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We prove the following recent conjecture of Halin. Let Γ0 be the class
of all graphs, and for every ordinal µ > 0 let Γµ be the class of all
graphs containing infinitely many disjoint connected graphs from Γλ,
for every λ < µ. Then a graph lies in all these classes Γµ if and only if
it contains a subdivision of the infinite binary tree.

1. Halin’s conjecture

In his recent collection [ 2 ] of open problems about infinite graphs, Halin defines
the following hierarchy of graphs. He defines Γ0 to be the class of all graphs
(finite or infinite), and for each ordinal µ > 0 he defines Γµ as the class of all
graphs containing, for each λ < µ, infinitely many disjoint connected1 graphs
from Γλ. Thus, Γ1 is the class of infinite graphs, Γ2 is the class of all graphs
containing infinitely many disjoint connected infinite graphs (or equivalently,
either infinitely many disjoint rays or infinitely many disjoint infinite stars),
and so on.

Halin then asks which graphs, if any, lie in every Γµ. He notes that Γλ ⊇ Γµ

whenever λ < µ, and that any graph with a minor in Γµ is itself in Γµ (induc-
tion on µ). We might add the observation that the sequence of Γµs does not
become stationary, i.e. that for every ordinal µ there is a (connected) graph in
Γµ � Γµ+1; this, too, follows easily by induction on µ.

Intuitively, it may be natural to consider not the graph properties Γµ them-
selves but their complements Γµ. As observed above, these classes are closed
under taking minors, and they form an increasing sequence Γ0 ⊆ Γ1 ⊆ . . . .
The question then arises whether every graph is captured by this sequence, and
if not then which graphs are.

Following Halin, let us define as the order o(G) of a graph G the least
ordinal µ (if one exists) such that G /∈ Γµ. Note that if G has an order and H

is a minor of G, then H too has an order and o(H) � o(G).
Which graphs, then, have an order? At first glance, this may look like a

difficult question. Indeed, it even seems unclear whether or not every graph has
an order. As Halin observes, however, there is a simple sufficent condition for
not having an order: if a connected graph G contains infinitely many disjoint
copies of itself, then induction on µ shows at once that G ∈ Γµ for all ordinals µ.

1 The connectedness requirement is essential: without it, every Γµ with µ > 0 would just
be the class of infinite graphs.
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A simple example of such a graph is the infinite binary tree T2. Halin con-
jectured that, up to taking minors (even topological minors), it is the unique
canonical example:

Conjecture. (Halin [ 2 ])
A graph has an order if and only if it does not contain a subdivision of the

infinite binary tree T2.

The conjecture implies in particular that our simple sufficient condition
for not having an order is also necessary (after closuring it ‘upwards’ under
minors):

Corollary. A graph has no order if and only if it has a connected minor that

contains infinitely many disjoint copies of itself.

The purpose of this note is to prove Halin’s conjecture.

2. Terminology and prerequisites

Any notation not explained below is taken from [ 1 ]. Minors of infinite graphs
are defined just as for finite graphs; note that the branch sets (the connected
sets of vertices to be contracted) may now be infinite.

All trees we consider are rooted trees. If T is a tree with root r, we write
x �T y for vertices x, y ∈ T if x ∈ rTy, i.e. if x lies on the path in T from r to y.
This is a partial ordering on V (T ) with r as its least element, in which every
element other than r has a unique lower (= lesser) neighbour. The maximal
elements in this partial order will be called the leaves of T . (Thus, r is a leaf
if and only if T = { r }; any other vertex of T is a leaf if and only if its degree
is 1.) When κ is a cardinal, we denote by Tκ the tree in which every vertex
has exactly κ upper (= greater) neighbours; the binary tree, for example, is
denoted by T2.

Note that if T ′ is a subtree of T then T ′ has a unique minimal vertex r′,
because incomparable (minimal) vertices are separated by their infimum. Un-
less otherwise stated, we take r′ to be the root of T ′; then its tree order �T ′

coincides with the order induced on T ′ by �T . Given a vertex t ∈ T , we denote
by T t the subtree of T with vertex set { t′ | t �T t′ } (and root t).

A ray is a one-way infinite path. A ray t0t1 . . . in a tree T is free in T if
ti+1 is the unique upper neighbour of ti in T , for all i = 0, 1, . . . .

We assume that the reader is familiar with the basic facts about tree-
decompositions, e.g. as explained in [ 1, Ch. 12 ]. In particular, we shall use
freely the basic separation lemma for tree-decompositions, [ 1, Lemma 12.3.1 ].
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3. Proof of Halin’s conjecture

In this section we prove that every graph not containing a subdivision of T2

has an order. Clearly, a graph G contains a subdivision of T2 if and only if it
has a T2 minor (which we write as T2 � G). The graphs without a T2 minor
have been characterized by Seymour and Thomas, as follows:

Theorem 1. (Seymour & Thomas [ 3 ])
A graph has no T2 minor if and only if it has a tree-decomposition (T, (Vt)t∈T )
into finite parts such that T2 �� T and for every ray t0t1 . . . ⊆ T there is an

integer k such that |Vi ∩Vi+1| < k for infinitely many i.

(In [ 3 ], this result is stated for Tℵ0 rather than for T2. However, since
T2 � Tℵ0 � T2, the two versions are equivalent.)

Theorem 1 explains the structure of the graphs G �� T2 in terms of the
structure of the trees T �� T2. This is a non-trivial step, for the trees without
a T2 minor are indeed easier to handle. For example, it is well known and easy
to prove that a tree has no T2 minor if and only if it can be pruned down to
the empty graph by recursively deleting leaves or free rays. (We shall do this
more formally in the course of the proof of Lemma 2.)

We shall need the following constructive analogue of this pruning lemma.
Let T0 denote the 2-element set containing the one-vertex tree and the ray. For
every ordinal µ > 0, let Tµ denote the set of all trees T (with root r, say) such
that, for either R := { r } or R some ray in T starting at r, each component of
T −R lies in some Tλ with λ < µ. Note that Tλ ⊆ Tµ whenever λ < µ.

Lemma 2. Let T be a tree. There exists an ordinal µ with T ∈ Tµ if and only

if T2 �� T .

Proof. For the forward implication, we show by induction on µ that no tree
in any Tµ contains a subdivision of T2. This is certainly true for µ = 0. Now
let µ > 0 and T ∈ Tµ be given, with root r say, and let R ⊆ T be as in the
definition of Tµ. (Thus, either R = { r } or R is a ray in T starting at r.) Since
deleting a ray from a subdivided T2 leaves infinitely many components each
containing another subdivided T2, and no tree in any Tλ with λ < µ contains a
subdivided T2 (by the induction hypothesis), we also have T �� T2 as required.

For the backward implication, let T �� T2 be given, and let r be its root.
As mentioned earlier, T can be pruned down to ∅ by deleting leaves or free
rays recursively. Indeed, let T0 := T , and for every ordinal µ > 0 let Tµ be
obtained from the tree T−

µ :=
⋂

λ<µ Tλ by deleting a leaf or a free ray; if T−
µ

has neither a leaf nor a free ray, we put Tµ := T−
µ . Moreover, we label every

vertex t ∈ T−
µ deleted in the definition of Tµ with the ordinal µ =: µt. Now

let µ∗ be minimal such that Tµ∗ = T−
µ∗ , and put Tµ∗ =: T ∗. Note that since

T ∗ has neither leaves nor free rays, any vertex of T ∗ lies below a vertex with
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two distinct upper neighbours, in which case we may construct a subdivided
T2 ⊆ T ∗ inductively. Thus T ∗ = ∅, and every vertex t of T now has an ordinal
label µt < µ∗.

Our aim is to show that T ∈ Tµr
. To this end, we prove the following

assertion for every ordinal µ, by induction on µ:

For every t ∈ T with µt = µ, all the vertices t′ ∈ T t have labels

µt′ � µt, and T t ∈ Tµt
.

(∗)

For t = r this yields the desired result.
Let µ and a vertex t ∈ T with µt = µ be given. Since no vertex of T is

labelled zero, we have µ > 0. Let R be the subgraph of T induced by all the
vertices labelled µ. Then either R = { t } and t is a leaf in T−

µ , or R is a free
ray in T−

µ containing t; in the latter case, R has a tail in T t. In either case
T t ∩ T−

µ ⊆ R, so any vertex in T t − R has a label λ < µ. This proves the
first assertion in (∗), and moreover the root t′ of any component T ′ of T t −R

has a label λ < µ. Since R∩T t is closed downwards in T t, the components of
T t−R are closed upwards. Thus T ′ = T t′ , and the induction hypothesis for (∗)
implies that T ′ ∈ Tλ. Hence T t ∈ Tµ, by the definition of Tµ applied with { t }
or the ray tR. This completes the proof of (∗), and hence of the lemma. �

For our proof of Halin’s conjecture, we want to show that for every graph
G �� T2 there is an ordinal τ such that G /∈ Γτ . By Theorem 1, G has a certain
tree-decomposition (T, (Vt)t∈T ) with T �� T2, and Lemma 2 tells us that T ∈ Tµ

for some ordinal µ. We now complete the proof of the conjecture by showing
that τ exists, even as a function of µ (i.e. independently of G).

Given an ordinal µ, let us write µ =: µ′ + n with µ′ a limit ordinal and
n < ω, and define τ(µ) := µ′ + 2n + 2.

Lemma 3. Let G �� T2 be a graph with a tree-decomposition (T, (Vt)t∈T ) as

in Theorem 1, and let µ be an ordinal such that T ∈ Tµ. Then G /∈ Γτ(µ).

Proof. We apply induction on µ. For µ = 0, the tree T is either trivial or a
ray. If |T | = 1 then G is finite and hence not even in Γ1. So assume that T

is a ray, T = t0t1 . . . say. Since every Vt is finite, any infinite subgraph H of
G meets Vti for infinitely many i. If H is connected, it therefore even meets
every Vti

with large enough i. Now if k is the integer associated with the ray
t0t1 . . . in Theorem 1, this can happen for no more than k disjoint connected
graphs H. Hence G /∈ Γ2, as required.

Suppose now that µ > 0. Let r be the root of T . Since T ∈ Tµ there is
an R ⊆ T , where either R = { r } or R is a ray starting at r, such that every
component T ′ of T −R is a tree in Tλ for some λ < µ.

Suppose, for a contradiction, that G ∈ Γµ′+2n+2, and let H1, H2, . . . be
infinitely many disjoint connected subgraphs of G in Γµ′+2n+1. As in the case
of µ = 0, only finitely many of the Hi meet Vt for infinitely many t ∈ R. Let H
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be one of the other Hi, and let U be the (finite) union of those Vt with t ∈ R

that meet H. Since H ∈ Γµ′+2n+1, there are infinitely many disjoint connected
graphs H ′

1, H
′
2, . . . ⊆ H in Γµ′+2n. As U meets only finitely many of these, one

of them, H ′ say, avoids U and hence lies in a subgraph G′ of G such that

V (G′) =
⋃

t∈T ′

Vt

for some component T ′ of T − R. Then T ′ ∈ Tλ for some λ < µ, and
(T ′, (Vt ∩ V (H))t∈T ′) is a tree-decomposition of H ′ as in Theorem 1. Our
induction hypothesis therefore implies that H ′ /∈ Γτ(λ). Since λ < µ = µ′ + n,
however, clearly

τ(λ) � µ′ + 2n .

This contradicts the fact that H ′ ∈ Γµ′+2n by definition of H ′. �
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