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We prove that a connected infinite graph has a normal spanning tree
(the infinite analogue of a depth-first search tree) if and only if it has
no minor obtained canonically from either an (ℵ0,ℵ1)-regular bipar-
tite graph or an order-theoretic Aronszajn tree. This disproves Halin’s
conjecture that only the first of these obstructions was needed to char-
acterize the graphs with normal spanning trees. As a corollary we
deduce Halin’s further conjecture that a connected graph has a normal
spanning tree if and only if all its minors have countable colouring
number.

The precise classification of the (ℵ0,ℵ1)-regular bipartite graphs
remains an open problem. One such class turns out to contain obvious
infinite minor-antichains, so as an unexpected corollary we reobtain
Thomas’s result that the infinite graphs are not well-quasi-ordered as
minors.

1. Introduction

A spanning tree T of a graph G is called normal if the ends of every edge of
G are comparable in the natural tree order on V (G) induced by T . Intuitively,
all the edges of G run vertically ‘along’ branches of T , never ‘across’.

Normal spanning trees of finite graphs are more commonly known as depth-
first search trees. Every finite connected graph contains such a tree, and they
are widely used as a structural tool in both algorithmic and pure graph theory.

Normal spanning trees of infinite graphs are just as useful; see e.g. [ 6,7,8 ].
However, not every infinite connected graph has a normal spanning tree: all
countable ones do (see Jung’s theorem below), but Kℵ1 , say, does not. The
purpose of this paper is to give a new characterization of the graphs containing
normal spanning trees.

There is one well-known such characterization, due to Jung. Call a set U
of vertices of a graph G dispersed in G if every (1-way) infinite path in G can
be separated from U by a finite set of vertices.

Theorem 1.1. (Jung 1969)
A connected graph G has a normal spanning tree if and only if V (G) is a

countable union of dispersed sets.

However, Jung’s result can be hard to make use of. For example, if a giv-
en graph has no normal spanning tree, then a characterization yielding some
concrete ‘forbidden’ substructure in such cases would be more helpful than
the abstract knowledge that the graph cannot be covered by countably many
dispersed sets. Curiously, it was observed only recently by Halin [ 9 ] that, as
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an easy consequence of Jung’s theorem, the class of graphs containing normal
spanning trees can in principle be characterized by forbidden minors:

Corollary 1.2. Every connected minor of a graph admitting a normal span-

ning tree also has a normal spanning tree.

For completeness, we shall indicate in Section 3 how Corollary 1.2 follows from
Jung’s theorem. Interestingly, no direct proof appears to be known.

For an excluded-minor characterization of the graphs with normal span-
ning trees we would ideally try to compile a list (up to minor-equivalence) of
all minor-minimal connected graphs not admitting a normal spanning tree, and
prove that every other such graph contains one of these minimal ones as a mi-
nor. As things stand, however, we do not even know whether a minor-minimal
graph without a normal spanning tree exists.

Yet there are ‘types’ of minors that seem to appear in every graph without
a normal spanning tree. One such type is the following. Call a graph over-
loaded if it has uncountably many vertices each joined by infinitely many edges
to some fixed countable set. It is not difficult to see that overloaded graphs
cannot have normal spanning trees (see Section 3), and all known examples of
graphs without normal spanning trees have overloaded minors.

Halin [ 9 ] conjectured that a connected graph has a normal spanning tree
if and only if it has no overloaded minor. As we shall see, however, one needs
another type of forbidden minor: there are connected graphs obtained from
certain order-theoretic Aronszajn trees that have no normal spanning tree and
no overloaded minor either. But these are all the obstructions needed: as our
main result, we shall prove that every connected graph with no minor of either
of these two types has a normal spanning tree.

We remark that we have not been able to classify either of the above
two types of graphs up to minor-equivalence. In particular, although we shall
present some minor-incomparable (and possibly minor-minimal) examples of
overloaded graphs, we do not have a complete list of such graphs. This, or the
related problem of classifying the (ℵ0,ℵ1)-regular bipartite graphs, seems to us
to be a natural and interesting open problem.

Halin’s conjecture would have implied that a connected graph has a nor-
mal spanning tree if and only if all its minors have countable colouring number.
With some foresight, Halin [ 9 ] made this consequence a separate conjecture,
and it will indeed follow easily from our main result.

Our paper is organized as follows. In Section 2 we briefly run through those
of our terms that are not standard graph-theoretic terminology. In Section 3 we
recall the contruction of normal spanning trees for countable connected graphs
and look at some examples of graphs without a normal spanning tree; these will
lead naturally to the formulation of our characterization theorem mentioned
informally above. In Section 4 we review some tools from the theory of sim-
plicial decompositions of infinite graphs that will be needed in the proof of our
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theorem; the proof itself is presented in Section 5. In Section 6 we construct a
graph of Aronszajn-tree type that has no overloaded minor. Together with the
fact that no (minimal) overloaded graph has a minor of Aronszajn-tree type,
this shows that both types of excluded minor in our characterization are really
needed. In Section 7 we prove Halin’s second conjecture mentioned above. Our
preliminary results towards a possible classification of overloaded graphs are
presented in Section 8, where we exhibit two natural minor-incomparable ex-
amples of overloaded graphs. In Section 9, finally, we observe that one of these
examples gives rise to a class of 22ℵ0 minor-incomparable graphs of order 2ℵ0

(assuming CH).

2. Definitions and basic facts

We assume that the reader is familiar with standard graph-theoretic concepts
and notation, eg. as defined in [ 4 ], but we assume no knowledge of set theory
other than the most basic concepts (such as ordinal induction). We assume
only the usual axioms of set theory (ZFC). For the construction of one of our
examples in Section 8 we need the continuum hypothesis (CH), and we shall
say so at the time.

A ray is a 1-way infinite path. Two rays in a graph G are equivalent if no
finite set of vertices separates them in G.

When G,H are graphs, we write H � G to express that H is a minor
of G. This means that with every vertex x ∈ H we can associate a (possibly
infinite) connected set Vx ⊆ V (G), called the branch set of x, so that these sets
Vx are disjoint for different x and G contains a Vx–Vy edge whenever xy is an
edge of H.

If T is a (graph-theoretic) tree with root r, we write x � y for vertices
x, y ∈ T if x lies on the unique r–y path in T . This is a partial ordering on V (T );
see [ 4 ] for a summary of some elementary properties.

A partially ordered set (T,�) is called an order tree if all its subsets of the
form �t� = �t�T := { t′ | t′ � t } are well-ordered chains and �t� ∩ �t′� 	= ∅ for
any t, t′ ∈ T . (Similarly, we write �t� = �t�T := { t′ | t′ � t }.) Note that an
order tree has a unique minimal element, which is less than every other element.
Our earlier partial ordering on the vertex set of a rooted graph-theoretic tree
is an order tree in this sense.

Let T be an order tree. A maximal chain in T is called a branch of T ;
note that every branch inherits a well-ordering from T . The height of T is the
supremum of the order types of its branches. The height of a point t ∈ T is the
order type of �t�◦ := �t�� { t }. The set Tα of all points at height α is the αth
level of T , and we write T<α :=

⋃
{T β | β < α }.

The intuitive interpretation of a tree order as expressing height will also
be used informally. For example, we may say that t is above t′ if t > t′, call
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�X� = �X�T :=
⋃
{ �x� : x ∈ X } the down-closure of X ⊆ T , or say that X is

down-closed if X = �X�. For a branch B of T , we say that X has unbounded
B-height if �X� ∩B ⊇ B.

If t < t′, we write [ t, t′ ] for �t� ∩ �t′�, and call this set a (closed) interval
in T . (Open and half-open intervals in T are defined analogously.) A subset
of T that is an order tree under the ordering induced by T is a subtree of T
if along with any two comparable points it contains the interval in T between
them. If t < t′ but there is no point between t and t′, we call t′ a successor
of t and t the predecessor of t′; if t is not a successor of any point it is called a
limit .

We say that an order tree T is normal in a graph G if V (G) = T and the
two ends of any edge of G are comparable in T . We call G a T -graph if T is
normal in G and the set of lower neighbours of any point t other than the root
either consists of its predecessor (if t is a successor in T ) or else is a chain with
supremum t and of order type the cofinality of �t�◦. (In the T -graphs we shall
consider, all limit points will have countable height, so their neighbourhoods
will be ω-chains.) Note that if G is a T -graph then every interval [ t, t′ ] in T
(and hence every subtree of T ) is connected in G, because only t can be a
minimal element of any of its components.

A filter on a set A is a non-empty set F of subsets of A such that ∅ 	= F ,
any superset of an element of F is in F , and F is closed under finite inter-
section. A maximal filter on A is an ultrafilter on A. If U is an ultrafilter
on A and A′ ⊆ A, then exactly one of A′ and A � A′ is an element of U .
A principal ultrafilter U on A is one for which there exists an a ∈ A such that
U = {A′ ⊆ A | a ∈ A′ }. Note that if U is a non-principal ultrafilter then
for every finite subset of A there is an element of U disjoint from it. Non-
principal ultrafilters exist by Zorn’s Lemma; indeed every maximal filter on N

that extends the filter of all cofinite subsets of N is non-principal. See [ 2 ] for
more details on ultrafilters.

Finally, we shall need the following simple version of Fodor’s Lemma [ 10 ].

Lemma 2.1. If f :ω1 → ω1 is a function satisfying f(α) < α for all non-zero

α ∈ ω1, then f is constant on some uncountable subset of ω1.

Proof. Suppose not. Then for each α ∈ ω1 there is a β = β(α) such that
f(γ) � α for all γ � β. Now put α1 = 1 (say), and for n = 2, 3, . . . let
αn = β(αn−1). Then α := sup αn has f(α) ≥ αn for all n, and hence f(α) � α;
a contradiction. �
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3. Examples and statement of main result

Our aim is to characterize the graphs that have a normal spanning tree. Before
we look at various examples of graphs that contain no such tree, recall that, by
Jung’s Theorem, countable connected graphs do have normal spanning trees.
We shall need a slight strengthening of this fact later, so let us indicate a direct
proof.

Proposition 3.1. Let G be a countable connected graph, and let v1, . . . , vn
be a finite path in G. Then G has a normal spanning tree with root v1 in which

vi+1 is a successor of vi for all i = 1, . . . , n− 1.

Proof. Let v1, v2, . . . be an enumeration of V (G). Let T1 be the path v1 . . . vn.
Assume inductively that, for some i ∈ N, we have constructed a finite tree
Ti ⊆ G with root v1 that contains v1, . . . , vi and has the property that for
every component C of G − Ti the set N(C) of neighbours of C on Ti is a
chain in Ti. Let j be minimal such that vj /∈ Ti, let C be the component of
G−Ti containing vj , and let t be the maximum of the chain N(C) in Ti. Let
P = t . . . vj be a path whose only vertex in Ti is t, and put Tj := Ti ∪P . As is
easily checked, the (nested) union of all the trees Ti constructed in this way is
a normal spanning tree of G with root v1. �

For completeness, we now indicate how Jung’s theorem implies that con-
nected minors of graphs with normal spanning trees again have a normal span-
ning tree. The reader is encouraged to skip the proof, which is no more than a
straightforward application of the definitions involved.

Proof of Corollary 1.2 (Sketch). If H is a minor of G and U ⊆ V (G) is a
dispersed set of vertices in G, then the set W of all vertices of H whose branch
set meets U is dispersed in H: any ray R ⊆ H has a ray of G contained in the
union of the branch sets of its vertices, and if this latter ray in G is separated
from U by the finite set S, then the finite set of vertices of H whose branch
set meets S separates R from W in H. Hence if G is a countable union of
dispersed sets then so is H, and the assertion follows from Theorem 1.1. �

Let us now look at some connected graphs that have no normal spanning
tree. The prime example is, of course, the complete graph Kℵ1 : since every
two vertices would have to be comparable, any order tree normal in Kℵ1 would
consist of a single chain and could not be a graph-theoretic tree.

For more subtle examples, we need the following two easily verified prop-
erties of normal trees. (See [ 1 ] or [ 8 ] for proofs.)

Lemma 3.2. Let T be an order tree that is normal in a graph G, and let

x, y ∈ T .

(i) If x, y are incomparable in T , then �x�◦ ∩�y�◦ separates x from y in G.

(ii) Every ray in G meets some branch of T infinitely often. �
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Now if T is a normal spanning tree of G, then by (i) any two branches of T
are separated in G by their finite intersection. Hence two rays whose branches
in (ii) differ cannot be equivalent: they would have tails in different components
of G minus the finite intersection of those branches. Thus, no graph with a
normal spanning tree can have uncountably many disjoint equivalent rays, as
these would all meet the same countable branch.

Our first non-trivial example of a connected graph with no normal span-
ning tree, then, is the cartesian product of an uncountable star with a ray—
a graph that certainly contains uncountably many disjoint equivalent rays. (In
fact, it is easy to check that any two rays in this graph are equivalent.)

However, the above example can easily be simplified: just contract each
copy of the original ray that corresponds to a leaf of the star, and delete the
edges of the central ray. The graph G obtained is a Kℵ0,ℵ1 , and this, too,
has no normal spanning tree. Indeed, any such tree T has only countably
many levels, and hence has a level Tn containing uncountably many vertices
from the uncountable class B of G. Each of these vertices b has infinitely
neighbours in the countable class A, but at most n of these can lie below it.
So every b has neighbour a above it. As the b are pairwise incomparable, their
upper neighbours a are pairwise distinct, which contradicts the fact that A is
countable.

Note that in the above proof the only properties of G used were the sizes of
A and B and the degrees of the vertices in B. Let us call an arbitrary bipartite
graph (A,B) an (ℵ0,ℵ1)-graph if |A| = ℵ0 and |B| = ℵ1 and every vertex in
B has infinite degree. (Thus, a graph is overloaded if and only if it contains
an (ℵ0,ℵ1)-graph as a subgraph.) We remark in passing that deleting all the
vertices of countable degree from A and all their neighbours from B yields
another (ℵ0,ℵ1)-graph in which every vertex in A has uncountable degree.

We have thus reobtained Halin’s [ 9 ] observation:

Proposition 3.3. No overloaded graph has a normal spanning tree. �

The following observation shows that, as a ‘type’ of graphs, the (ℵ0,ℵ1)-
graphs are minimal among the graphs not containing normal spanning trees.

Proposition 3.4. Every connected minor of an (ℵ0,ℵ1)-graph is either itself

overloaded or contains a normal spanning tree.

Proof. Let G = (A,B) be an (ℵ0,ℵ1)-graph, and let H � G be connected.
Let A′ denote the set of vertices of H whose branch set meets A, let B′ be
the set of those vertices of H −A′ that have infinitely many neighbours in A′,
and let B′′ := V (H) � (A′ ∪ B′). Note that B′ ∪ B′′ is an independent set
in H, with singleton branch sets in B. If B′ is uncountable, then (A′, B′) is an
(ℵ0,ℵ1)-subgraph of H, so H is overloaded.

So let us assume that B′ is countable. For every finite set F ⊆ A′ let
B′′(F ) consist of those points in B′′ whose neighbourhood is precisely F . Since
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A′ is countable, there are only countably many such sets B′′(F ), and together
with the singleton sets consisting of elements of A′ ∪B′ they form a partition
of V (H) into countably many dispersed sets. By Jung’s theorem, H thus has
a normal spanning tree. �

In Section 8, we shall study (ℵ0,ℵ1)-graphs more closely; they will turn out
to show some perhaps unexpected degree of variety. As for now, let us mention
just one natural example of an (ℵ0,ℵ1)-graph that looks essentially different
from a Kℵ0,ℵ1 . Let T2 be the order tree of height ω+1 in which every point of
finite height has exactly two successors and above every branch of T<ω

2 there
is exactly one point in Tω

2 . We shall call the down-closure of any uncountable
subset X of Tω

2 a binary tree with tops, the tops themselves being the points
in X. Now if T is a binary tree with ℵ1 tops then any T -graph clearly contains
an (ℵ0,ℵ1)-graph with vertex classes T<ω and Tω; we shall call any such graph
an (ℵ0,ℵ1)-graph of binary type.

Are there any connected graphs without a normal spanning tree that have
no overloaded minor? Good candidates for such graphs might seem to be
the ω1-graphs (where ω1 is viewed as an order tree). Indeed in any normal
spanning tree of an uncountable graph G there is a point t with uncountably
many successors, and by Lemma 3.2 the finite set �t� separates these pairwise
in G. But if G is an ω1-graph then a finite separator can leave only finitely
many components, because intervals in ω1-graphs are connected.

So an ω1-graph cannot have a normal spanning tree. And neither can it
itself be overloaded, i.e. have an (ℵ0,ℵ1)-subgraph (A,B): since A is countable,
all but countably many of the vertices in B would lie above α := supA, and
vertices above α have only finitely many neighbours below it. (Recall the
definition of a T -graph.)

However, ω1-graphs do contain overloaded minors, and far more:

Proposition 3.5. Every ω1-graph G has a Kℵ1-minor.

Proof. Note first that G has uncountably many vertices vα (α < ω1) of
uncountable degree: these can be found inductively by applying Lemma 2.1
(our weak version of Fodor’s Lemma) to final segments of ω1, using the fact
that every vertex above a point α < ω1 has a lower neighbour above or equal
to α. Using (some of) the vertices vα as branch vertices, we can now build
a topological Kℵ1 minor of G inductively in ω1 steps, at each step adding a
new branch vertex vα and joining it to the previously selected vβ one by one,
linking a sufficiently high neighbour x of vβ to a sufficiently high neighbour y
of vα by a path in [x, y ]. �

Thus if we are looking for a T -graph G that has no overloaded minor, then
T must not contain uncountable chains. If we assume further that T has no
point with uncountably many successors (an assumption clearly desirable since
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we wish to keep G ‘small’—ideally, minor-minimal without a normal spanning
tree), it follows that every level of T must be countable: if Tα were the first
uncountable level, then α would be a limit ordinal, and G would contain an
(ℵ0,ℵ1)-graph with vertex sets T<α and Tα.

So we are looking for T -graphs where T is an uncountable order tree whose
branches and levels are all countable. Such trees are called Aronszajn trees, and
they are not entirely trivial to construct; the first one was found by Aronszajn,
see [ 14 ]. Note that all Aronszajn trees have height ω1 and order ℵ1. We refer
the reader to Jech [ 10 ] for general background.

Despite the two restrictions on T , such T -graphs are still too large to have
normal spanning trees:

Proposition 3.6. Let T be an Aronszajn tree, and let G be a T -graph. Then

G has no normal spanning tree.

Proof. IfG has a normal spanning tree, then some point t in it has uncountably
many successors, and G−�t� has uncountably many components (Lemma 3.2).
Let α < ω1 be such that �t� ⊆ T<α. Since T is an Aronszajn tree, both T<α

and Tα are countable. Since G is a T -graph, any component of G− �t� not
meeting T<α has the form �t′� for some t′ ∈ Tα. So G−�t� has only countably
many components, a contradiction. �

Like ω1-graphs, Aronszajn-tree graphs (that is, T -graphs with T an Aron-
szajn tree) cannot themselves be overloaded. But can they have overloaded
minors?

Some certainly do. Indeed, let T be any Aronszajn tree, and let G be any
T -graph. Let t ∈ Tω be such that �t� is uncountable, and let a1 < a2 < . . . be
the points below t. We shall add some edges to G in such a way that G remains
a T -graph but acquires a Kℵ0,ℵ1 minor (A,B) for which { a1 }, { a2 }, . . . are the
branch sets of the vertices in A. Let us construct the (countable) branch sets
Xα ⊆ T of the vertices bα ∈ B inductively for all α < ω1, and add edges from
Xα to all the ai at the same time. Let α < ω1 be given, and assume that Xβ

has been defined for every β < α. Let γ < ω1 be large enough that Xβ ⊆ T<γ

for every β < α, and pick a point s > t at level γ. Then pick distinct limits
t1, t2, . . . above s, add all the edges tiai (i ∈ N), and let

Xα := �s� ∩
⋃ {

�ti� : i ∈ N
}
.

Note that Xα is connected in G, that at most one down-edge is added at
each limit in T , and no down-edges are added at successors. So when the
construction is complete we have Kℵ0,ℵ1 � G, and G is still a T -graph.

In general, however, it turns out that Aronszajn-tree graphs need not
have overloaded minors. As our second main result, we shall construct such an
Aronszajn-tree graph in Section 6.
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Conversely, it is easy to see that (ℵ0,ℵ1)-graphs do not contain Aronszajn-
tree graphs as minors (Proposition 6.1). So we have found two types of con-
nected graphs that have no normal spanning trees and do not, in general, have
a minor of the other type: (ℵ0,ℵ1)-graphs and Aronszajn-tree graphs. Our
main result is that these are all we need in order to characterize the graphs
without a normal spanning tree:

Theorem 3.7. A connected graph has a normal spanning tree if and only if

it contains neither an (ℵ0,ℵ1)-graph nor an Aronszajn-tree graph as a minor.

We shall prove this theorem in the following two sections.

4. Simplicial decompositions

Let G be a graph, σ > 0 an ordinal, and for each λ < σ let Bλ be an induced
subgraph of G. The family F = (Bλ)λ<σ is called a simplicial decomposition
of G if the following three conditions hold:

(S1) G =
⋃

λ<σ Bλ;

(S2) every Sµ := Bµ ∩
⋃

λ<µBλ is a complete graph (0 < µ < σ);

(S3) no Sµ contains Bµ or any other Bλ (0 � λ < µ < σ).
The subgraphs Bλ are the parts of this decomposition.

For every vertex v ∈ G we let λ(v) denote the minimal λ for which v ∈ Bλ.
For X ⊆ V (G) we put Λ(X) := {λ(x) | x ∈ X }. Thus, the vertices x with
λ(x) = µ are precisely those in Bµ �Sµ. F will be called coherent if, for each
µ < σ, Bµ � Sµ is connected, Sµ 	= ∅ if µ > 0, and every vertex of Sµ has a
neighbour in Bµ �Sµ.

The decomposition tree (TF ,�) associated with F is the order tree on F
defined recursively as follows. Let µ < σ be given, and assume that � has been
defined for all pairs (Bλ, Bλ′) with λ, λ′ < µ. For each λ < µ, let

Bλ < Bµ if Bλ � Bλ(s) for some s ∈ Sµ ;

otherwise let Bλ and Bµ be incomparable. Note that TF has height at most σ,
and that {Bλ | λ ∈ Λ(Sµ) } is a cofinal subchain of the chain �Bµ�

◦ in TF below
the point Bµ. See [ 3 ] for details about simplicial decompositions, including a
(straightforward) proof that TF is indeed an order tree.

The following lemma is easily proved by induction on σ.

Lemma 4.1. For every µ < σ, the subgraph Sµ separates
⋃
�Bµ�TF

from the

rest of G. �

The main tool in our proof of Theorem 3.7 will be the following result from
[ 3; Ch. 5, Thm. 2.1 ]:
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Theorem 4.2. (Halin 1967)
Let G be a connected graph in which two vertices are adjacent whenever they

are linked by uncountably many independent paths. If Kℵ1 	⊆ G then G admits

a coherent simplicial decomposition (Bλ)λ<σ into countable parts, with σ � ω1.

The seemingly narrow and technical adjacency condition in Halin’s the-
orem will not pose a major obstacle when we come to use the result in our
proof of Theorem 3.7, due to the following easy lemma (proved in [ 3 ]). Given
a graph G, let [G ]ℵ1 denote the supergraph of G obtained by joining any non-
adjacent vertices x, y for which G contains uncountably many x–y paths.

Lemma 4.3. [ [G ]ℵ1 ]ℵ1 = [G ]ℵ1

Thus even if our given graph G falls short of the adjacency condition, the
graph [G ]ℵ1 will satisfy it. Our next lemma says that the coherence of the
simplicial decomposition of [G ]ℵ1 given by Halin’s theorem may be assumed
to rely only on edges of G:

Lemma 4.4. Let G be a graph such that G′ := [G ]ℵ1 has a coherent simpli-

cial decomposition F = (Bλ)λ<σ into countable parts, where σ � ω1. Then G′

has a simplicial decomposition (B∗
λ)λ∈Λ⊆σ into countable parts such that the

following assertions hold for every µ ∈ Λ:

(i) S∗µ = Sµ (where S∗µ := B∗
µ ∩

⋃
λ∈Λ∩µB

∗
λ);

(ii) V (B∗
µ �S∗µ) is connected in G;

(iii) every vertex in S∗µ sends an edge of G to B∗
µ �S∗µ.

Proof. Let us define the graphs B∗
λ and their index set Λ ⊆ σ recursively.

Along with every λ ∈ Λ, we shall select a countable subtree Tλ of TF and put

B∗
λ :=

⋃
Tλ .

At each time of the recursion, the union T of the subtrees selected so far will
be down-closed in TF .

Let Λ′ be the subset of Λ selected so far, and put

T :=
⋃

λ∈Λ′

Tλ .

If T 	= TF , let Bµ be a minimal point of TF � T . As T is down-closed in TF ,
Lemma 4.1 implies that

⋃
�Bµ� meets

⋃
T =

⋃
λ∈Λ′ B∗

λ only in Sµ. (This will
ensure assertion (i) of the lemma.) We select µ for membership in Λ, and will
now construct Tµ.

We first seek to ensure that B∗
µ will satisfy assertion (iii), assuming (i).

Since F is coherent, every vertex s ∈ Sµ sends an edge of G′ to some vertex
v ∈ Bµ � Sµ. If sv is an edge of G, put v =: x(s). If not, then G contains
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uncountably many s–v paths. Only countably many of these meet Sµ − s; let
x(s) be a neighbour of s on one of the other paths. Then

X := {x(s) | s ∈ Sµ }

is a countable subset of
⋃
�Bµ��Sµ, and we put

T 0
µ :=

⌈
{Bλ | λ ∈ Λ(X) }

⌉
� �Bµ�

◦
.

Note that T 0
µ is countable, becauseX is countable and TF has height at most ω1

(so each Bλ has countable height). For every G′-edge xy of the (countable)
graph

( ⋃
T 0

µ

)
� Sµ that is not an edge of G we now similarly select an x–y

path P ⊆ G that avoids Sµ, let H1 denote the union of all these paths, and
put

T 1
µ :=

⌈
T 0

µ ∪{Bλ | λ ∈ Λ(H1) }
⌉

� �Bµ�
◦
.

We now repeat this last extension ω times, at each step adding an x–y path
in G for each of the (countably many) G′-edges of the graph

( ⋃
T i

µ

)
� Sµ

constructed so far, and then adding the down-closure (above Bµ) of all the
parts of F needed to accommodate these paths. Then

Tµ :=
⋃

i∈N

T i
µ

is still countable, and B∗
µ =

⋃
Tµ satisfies assertion (ii) of the lemma. The

other assertions are easily checked.
To wind up the induction step of the construction, note that as Bµ was

minimal in TF �T and each T i
µ was down-closed in �Bµ�, the union of T and Tµ

is again down-closed in TF . And since nested unions of down-closed subtrees
are again down-closed, the tree

⋃
λ∈Λ′ Tλ will be down-closed in TF also at

limit steps of the construction. �

Lemma 4.5. Let F = (Bλ)λ<σ be a coherent simplicial decomposition of a

graph G′, where σ � ω1. Let G be a spanning subgraph of G′ such that

V (Bµ � Sµ) is connected in G and every vertex in Sµ sends an edge of G to

Bµ �Sµ, for all µ < σ. Let H � G be the minor of G obtained by contracting

each of the subgraphs G∩ (Bµ � Sµ) to a vertex xµ. Then H contains a TF -

graph.

Proof. To define a TF -graph H ′ on TF , we need to specify for each Bµ ∈ TF

the parts Bλ below Bµ to which Bµ is to send an edge of H ′. If Λ(Sµ) has
a maximal element λ, then Bµ is a successor of Bλ in TF and we make Bµ

adjacent just to Bλ. If not, choose Λ ⊆ Λ(Sµ) so that {Bλ | λ ∈ Λ } is an
ω-chain cofinal in �Bµ�

◦ (this is possible because {Bλ | λ ∈ Λ(Sµ) } is cofinal
in �Bµ�

◦ and TF has height at most σ � ω1), and make Bµ adjacent to every
Bλ with λ ∈ Λ.

11



This graph H ′ clearly is a TF -graph. Moreover, for every edge BλBµ in H ′

(with λ < µ) there is a vertex s ∈ Sµ with λ(s) = λ and hence s ∈ Bλ � Sλ.
By assumption, s sends an edge of G to Bµ �Sµ. The map Bµ �→ xµ thus is a
subgraph embedding of H ′ in H. �

5. Proof of the main result

The forward implication of Theorem 3.7 has already been established in Corol-
lary 1.2 and Propositions 3.3 and 3.6. For the converse implication, let G be a
connected graph, and put G′ := [G ]ℵ1 . We shall either find an (ℵ0,ℵ1)-graph
or Aronszajn-tree minor in G, or succeed in constructing a normal spanning
tree of G′; by Corollary 1.2, there will then also be a normal spanning tree
in G.

Since Kℵ1 contains an (ℵ0,ℵ1)-graph, we may assume that G has no Kℵ1

minor. Then G′ has no Kℵ1 subgraph: if it did, we could turn it into a
TKℵ1 ⊆ G by selecting branch vertices inductively in ω1 steps and replacing
missing edges from a new branch vertex to the countably many previously se-
lected branch vertices by paths in G avoiding the (countable) part of the TKℵ1

constructed so far. By Lemma 4.3 we may thus apply Theorem 4.2 to G′,
obtaining a coherent simplicial decomposition (Bλ)λ<σ of G′ into countable
parts, with σ � ω1. Let F = (B∗

λ)λ∈Λ be the simplicial decomposition of G′

obtained from this decomposition as in Lemma 4.4.
For every subtree T of TF , we may apply Lemma 4.5 to the simplicial

decomposition of
⋃
T induced by F to obtain a T -graph as a minor of G. We

may therefore assume that no subtree of TF is an Aronszajn tree.
Consider the down-closed subtree

T0 :=
{
B∗ | ∀µ ∈ Λ:

(
min TF < B

∗
µ � B∗ ⇒ |S∗µ| = ℵ0

)}

of TF . Suppose T0 is uncountable. By Proposition 3.5 and Lemma 4.5, and
our assumption that G has no Kℵ1 minor, T0 has no uncountable chain. Since
T0 is not an Aronszajn tree, it thus has an uncountable level Tα

0 . If α is chosen
minimal, then A := V

( ⋃
T<α

0

)
is countable. For each of the uncountably many

B∗
µ ∈ Tα

0 , every vertex in S∗µ sends an edge of G to B∗
µ �S∗µ. By definition of T0,

these S∗µ are infinite, and by assumption every set V (B∗
µ �S∗µ) is connected inG.

Contract each of these connected sets to a vertex bµ, and set

B := { bµ | B∗
µ ∈ Tα

0 }

to obtain an (ℵ0,ℵ1)-minor (A,B) of G.
We may thus assume that T0 is countable. Since F is coherent,

G′
0 :=

⋃
T0

12



is connected and thus has a normal spanning tree T ′
0 by Proposition 3.1.

We now delete T0 from TF and apply the same construction to any of the
maximal subtrees T of TF � T0. (There is one such tree T = �B∗� for each
minimal element B∗ of TF �T0.) Indeed, let

T1 :=
{
B∗ | ∀µ ∈ Λ:

(
min T < B∗

µ � B∗ ⇒ |S∗µ| = ℵ0

)}
.

As for T0, we may assume that T1 is countable, and use Proposition 3.1 to find
a normal spanning tree T ′

1 in

G′
1 :=

⋃
T1 .

In order to make T ′
1 compatible with T ′

0, we apply Proposition 3.1 with the
vertices v1, . . . , vn of S∗µ for B∗

µ := min T , listed in their ascending order in T ′
0.

(S∗µ is finite because B∗
µ is minimal in TF � T0, and v1, . . . , vn form a chain

in T ′
0 because they span a complete graph in G′

0.) If T ′
1 is chosen in this way,

then T ′
0 ∪T ′

1 is a normal spanning tree of G′
0 ∪G′

1.
Repeating this step transfinitely until TF is exhausted, we obtain a nested

sequence of normal spanning trees
⋃

β<α T
′
β of induced subgraphs

⋃
β<αG

′
β

of G′, whose union is clearly a normal spanning tree of G′. �

6. Aronszajn-tree graphs without overloaded minors

Our aim in this section is to show that both types of the minors used in The-
orem 3.7 are actually needed: that there are Aronszajn-tree graphs without
overloaded minors, and vice versa. The latter of these is immediate:

Proposition 6.1. No (ℵ0,ℵ1)-graph has an Aronszajn-tree minor.

Proof. Let H be a T -graph with T an Aronszajn tree, and suppose that H is
a minor of an (ℵ0,ℵ1)-graph (A,B). Only countably many vertices of H have
branch sets that meet A; let α < ω1 be large enough that all these vertices
lie in T<α. The uncountably many vertices of H that are not in T<α then
are singleton elements of B. So they form an independent set in H, and must
hence all lie in Tα. As Aronszajn trees have no uncountable levels, this is a
contradiction. �

We now turn our attention to the main result of this section, the construc-
tion of an Aronszajn-tree graph G that has no overloaded minor. As a first
attempt, one might try to pick an arbitrary Aronszajn tree T and try to choose
the edges for G inductively to avoid creating an overloaded minor. However,
our attempts in this direction all led to overloaded minors arising similarly to
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those in ω1-graphs. The crucial idea here seems to be to find instead some
‘global’ condition on G (such as condition (∗) in the proof below) that prevents
overloaded minors, although this is not necessarily easy to achieve by choosing
the edges inductively (i.e., with reference only to points below the point whose
incident edges are being defined).

An Aronszajn tree is called regular or special if it has a partition into
countably many antichains. The standard construction of an Aronszajn tree
(see [ 10 ]) yields such a ‘special’ tree.

Theorem 6.2. On every special Aronszajn tree T there exists a T -graph that

has no overloaded minor.

Click here
for a direct
construc-
tion of an
Aronszajn
tree T and a
graph on T
that has no
overloaded
minor.

Proof. Let T be a special Aronszajn tree, with an antichain partition (Un)n∈ω

say. We shall construct a T -graph G on T with the following property:

For every t ∈ T there is a finite set St ⊆ �t�◦ such that every

t′ > t has all its neighbours below t inside St.
(∗)

Let us see first why no such graph G can have an (ℵ0,ℵ1)-minor (A,B).
Suppose it does. For each v ∈ (A,B) let tv be the minimal point in T of the
branch set of v; this point is unique by Lemma 3.2 (i), because the branch set is
connected. Since A is countable, there exists an α < ω1 such that ta ∈ T<α for
every a ∈ A. Pick b ∈ B with tb of height � α+ω; such b exists, since T<α+ω

is countable but B is uncountable.
Only finitely many neighbours of b have branch sets meeting Stb

; let
A1, A2, . . . be the branch sets of its other neighbours. None of these connected
sets Ai meets �tb�: if one did, it would contain an edge between �tb� � { tb }
and T � �tb� (where its minimum lies), and any such edge would be incident
with a vertex in Stb

. For the same reason, the only vertex in �tb� that can have
a neighbour in any of the Ai is tb. Since the branch set of b sends an edge to
every Ai and lies in �tb�, this means that tb has a neighbour in every Ai. As
only finitely many lower neighbours of tb have height � α (recall the definition
of a T -graph), infinitely many Ai meet the interval (t, tb), where t is the point
in �tb�

◦ at height α. But every Ai has its minimum outside �t�, so infinitely
many Ai have an edge between a point t′ > t and a point below t. As these
edges are independent, this contradicts (∗).

It remains to show that we can indeed choose the edges of G so as to
satisfy (∗). Given a limit point t ∈ T , let us choose its neighbours t1 < t2 . . .
below t inductively, starting with an arbitrary point t1 < t. Now let n > 1 be
given, and suppose that t1 < . . . < tn−1 < t have been defined. Consider the
least i such that the antichain Ui meets the interval (tn−1, t), and let tn be the
(unique) point in Ui ∩ (tn−1, t).

To show that we have indeed defined a T -graph in this way, we have to
check that t = sup { tn | n ∈ ω }. However this is clear, because the tn come
from antichains Ui with arbitrarily large i: if t 	= t′ := sup { tn | n ∈ ω } and
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t′ ∈ Uj , say, then every tn coming from an antichain Ui with i > j would have
been chosen incorrectly.

To verify (∗), consider any t′ > t. This point t′ has only finitely many
neighbours below t, and the set of these neighbours depends only on the points
in �t�◦ (more precisely, on which of the antichains Ui these points belong to), not
on the choice of t′. We may therefore define St as the set of those neighbours.

�

We have not investigated whether some or all of the Aronszajn-tree graphs
we constructed in the proof of Theorem 6.2 are minor-minimal without a normal
spanning tree (up to minor-equivalence). Moreover, we do not know whether
every connected graph that has neither a normal spanning tree nor an over-
loaded minor contains one of them as a minor—in which case we could replace
the arbitrary Aronszajn-tree graphs in Theorem 3.7 with these particular ones.

7. Normal spanning trees and colouring number

The colouring number of a graph G is the least cardinal κ such that V (G) has a
well-ordering in which each vertex is preceded by fewer than κ of its neighbours
(so that the greedy algorithm run on this ordering will use at most κ colours). If
G has a normal spanning tree then clearly it has colouring number at most ℵ0:
just well-order level by level.

Any (ℵ0,ℵ1)-graph (A,B), on the other hand, has colouring number ℵ1.
Indeed, consider any well-ordering of its vertices, and let us find a vertex that
is preceded by infinitely many of its neighbours. If every b ∈ B is preceded
by only finitely many of its neighbours, we may choose for each b a neighbour
a = a(b) that appears later than b in our well-ordering. As B is uncountable
but A is countable, some a ∈ A has the form a = a(b) for uncountably many b,
so a is a vertex as desired.

Halin [ 9 ] conjectured that a connected graph has a normal spanning tree
if and only if none of its minors has colouring number ℵ1. (Note that while the
property of admitting a normal spanning tree is closed under taking connected
minors, the property of having countable colouring number is not. A complete
graph, for example, has colouring number its own cardinal, while subdividing
every edge once yields a graph of colouring number 3.) Since (ℵ0,ℵ1)-graphs
have colouring number ℵ1, this would indeed have followed from his (incorrect)
conjecture that every connected graph without a normal spanning tree has an
overloaded minor.

However, we can now prove Halin’s colouring number conjecture from our
Theorem 3.7:

Theorem 7.1. A connected graph has a normal spanning tree if and only if

none of its minors has colouring number ℵ1.
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Proof. The forward implication follows at once from the fact that graphs with
normal spanning trees have countable colouring number and every component
of a minor of a graph with a normal spanning tree also has a normal spanning
tree (Cor. 1.2).

By Theorem 3.7 and our observation that (ℵ0,ℵ1)-graphs have colouring
number ℵ1, it thus suffices to prove for the converse implication that every T -
graph G with T an Aronszajn tree has uncountable colouring number. (G triv-
ially has colouring number at most ℵ1, because |T | = ℵ1.) Consider any well-
ordering of T ; we have to find a vertex t ∈ T that has infinitely many neighbours
preceding it in this well-ordering.

If T has a limit whose (infinitely many) lower neighbours in T all precede
it in our well-ordering, there is nothing more to show. So we may assume that
every limit x ∈ T has a lower neighbour y = y(x) such that x precedes y in the
well-ordering. For every non-zero limit ordinal α < ω1 pick a vertex xα ∈ Tα,
let yα := y(xα), and let f(α) denote the unique limit ordinal β < α such that
yα ∈ T β+n for some n ∈ ω. Then f is a (regressive) function from the set L of
non-zero limits in ω1 to L ∪ { 0 }, and by our weak version of Fodor’s lemma
(2.1) there is an ordinal β such that f(α) = β for every α in some uncountable
set U ⊆ L. Then every yα with α ∈ U lies at a level T β+n for some n ∈ ω.
As there are only countably many n and each level T β+n is countable, there is
even one vertex t such that t = yα = y(xα) for uncountably many α. As each
of the corresponding neighbours xα of t precedes t in our well-ordering, t is as
desired. �

As a curious spin-off, Theorem 7.1 implies that every graph of uncount-
able colouring number has a minor of colouring number exactly ℵ1—a fact that
does not appear to be obvious from the definitions. However, this is not a new
result. Confirming and extending a conjecture of Milner, Komjáth [ 13 ] proved
the much stronger result that, for every (finite or infinite) cardinal κ � 2,
every graph of colouring number at least κ has a subgraph of colouring number
exactly κ.

8. Classifying the (ℵ0, ℵ1)-graphs: an open problem

Although we began to look at (ℵ0,ℵ1)-graphs in the course of our attempt to
characterize the graphs admitting a normal spanning tree, their definition is so
natural that the classification of these graphs seems to us to be a problem well
worth studying in its own right. In this section, we present our preliminary
findings: apart from the (ℵ0,ℵ1)-graphs of binary type defined in Section 3
(and a generalization of them defined below), we have found one other type
of (ℵ0,ℵ1)-graph. We shall call those graphs indivisible (ℵ0,ℵ1)-graphs (for
reasons soon to become clear), and we can show that they neither contain nor
are contained in (ℵ0,ℵ1)-graphs of binary type as minors.
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Before we introduce these indivisible (ℵ0,ℵ1)-graphs, let us mention a
generalization of (ℵ0,ℵ1)-graphs of binary type that may play a role in the
classification of the (ℵ0,ℵ1)-graphs. The vertex set T of these graphs is again
any binary tree with ℵ1 tops (see Section 3), and all their edges run between
Tω and T<ω. However, rather than joining every t ∈ Tω to infinitely many
points below it, we just require that its neighbourhood is a set of unbounded
�t�◦-height in T<ω. These graphs are clearly again (ℵ0,ℵ1)-graphs, but they
are considerably more general than those of binary type. (For example, it is
not difficult to construct graphs of this kind that have a Kℵ0,ℵ1 minor.) We
do not know, however, whether every such graph contains an (ℵ0,ℵ1)-graph of
binary type or an indivisible (ℵ0,ℵ1)-graph as a minor.

Let us now introduce our indivisible (ℵ0,ℵ1)-graphs. Our hope in con-
structing them was to find a kind of (ℵ0,ℵ1)-graph that differs essentially from
those of binary type (which can be ‘split in half’, to yield two new (ℵ0,ℵ1)-
graphs of binary type; see below). To make this idea more precise, we need
some more definitions.

Let (A,B) be an (ℵ0,ℵ1)-graph. Call a vertex b ∈ B a strong neighbour
of a set A′ ⊆ A if it has infinitely many neighbours in A′. A set A′ ⊆ A
is big if it has uncountably many strong neighbours. If a big set A′ has two
disjoint big subsets, we say that A′ splits (into these subsets). Note that if
A1, A2 are disjoint big sets, one can find disjoint subsets B1, B2 of B such that
(A1, B1) and (A2, B2) are both (ℵ0,ℵ1)-graphs. We call (A,B) divisible if A
splits; otherwise (A,B) is indivisible.

The following proposition shows that binary and indivisible (ℵ0,ℵ1)-graphs
cannot be minors of each other:

Proposition 8.1. Let (A,B) � (A′, B′) be two (ℵ0,ℵ1)-graphs.

(i) If (A,B) is of binary type then (A′, B′) is divisible.

(ii) If (A,B) is indivisible then (A′, B′) is indivisible too (and hence not of

binary type).

Proof. (i) Let T be a binary tree with ℵ1 tops such that (A,B) is a T -graph
with A = T<ω. We show that A′ splits.

Let X ⊆ B′ be the (uncountable) set of those vertices in B′ whose branch
set avoids T<ω. The branch sets of vertices in X are singleton subsets of Tω,
and we shall consider X as a subset of Tω. Let R be the set of t ∈ T<ω with
�t� ∩X uncountable. Note that R has at least one point at each level of T<ω.

If R is a branch of T<ω, we delete all the points from X that lie above any
t /∈ R. These are only countably many points, and the remaining uncountably
many points of X each lie above every point in R. But in Tω there is only one
such point, a contradiction.

So R contains two incomparable points t1, t2. Delete the finitely many
a ∈ A′ whose branch set meets �t1�∪ �t2�. For each i = 1, 2, all the remaining
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neighbours of B′
i := �ti� ∩X in A′ have their branch sets in �ti�. These sets

N(B′
1) and N(B′

2) are big disjoint subsets of A′, as desired.
(ii) We assume that A′ splits into big sets A′

1 and A′
2, and show that A

splits, too. For each i = 1, 2, uncountably many of the strong neighbours of A′
i

in B′ have branch sets avoiding A, so these branch sets are singleton elements
of B. Each of them sends infinitely many edges of (A,B) to

Ai := A∩
⋃

a∈A′
i

Xa ,

where Xa denotes the branch set of a. Hence A1 and A2 are big in (A,B), and
A splits into these two sets. �

Having thus shown why indivisible (ℵ0,ℵ1)-graphs are interesting, let us
not forget to prove their existence:

Proposition 8.2. If CH holds, then there exists an indivisible (ℵ0,ℵ1)-graph.

Proof. Let A and B be sets of cardinality ℵ0 and ℵ1, respectively. Our
task is to define edges between A and B so that (A,B) becomes an indivisible
(ℵ0,ℵ1)-graph.

Let U be a non-principal ultrafilter on A. Let (Aα)α<ω1 be a well-ordering
of the subsets of A that are not in U , and let (bα)α<ω1 be a well-ordering of B.
Our aim is to choose the edges of (A,B) so that

For all α < β < ω1, the vertex bβ is adjacent to only finitely

many vertices in Aα.
(∗)

Then each of the sets Aα will have only countably many strong neighbours,
so every big subset of A will be in U . Since U does not contain two disjoint
sets, A will not split.

So let us choose the edges at bβ so as to satisfy (∗). Enumerate
{Aα | α < β } as A1, A2, . . ., choose distinct vertices ai ∈ A� (A1 ∪ . . .∪Ai)
for all i ∈ N (using that U is non-principal), and make bβ adjacent to these
vertices a1, a2, . . . . �

We remark that CH is indeed needed for Proposition 8.2 to be true: if CH
fails and Martin’s Axiom MA(ω1) holds, then there is no indivisible (ℵ0,ℵ1)-
graph (J.M. Brochet, personal communication).

Despite the seemingly far-fetched construction in the proof of Proposi-
tion 8.2, the indivisible (ℵ0,ℵ1)-graphs constructed there are quite canonical
in that every indivisible (ℵ0,ℵ1)-graph (A,B) has a subgraph of that kind.
Indeed, it is easily checked that of any pair of complementary subsets of A
exactly one is big and these big sets form a non-principal ultrafilter on A.
Thus if (Aα)α<ω1 is a well-ordering of the subsets of A that are not big, we
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may inductively for all β < ω1 choose bβ ∈ B from outside the (countably
many countable) sets of strong neighbours of the Aα with α < β. These bβ
then satisfy condition (∗) in the proof of Proposition 8.2.

We do not know whether indivisible (ℵ0,ℵ1)-graphs giving rise to the same
ultrafilter in this way are necessarily minors of each other. Moreover, we do
not know whether the two types of (ℵ0,ℵ1)-graph we have seen in this section
are essentially all:

Problem. Does every (ℵ0,ℵ1)-graph have an (ℵ0,ℵ1)-graph minor that is ei-

ther indivisible or of binary type?

We suspect the answer to this question to be ‘no’, but have been unable to
construct a counterexample.

9. A new antichain of infinite graphs

By the Robertson-Seymour Graph Minor Theorem (see [ 4 ]), there is no infinite
set of finite graphs none of which is a minor of any other. Thomas [ 15 ] con-
structed an infinite sequence of uncountable graphs such that no graph in this
sequence is a minor of a later one (hence showing that the uncountable graphs
are not well-quasi-ordered by the minor relation), i.e. a sequence containing ei-
ther an infinite minor-antichain or an infinite descending chain. (Incidentally,
Thomas’s graphs are all binary trees with tops.) Komjáth [ 12 ] constructed a
minor-antichain of size 2κ of graphs of order κ, for every uncountable ordinal κ.

The purpose of this section is to observe that the indivisible (ℵ0,ℵ1)-graphs
discussed in Section 8 form minor-antichains of size 22ℵ0 . So we reobtain the
first case of Komjáth’s result, yet with a more transparent construction.

Let (A,B) � (A′, B′) be indivisible (ℵ0,ℵ1)-graphs. Let U and U ′ be the
corresponding ultrafilters of big subsets of A and A′, respectively. For every
a′ ∈ A′, let Aa′ be the intersection of the branch set of a′ with A. It is now
easy to check that, for every A′′ ⊆ A′, the set

⋃

a′∈A′′

Aa′ ⊆ A

is big in (A,B) if and only if A′′ is big in (A′, B′). But this means that
U � U ′ in the Rudin-Keisler pre-order on the ultrafilters on a countable set
(see [ 2 ]). But for any set of fewer than 22ℵ0 non-principal such ultrafilters
there is another that is incomparable with them all in this pre-order, so we
can inductively find an antichain of size 22ℵ0 . By the construction of Propo-
sition 8.2 these ultrafilters correspond to indivisible (ℵ0,ℵ1)-graphs, which are
then minor-incomparable by the observation above.
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