
tional segments of B(α) (and all the vertices above these segments). So, by
passing to a good family tree T ′ ⊂ T if necessary, we may assume that, for
every burst vertex α ∈ T and every segment π of B(α), the corresponding path
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v(π) ⊂ G meets T ′ before it hits the blocking vertex bα. Again, this carries
over to all good family trees:

(6.6) If α is a burst vertex in a good family tree T ′, and if π is a segment

of BT ′(α), then v(α̊πβ̊π) ∩ T ′ = ∅. The first vertex τ of α̊πβ̊π with

v(τ) ∈ T ′ will be denoted by τπ, and we write tπ for v(τπ).

When R is a normal ray, let us extend the definition of R-height—and the
notion of ‘(·)-clear’ associated with it—from V (G) to V (T ) in the natural way,
setting ht(α;R) := ht(v(α);R).

Let α be a burst vertex in some good family tree. We shall call its burst
B(α) in this tree a long burst if there exists a normal ray R ⊂ G such that the
neighbourhood of α in B(α) has unbounded R-height. Otherwise, B(α) is a
short burst.

For each burst vertex α ∈ T where B(α) is a long burst, let us pick a
normal ray Rα ⊂ G such that the neighbourhood of α in B(α) has unbounded
Rα-height. We may then select infinitely many segments of B(α) so that the
neighbours of α on these segments have distinct Rα-heights. The Rα-height on
the set of these neighbours then tends to infinity. Passing to a good family tree
T ′ ⊂ T if necessary, we may therefore assume that, for each burst vertex α ∈ T
with B(α) long, the Rα-height of its neighbours in B(α) tends to infinity.

The same is true then for every infinite subset of the set of upper neigh-
bours of α in T . Our assumption therefore extends to all good family trees:

(6.7) Whenever B(α) is a long burst in some good family tree, the Rα-height

of the neighbours of α in B(α) tends to infinity.

As earlier when we considered free versus blocked bursts, let us apply
Lemma 4.1 to the tree T �α0 � TTω, where α0 is the lowest burst vertex in T .
The lemma now implies that either there is a burst vertex α ∈ T such that all
bursts at vertices in T ≥α =: T̃ are short, or else T �α0 has a subtree T̃ � TTω

(whose minimal vertex is a branch vertex) such that for every branch vertex α

of T̃ the burst BT (α) is long. Let T ′ be obtained from T̃ by adding the φ–T̃
path in T as a long root. Then T ′ is a good family tree. Moreover, in the first
case every burst in T ′ is short, while in the second case (6.7) (applied to T )
implies that every burst in T ′ is long. Passing to this good family tree T ′, we
may thus assume that either all bursts of T are short or all bursts of T are
long.

We shall consider these two cases separately.

Case 1: All bursts in T are short.

We shall construct a bundle graph in G by induction, adding one bundle
at a time. The bundle graph will consist of the image of a ray in T , together
with bundles made up from some of the bursts along the ray.
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To be precise, let us construct a sequence G0 ⊂ G1 ⊂ . . . of subgraphs
of G, and a sequence α0 < α1 < . . . of vertices of T , so that the following four
conditions are satisfied for every n ∈ N:

(i) Gn is a partial bundle graph (with n bundles) on the path αn ⊂ G;

(ii) αn is a burst vertex of T ;

(iii) the vertex v(αn) has degree 1 in Gn;

(iv) the image of V (T >αn) under the map v is disjoint from V (Gn).

Roughly speaking, condition (i) asserts that our construction has been success-
ful so far, while conditions (ii)–(iv) will enable us to continue the construction
without running into obstructions.

Note that the induction starts, with α0 as any burst vertex of T and G0

as the path α0 in G. Note also that once we have constructed the graphs Gn,
their union is a bundle graph in G, as required.

Let us then turn to the induction step. Suppose we have constructed
G0 ⊂ . . . ⊂ Gn and α0 < . . . < αn in accordance with conditions (i)–(iv). Put
α := αn and a := v(α), and let Π be an infinite set of segments of B(α). Recall
that, for each π ∈ Π, tπ = v(τπ) is the first vertex of v(α̊πβ̊π) in T ′.

Note that the vertices tπ cannot be the same (say t) for infinitely many
π ∈ Π: the pair (a, t) would then be bad, contradicting the fact that av(π)t is a
T ′–T ′ path contained in the path τπ ∈ V (T ) (for any π with tπ = t). Moreover,
by Lemma 3.3 each tπ is comparable with a. As G has only finitely many ver-
tices below a, it follows that a < tπ for all but finitely many π ∈ Π. Replacing
Π with a suitable infinite subset if necessary, we may therefore assume the
following:

(6.8) The vertices tπ (π ∈ Π) are all distinct and lie strictly above a in T ′.

Let
H :=

⋃
π∈Π

aT ′tπ .

H is an infinite subtree of T ′. Hence, by König’s theorem, H contains either a
ray or a vertex of infinite degree. If H contains a ray, then a tail of this ray is
increasing in T , and is therefore a tail of some normal ray R. By construction
of H and Lemma 3.5, the vertices tπ have unbounded R-height. The neighbours
of α in B(α) then also have unbounded R-height (again by Lemma 3.5), which
contradicts the fact that B(α) is short. Hence H has a vertex z of infinite
degree.

Replacing Π with a suitable infinite subset, we may assume that every tπ
lies above z, and that 
tπ� ∩ 
tπ′� = 
z� whenever π = π′ (Fig. 7).

By Lemma 3.2, this implies that

(6.9) If π, π′ ∈ Π are distinct, then any tπ–tπ′ path in G meets 
z�.
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FIGURE 7. The graph H ⊂ T ′

For each π ∈ Π, let
Pπ := v(πβπ) ;

recall that v(βπ) is the blocking vertex bα for B(α). Then

PΠ := {Pπ | π ∈ Π }

is an infinite set of a–bα paths in G whose second vertices are distinct. By
Lemma 2.3, the union

⋃
PΠ of these paths contains a bundle or a fan; we claim

it must contain a bundle:

(6.10)
⋃
PΠ contains a bundle B as specified in Lemma 2.3 (i).

To prove (6.10), suppose
⋃
PΠ contains no such bundle. Then, by Lemma 2.3,⋃

PΠ contains a fan F as specified in Lemma 2.3 (ii). We shall construct,
inductively, an infinite sequence Q0, Q1, . . . of disjoint paths in F , each joining
two vertices of { tπ | π ∈ Π }. (Fig. 8). This will contradict (6.9), which asserts
that these vertices are pairwise separated in G by the finite subgraph 
z�.

FIGURE 8. Finding the paths Q0, Q1, . . . in F
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Let k ∈ N and assume that Qi has been chosen, for every i < k, so that
a /∈ Qi. Let 7 ∈ N be large enough that none of the paths Qi meets v�R or
any of the spokes Sn with n > 7. By Lemma 3.9, v�R has a vertex t on T ′.
Let m be such that t ∈ vm−1Rvm. By the choice of F (see Lemma 2.3), the
path SmvmRvm−1 is an initial segment of a path Pπ ∈ PΠ. Since tπ is the first
vertex of åPπ in T ′, it precedes t on Pπ or coincides with it, and is therefore
itself on the path SmvmRvm−1. Now pick t′ ∈ v̊mR∩T ′, say between vn−1 and
vn on R, find π′ ∈ Π such that SnvnRvn−1 is an initial segment of Pπ′ , and
note that tπ′ ∈ SnvnRvn−1. Let Qk be the tπ–tπ′ path in Sm ∪ vm−1Rvn ∪Sn.
Then a /∈ Qk, and Qk ∩Qi = ∅ for all i < k. This completes the induction
step, and hence the proof of (6.10).

Note that, according to its specification by Lemma 2.3 (i), the bundle B

in (6.10) is an a–x bundle on a path P ∈ PΠ, where x is some vertex of P .
Moreover, each of the a–x paths in B is an initial segment of some path Pπ ∈ PΠ;
let Fπ ⊂ Pπ be the corresponding fibre of B.

Our aim is to obtain our new partial bundle graph Gn+1 by adding the
bundle B on to Gn. To ensure that Gn+1 will be compatible with the disjoint-
ness condition (iv), however (for some suitable αn+1 ∈ T ), we first have to
delete some fibres from B.

We first wish to delete those fibres Fπ from B which do not contain tπ.
Before we do this, we have to check that only finitely many fibres of B will be
affected, i.e. that tπ ∈ Fπ for all but finitely many of the fibres Fπ. If this is
not the case, then Fπ ⊂ G\T ′ for infinitely many π ∈ Π (by definition of the
vertices tπ; recall that Fπ is an initial segment of åPπ). Then tπ ∈ T ′ [x ] for all
these π, and hence tπ ∈ 
x� by Lemma 3.4. Since 
x� is finite, this means that
the vertices tπ coincide for infinitely many of the fibres Fπ, contradicting (6.8).

So, removing finitely many fibres from B if necessary, we may assume that
tπ ∈ Fπ for each fibre Fπ of B. Again removing finitely many fibres, we may
assume that no fibre of B meets 
z�. Hence, (6.9) implies the following:

(6.11) The fibres of B are pairwise separated by 
z� in G.

(In particular, x ∈ 
z�.)

We are now almost ready to attach the bundle B to our partial bundle
graph Gn. Choose β ∈ B(α) so that v(β) = x and the path αT β has length at
least 2. Among all γ � β, choose one with |γ ∩
z�| maximal, and pick a burst
vertex αn+1 > γ. By the choice of γ, we have

(6.12) v(T ≥αn+1)∩ 
z� = ∅.

Indeed, if δ ∈ T ≥αn+1 (and thus δ > γ), then the path δ ⊂ G is a proper
extension of the path γ. The choice of γ implies that δ∩
z� ⊂ γ; in particular,
v(δ) (which is the last vertex of δ) is not in 
z�.
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As G [ v(T ≥αn+1) ] is connected, (6.11) and (6.12) imply that at most one
fibre of B contains a vertex in v(T ≥αn+1); delete any such fibre from B.
Moreover, only finitely many fibres of B can have a vertex on the (finite)
path αn+1\αn (= v(α̊nT αn+1)); delete those fibres as well. We may now set

Gn+1 := Gn ∪αn+1 ∪B .

Let us quickly verify the induction hypothesis for n+1. We certainly have
Gn ⊂ Gn+1, and αn+1 is a burst vertex of T (assertion (ii)) strictly above αn.

For assertion (i), recall first that αn+1 is an extension of the path αn,
and that αn+1\αn ∩Gn = ∅ by condition (iv) for n, because V (αn+1\αn) ⊂
v(T >αn). Hence, Gn is a partial bundle graph on αn+1. The interior of the
new bundle B is contained in the union of the paths v(̊π), where π ranges
over the segments of the burst B(α) = B(αn). The interior of B is therefore
again disjoint from Gn by condition (iv) for n. As the interior of B also avoids
the path αn+1\αn (by construction; recall the deletion of fibres just before the
definition of Gn+1), B is also a bundle on the path αn+1. Finally, if B′ is any
of the bundles of Gn, then both vertices of B′ ∩ αn+1 precede v(αn) (= a)
on αn+1 by condition (iii) for n, and hence they also precede the two vertices
of B ∩αn+1. Hence Gn+1 is a partial bundle graph, with n+1 bundles, on the
path αn+1 ⊂ G.

By the choice of αn+1 as strictly above β, we know that v(αn+1) has
degree 1 in Gn+1 (assertion (iii)).

For assertion (iv), note that v(T >αn+1) is disjoint from V (Gn) by condition
(iv) for n, since αn+1 > αn and hence T >αn+1 ⊂ T >αn . It is certainly disjoint
from V (αn+1) = v(φT αn+1), and it is finally disjoint from the interior of B,
since we deleted the one fibre of B that could possibly meet v(T ≥αn+1). Hence,
v(T >αn+1) is disjoint from V (Gn+1).

This completes the induction step in our construction of a bundle graph
in G, and so completes Case 1.

Case 2: All bursts of T are long.

Recall that, by (6.7), each burst vertex α ∈ T is associated with a normal
ray Rα, so that the Rα-height of the neighbours of α in B(α) tends to infinity.
Let again α0 be the lowest burst vertex in T . Applying Lemma 4.2 to T �α0 ,
we see that T contains a good family tree T ′ with the property that the rays
Rα are either all the same or all distinct for the burst vertices α ∈ T ′. Let us
rename T ′ as T , and address the two cases in turn.

If all the rays Rα are the same, say R, choose a sequence of burst vertices
α0 < α1 < . . . in T . Then v(α0), v(α1), . . . are distinct vertices of G, whose
neighbourhoods have unbounded R-height. By Lemma 3.11 (ii), this implies
that G contains a TKω, and hence a TTω.

We may therefore assume from now on that the rays Rα are all distinct:
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(6.12) If α and α′ are distinct burst vertices of T , then Rα and Rα′ are distinct

normal rays in G.

Similarly to our construction of a bundle graph in the short burst case,
we shall now construct a fan graph in G along the image of a ray from T .
The construction will be more complicated, however: the individual fans will
be made not just from bursts B(α) along that ray, but partly also from the
rays Rα corresponding to these bursts.

To be precise, let us construct a sequence G0 ⊂ G1 ⊂ . . . of subgraphs
of G, and a sequence β0 < β1 < . . . of vertices of T , so that the following three
conditions are satisfied for every n ∈ N:

(i) Gn is a partial fan graph (with n fans) on the path βn ⊂ G;

(ii) for every burst vertex γ > βn of T , the Rγ-height of Gn is bounded;

(iii) there is a burst vertex νn > βn such that the image of V (β̊nT νn ∪T >νn)
under the map v is disjoint from V (Gn).

Again, roughly speaking, condition (i) asserts that our construction has been
successful so far, while conditions (ii) and (iii) will enable us to continue the
construction.

We apply induction on n. Taking G0 := β0 := φ, and letting ν0 be any
burst vertex of T , we see that the induction starts. Note also that once we
have constructed the graphs Gn for all n ∈ N, their union is a fan graph in G,
as desired.

Let us then turn to the induction step. Suppose we have constructed
subgraphs G0 ⊂ . . . ⊂ Gn of G and found vertices β0 < . . . < βn and νn of T
in accordance with conditions (i)–(iii). In order to define Gn+1, we wish to
construct a new fan to add to Gn. However, it turns out to be difficult to
pinpoint directly a fan that misses the whole of Gn, and which can be added
to Gn in a manner that allows the induction to continue. We shall instead
define two fans (to be called F and F ′), and our aim will be to show that at
least one of these fans is suitable for attachment to Gn.

Put α := νn and R := Rα, and let a := v(α). As the path α ⊂ G is
finite, condition (ii) implies that the R-height of Gn ∪α is bounded. We may
therefore choose a neighbour δ = δ0 of α in B(α) that is (Gn ∪ α)-clear with
respect to R (cf. (6.7)). Let r0 ∈ R be the R-height of δ. Let us further choose
segments π1, π2, . . . of B(α) such that, writing δi for the neighbour of α on πi

and ri for the R-height of δi, we have r0 < r1 < r2 < . . . . For each i ∈ N,
denote v(δi) by di, and let Pi be a di–R path in G that ends in ri (using the
definition of R-height). See Figure 9.

Since Pir̊i ∩ R = ∅, Lemma 3.5 implies that the R-height is constant
on Pir̊i, and thus equal to the R-height of di. Hence we have:

(6.13) For each i ∈ N, every vertex of Pi has R-height ri.
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FIGURE 9. Constructing a fan from B(α) and Rα

Define a fan F from a to d := d0, as follows. The spine of F is the
ray P0r0R. Its spokes are the paths adiPi for i > 0. (In other words, the ith
spoke consists of the edge adi followed by the path Pi.) By (6.13), the spokes
of F are pairwise disjoint (except for a) and avoid P0, so F is indeed a fan. As
further consequences of (6.13), we have the following:

(6.14) The interior of F is (Gn ∪α)-clear with respect to R.

(6.15) The R-height of F tends to infinity.

In order to define our second fan F ′, choose a burst vertex α′ > δ, let
R′ := Rα′ , and put a′ := v(α′). By condition (ii), the R′-height of Gn ∪ α′

is bounded. Moreover, since R′ = R, Lemma 3.8 and (6.15) tell us that the
R′-height of F is bounded. Choose a neighbour δ′ = δ′0 of α′ in B(α′) that is
(Gn ∪F ∪α′)-clear with respect to R′. Put d′ := v(δ′), and define π′

i, δ
′
i, r

′
i, d

′
i,

P ′
i and a fan F ′ from a′ to d′ exactly as above (Fig. 10).

Statements 6.13–6.15 then have the following equivalents for F ′:

(6.13′) For each i ∈ N, every vertex of P ′
i has R′-height r′i.

(6.14′) The interior of F ′ is (Gn ∪F ∪α′)-clear with respect to R′.

(6.15′) The R′-height of F ′ tends to infinity.

Setting z := max (R∩R′), we see by (6.15) and Lemma 3.7 that there are
vertices in F with R′-height z. The R′-height of δ′, and hence of every vertex
in F ′, is therefore greater than z:

(6.16) F ′ is 
z�-clear with respect to R′.
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FIGURE 10. The fans F and F ′

Now let U := {x ∈ F | ht(x;R) � z }, and put W := U ∪
z�. Note that U ,
and hence W , is finite by (6.15). We claim that

(6.17) W separates F from F ′ in G.

Indeed, consider F ′ and F\W . Each vertex of F ′ has R′-height greater than z,
while each vertex of F\W has R-height greater than z. By Lemma 3.6, this
implies that 
z� separates F ′ from F\W in G, so W separates F from F ′ as
claimed.

Among all γ � δ′, choose one with |V (γ)∩W | maximal, and pick a burst
vertex ν > γ. By the choice of γ, we have v(T ≥ν)∩W = ∅. Since G [ v(T ≥ν) ]
is connected, this implies that v(T ≥ν) meets at most one of F and F ′. Let
F ′′ ∈ {F, F ′ } be such that v(T ≥ν) ∩ V (F ′′) = ∅, and define α′′, R′′, a′′, δ′′,
d′′, r′′i and P ′′

i accordingly. Thus,

(6.18) F ′′ is a fan from a′′ to d′′ which avoids v(T ≥ν).

Moreover, statements 6.13–6.15 and their analogues for F ′ imply the fol-
lowing:

(6.13′′) For each i ∈ N, every vertex of P ′′
i has R′′-height r′′i .

(6.14′′) The interior of F ′′ is (Gn ∪α′′)-clear with respect to R′′.

(6.15′′) The R′′-height of F ′′ tends to infinity.
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Our final task now is to attach this new fan to Gn. Set

X := { v(β) | δ′′ � β � ν }∩V (F ′′) .

Note that X = ∅, as d′′ ∈ X. Let Y ⊂ X consist of the vertices in X of maximal
R′′-height. Pick a vertex b ∈ Y as follows. If Y contains a vertex on R′′, let
b be this (unique) vertex. If Y ∩ V (R′′) = ∅, then all the vertices of Y lie on
a common spoke of F ′′ or on P ′′

0 (by (6.13′′)); let b be the vertex of Y closest
to R′′ along this spoke (respectively, along P ′′

0 ).
Define a fan E from a′′ to b as follows. Let r be the R′′-height of b. As the

spokes of E, take those spokes of F ′′ whose last vertex is above r. If b ∈ R′′

(and r = b), take bR′′ as the spine of E. If b /∈ R′′, say b ∈ P ′′
k , let the spine of

E be the ray bP ′′
k rR′′. In either case, E is a fan from a′′ to b contained in F ′′

(Fig 11).

FIGURE 11. The fan E ⊂ F ′′

Set νn+1 := ν, and let βn+1 be the unique vertex β � ν with v(β) = b.
Note that, in fact, δ′′ � β < ν by (6.18) and the definition of X, so

α′′ < δ′′ � βn+1 < νn+1 .

Finally, let
Gn+1 := Gn ∪βn+1 ∪E .

Let us verify the induction hypothesis for n+ 1. We certainly have Gn ⊂
Gn+1 and βn < βn+1.

For assertion (i), note first that the path βn+1\βn = v(β̊nT βn+1) avoids
Gn by condition (iii) for n. The interior of E avoids Gn ∪α′′ by (6.14′′) (since
E ⊂ F ′′), and it avoids the path νn+1\α′′ by the choice of b. (Recall that δ′′ is
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an upper neighbour of α′′ in T .) In particular, E is a fan on βn+1\βn (recall
that βn < α � α′′), and (i) follows.

For a proof of assertion (ii), let γ be any burst vertex above βn+1. Then
γ = α′′, so the Rγ-height of E is bounded by (6.15′′) and Lemma 3.8. As the
path βn+1 is finite, this implies that (ii) carries over from n to n+ 1.

To verify (iii), note that Gn avoids the set

V := v(β̊n+1T νn+1 ∪T >νn+1)

by condition (iii) for n, because νn+1 > νn. We saw in the proof of (i) that the
interior of E avoids the path νn+1\α′′, so E avoids V by (6.18). The path βn+1

avoids V by (6.2). Hence Gn+1 avoids V .

This completes the induction step in our construction of a fan graph in G,
and so completes Case 2. The proof of Theorem 6.1 is thus complete. �

7. The bounded graph theorem

To conclude the paper, let us restate our principal result and complete its
formal proof. Recall that b denotes the least cardinal such that there exists a
family of b distinct N → N sequences which are not dominated by a common
N→N sequence. (So, ω < b � 2ω, and ω1 = b = 2ω with CH.) Recall further
that Ib denotes the disjoint union of b rays, and that Tω is the tree of countably
infinite regular degree. As in the Introduction, let B and F be the prototype
bundle graph and the prototype fan graph, respectively (see Figs. 1 and 2).

Theorem 7.1. (Bounded graph theorem)
A graph is bounded if and only if it contains none of the following graphs as a

topological subgraph: Ib; Tω; B; F .

Proof. Since boundedness is closed under taking subgraphs, the ‘only if’ part
follows from the fact that the four forbidden graphs and their subdivisions are
themselves unbounded.

For the ‘if’ part, let us suppose that a graph G contains no subdivision
of any of Ib, Tω, B or F ; we show that G is bounded. Since G ⊇ Ib, fewer
than b of its components contain a ray. By definition of b, we may therefore
assume that G is connected. Since G does not contain a TKω (which would
contain a TTω), G has a normal spanning tree by Halin’s theorem (3.1). By
Theorem 6.1, then, there is no good family of paths in G, so G is bounded by
Theorem 5.1. �

Remark. If the Continuum Hypothesis is assumed then ω1 = b = 2ω, so The-

orem 7.1 implies the bounded graph conjecture as stated in the Introduction.
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In the remainder of this section we list a few immediate consequences of the
bounded graph theorem. The following three corollaries were already discussed
in the Introduction.

Corollary 7.2. Subdivisions of bounded graphs are bounded, and subdivisions

of unbounded graphs are unbounded. �

Corollary 7.3. Let G be a graph. Unless G contains b disjoint rays (in which

case it is trivially unbounded), G is bounded if and only if all its countable

subgraphs are bounded. �

Corollary 7.4. If a countable graph admits some unbounded labelling then

all its injective labellings are unbounded. �

Our next corollary is a strengthening of Theorem 5.1. Let us call a non-
empty family P of finite paths propagating if it satisfies condition (i) of the
definition of a good family, i.e., if for every path P ∈ P there exists an n ∈ N

such that P has infinitely many extensions in P of length n. Clearly, any
graph with a propagating family of paths must be unbounded, and any graph
containing a subdivision of Tω, B or F contains a propagating family of paths.

Corollary 7.5. A graph G not containing Ib is bounded if and only if there

is no propagating family of paths in G. �

One may ask whether or not boundedness can also be characterized by the
exclusion of minors rather than topological subgraphs. Since the minor rela-
tion is transitive, this would require that boundedness be closed under taking
minors, i.e. that minors of bounded graphs should again be bounded. With the
most general definition of an infinite minor, as given in §2, this is easily seen
to be false: the infinite grid, for example, is locally finite and hence bounded,
but contracting every second vertical ray yields a graph which contains both a
copy of F and a bundle graph (and is therefore unbounded).

However, a slightly less general definition of an infinite minor (which still
generalizes the usual finite definition) will work: if we require that all the branch
sets be finite—i.e., if all our minors are obtained by first taking a subgraph and
then contracting finite connected parts of that subgraph—then boundedness
does turn out to be closed under taking minors. Indeed, if H is a bounded graph
and H ⊇ H ′ = HG with all branch sets finite, it is not difficult to see that
any TB, TF , TTω or Ib subgraph of G could be lifted to a corresponding TB,
TF , TTω or Ib subgraph of H ′, and hence of H, contradicting the boundedness
of H. Therefore G, too, must be bounded:

Corollary 7.6. Boundedness is closed under taking minors with finite branch

sets. �
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By Lemma 2.1, we thus have the following forbidden minor version of
Theorem 7.1:

Theorem 7.7. A graph is bounded if and only if it contains none of the fol-

lowing graphs as a minor (with all branch sets finite): Ib; Tω; B; F . �
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