
3 Connectivity

Our definition of k-connectedness, given in Chapter 1.4, is somewhat un-
intuitive. It does not tell us much about ‘connections’ in a k-connected
graph: all it says is that we need at least k vertices to disconnect it.
The following definition – which, incidentally, implies the one above –
might have been more descriptive: ‘a graph is k-connected if any two of
its vertices can be joined by k independent paths’.

It is one of the classic results of graph theory that these two defini-
tions are in fact equivalent, are dual aspects of the same property. We
shall study this theorem of Menger (1927) in some depth in Section 3.3.

In Sections 3.1 and 3.2, we investigate the structure of the 2-con-
nected and the 3-connected graphs. For these small values of k it is still
possible to give a simple general description of how these graphs can be
constructed.

In Sections 3.4 and 3.5 we look at other concepts of connectedness,
more recent than the standard one but no less important: the number of
H-paths in G for a subgraph H of G, and the existence of disjoint paths
in G linking up specified pairs of vertices.

3.1 2-Connected graphs and subgraphs

The simplest 2-connected graphs are the cycles. All the others can be
constructed inductively from a cycle by adding paths:

Proposition 3.1.1. A graph is 2-connected if and only if it can be [4.2.6]

constructed from a cycle by successively adding H-paths to graphs H
already constructed (Fig. 3.1.1).

Proof. Clearly, every graph constructed as described is 2-connected.
Conversely, let a 2-connected graph G be given. Then G contains a
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Fig. 3.1.1. The construction of 2-connected graphs

cycle, and hence has a maximal subgraph H constructible as above.H

Since any edge xy 2 E(G)rE(H) with x, y 2 H would define an H-
path, H is an induced subgraph of G. Thus if H 6= G, then by the
connectedness of G there is an edge vw with v 2 G�H and w 2 H. As
G is 2-connected, G�w contains a v–H path P . Then wvP is an H-path
in G, and H [wvP is a constructible subgraph of G larger than H. This
contradicts the maximality of H. ⇤

Just as an arbitrary graph can be decomposed into its maximal con-
nected subgraphs, or components, we can try to decompose a connected
graph G into its maximal 2-connected subgraphs. These may not quite
be disjoint, and they may not quite cover all of G. However, it is easy
to weaken the notion of ‘maximal 2-connected subgraph’ slightly so that
the subgraphs fitting the weaker notion do cover G and are still nearly
disjoint. These ‘blocks’ fit together nicely in a tree-like fashion, which
captures precisely the overall structure of G in terms of those blocks.

Formally, a block is a maximal connected subgraph without a cutver-block

tex.1 Thus, every block is either a maximal 2-connected subgraph, or
a bridge (with its ends), or an isolated vertex. Conversely, every such
subgraph is a block. By their maximality, di↵erent blocks of G overlap
in at most one vertex, which is then a cutvertex of G. Hence every edge
of G lies in a unique block, and G is the union of its blocks.

Cycles and bonds are confined to a single block:

Lemma 3.1.2. Let G be any graph.[4.6]

(i) The cycles in G are precisely the cycles in its blocks.

(ii) The bonds of G are precisely the bonds of its blocks.

Proof. (i) Any cycle in G is a connected subgraph without a cutvertex,
and hence lies in some maximal such subgraph. By definition, this is a
block of G.

1 . . . of the subgraph; it may contain cutvertices of G.
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(ii) The proof follows easily by repeated application of the following
observation. Consider any cut in G. Let xy be one of its edges, and B
the block containing it. By the maximality of B in the definition of a
block, G contains no B-path. Hence every x–y path in G lies in B, so
those edges of our cut that lie in B separate x from y even in G. ⇤

As every edge lies in a unique block, belonging to a common block
is an equivalence relation on the edge set of a graph. This equivalence
can be expressed in two other interesting ways:

Lemma 3.1.3. The following statements are equivalent for distinct [4.6]

edges e, f of a graph G:

(i) The edges e, f belong to a common block of G.

(ii) The edges e, f belong to a common cycle in G.

(iii) The edges e, f belong to a common bond of G.

Proof. (i)!(ii) It clearly su�ces to prove that in a 2-connected graph
any two 2-sets of vertices can be joined by two disjoint paths. This
follows easily by induction based on Proposition 3.1.1.2

(ii)!(iii) Deleting e and f from a cycle C 3 e, f leaves a partition of
V (C) into two connected sets. Extend this to a partitition into two con-
nected sets of the vertex set of the component of G containing C. (How?)
The edges between these sets form a bond of G containing e and f .

(iii)!(i) By Lemma 3.1.2 (ii), two edges can lie in a common bond
only if they belong to the same block. ⇤

Our last lemma on blocks shows how they fit together to form the
coarse structure of G. Let A denote the set of cutvertices of G, and B
the set of its blocks. The bipartite graph on A[B formed by the edges
aB with a 2 B is the block graph of G, see Figure 3.1.2. block

graph

a0

a

a0

a

B0
B0

B B

Fig. 3.1.2. A graph and its block graph

2 See Exercise 5. Note that this is the case k = 2 of Menger’s theorem (3.3.1).
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Lemma 3.1.4. The block graph of a connected graph is a tree. ⇤

Lemma 3.1.4 generalizes to graphs of higher connectivity: every
(k � 1)-connected graph has a canonical tree-like decomposition that
separates all its ‘k-blocks’. See Theorem 12.3.7 for the precise statement,
and Exercise 17 in Chapter 12 for the case of k = 3.

3.2 The structure of 3-connected graphs

In this section we describe how every 3-connected graph can be ob-
tained from a K4 by a succession of elementary operations preserving
3-connectedness. We then prove a theorem of Tutte about the algebraic
structure of the cycle space of 3-connected graphs; this will play an
important role again in Chapter 4.5.

Proposition 3.1.1 describes how the 2-connected graphs can be con-
structed inductively, starting from a cycle. All the graphs constructed
in the process were themselves 2-connected, so the graphs construct-
ible in this way are precisely the 2-connected graphs. We shall now do
something similar for 3-connected graphs. We shall prove that every
3-connected graph G 6= K4 can be turned into a smaller 3-connected
graph in two ways: by deleting an edge (and suppressing any vertices of
degree 2 that may arise), and by contracting an edge. Inverting these
processes will give us two independent ways of building all 3-connected
graphs from a K4.

Given an edge e in a graph G, we write G .� e for the multigraph ob-G .
� e

tained from G�e by suppressing any end of e that has degree 2 in G�e.3

Lemma 3.2.1. Let e be an edge in a graph G. If G .� e is 3-connected,

then so is G.

Proof. Thinking of G as obtained from G .� e by adding e, let us call(1.4.2)

the vertices of G .� e the old vertices of G, and any other vertex of G
(which will be an end of e) a new vertex. Remembering that G .� e, being
3-connected, has no parallel edges, it is easy to see that, in G, no two
vertices x1, x2 can separate a new vertex from all the old vertices. So it
su�ces to show that {x1, x2} cannot separate two old vertices. If they
did, then those old vertices would be separated in G .� e by x0

1
and x0

2
,

where either x0

i = xi or, if xi is new, x0

i is the edge of G .� e subdivided
by xi. By Proposition 1.4.2, this contradicts our assumption that G .� e
is 3-connected. ⇤

3 See Chapter 1.10 for the formal definition of suppressing vertices in a multi-
graph. Recall also that 3-connected multigraphs cannot have multiple edges. Since
parallel edges arising when a vertex is suppressed are not deleted, our assumption in
Lemma 3.2.1 that the multigraph G .

� e is 3-connected implies that no parallel edges
arise when it is formed from the graph G. Thus G .

� e, too, is in fact a graph.
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Lemma 3.2.2. Every 3-connected graph G 6= K4
has an edge e such

that G .� e is another 3-connected graph.

Proof. We start by showing that G contains a TK4. Let C be a shortest
cycle and P = u . . . v a C-path in G. Then P̊ 6= ; since C is induced, so
G� {u, v} contains a C–P path Q. Now C [P [Q = TK4.

Thus, TK4 ✓ G 6= K4; choose H = TJ ✓ G with some 3-connected
J 6= G so that kHk is maximum. We shall find an edge e in G such that H

G .� e = J .
As G is 3-connected but proper subdivisions of J are not, we have

H 6= G. Let P = u . . . v be an H-path in G, chosen if possible so that

P = u . . . vu and v do not lie on the same (subdivided) edge of J . (⇤)

If P violates (⇤) then uv 2 J = H. Indeed, since G is 3-connected, the
vertices subdividing an edge xy of J could be joined by an H-path P 0

in G � {x, y} to a vertex not on that subdivided edge; as P 0 would
satisfy (⇤), this would contradict our choice of P . So H = J . Our
assumption that P violates (⇤) now means that uv 2 J . Since G has
no parallel u–v edges, P has an inner vertex. Now (H � uv) [ P is
another TJ with more edges than H, contradicting our choice of H.

Therefore P satisfies (⇤). Suppressing any vertices of degree 2 in
H [ P we obtain a multigraph J 0 such that J 0 .� e = J , where e is the
edge corresponding to P . By (⇤) the edge e is not parallel to an edge
of J , so J 0, like J , is in fact a graph. By Lemma 3.2.1, J 0 is 3-connected.
As TJ 0 = H [P ✓ G has more edges than H, our choice of J with kHk
maximum implies J 0 = G. Thus, G .� e = J as claimed. ⇤

Theorem 3.2.3. (Tutte 1966)
A graphG is 3-connected if and only if there exists a sequenceG0, . . . , Gn

of graphs such that

(i) G0 = K4
and Gn = G;

(ii) Gi+1 has an edge e such that Gi = Gi+1
.� e, for every i < n.

Moreover, the graphs in any such sequence are all 3-connected.

Proof. If G is 3-connected, use Lemma 3.2.2 to find Gn, . . . , G0 in turn.
Conversely, if G0, . . . , Gn is any sequence of graphs satisfying (i) and (ii),
then all these graphs, and in particular G = Gn, are 3-connected by
Lemma 3.2.1. ⇤

Theorem 3.2.3 enables us to construct, recursively, the entire class
of 3-connected graphs. Starting from K4, we simply add to every graph
already constructed a new edge in every way compatible with (ii): be-
tween two already existing vertices, between newly inserted subdividing
vertices (not on the same edge), or between one old vertex and one new
subdividing vertex.
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We now turn to our second method of reducing 3-connected graphs
to K4, by contracting edges. In what follows we only consider graphs,
not multigraphs.

Lemma 3.2.4. Every 3-connected graph G 6= K4
has an edge e such[4.4.3]

that G/e is again 3-connected.

Proof. Suppose there is no such edge e. Then, for every edge xy 2 G,xy

the graph G/xy contains a separator S of at most 2 vertices. Since
(G) > 3, the contracted vertex vxy of G/xy (see Chapter 1.7) lies in S
and |S| = 2, i.e. G has a vertex z /2 {x, y} such that {vxy, z} sepa-z

rates G/xy. Then any two vertices separated by {vxy, z} in G/xy are
separated inG by T := {x, y, z}. Since no proper subset of T separatesG,
every vertex in T has a neighbour in every component C of G�T .C

We choose the edge xy, the vertex z, and the component C so that
|C| is as small as possible, and pick a neighbour v of z in C (Fig. 3.2.1).v

By assumption, G/zv is again not 3-connected, so again there is a vertex
w such that {z, v, w} separates G, and as before every vertex in {z, v, w}w

has a neighbour in every component of G� {z, v, w}.

x
x

y
yz

T C

v

z

v
w

D

D

Fig. 3.2.1. Separating vertices in the proof of Lemma 3.2.4

As x and y are adjacent, G�{z, v, w} has a component D such that
D\ {x, y} = ;. Then every neighbour of v in D lies in C (since v 2 C),
so D\C 6= ; and hence D ( C by the choice of D. This contradicts the
choice of xy, z and C. ⇤

Theorem 3.2.5. (Tutte 1961)
A graphG is 3-connected if and only if there exists a sequenceG0, . . . , Gn

of graphs with the following two properties:

(i) G0 = K4
and Gn = G;

(ii) Gi+1 has an edge xy such that d(x), d(y) > 3 and Gi = Gi+1/xy,
for every i < n.

Moreover, the graphs in any such sequence are all 3-connected.
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Proof. If G is 3-connected, then by Lemma 3.2.4 there is a sequence
Gn, . . . , G0 of 3-connected graphs satisfying (i) and (ii).

Conversely, and to show the final statement of the theorem, let
G0, . . . , Gn be a sequence of graphs satisfying (i) and (ii); we show that
if Gi is 3-connected then so is Gi+1, for every i < n. Suppose not, let
S be a separator of at most 2 vertices in Gi+1, and let C1, C2 be two
components of Gi+1 �S. As x and y are adjacent, we may assume that
{x, y}\V (C1) = ; (Fig. 3.2.2). Then C2 contains neither both vertices
x, y nor a vertex v /2 {x, y}: otherwise vxy or v would be separated
from C1 in Gi by at most two vertices, a contradiction. But now C2

contains only one vertex: either x or y. This contradicts our assumption
of d(x), d(y) > 3. ⇤

C1 C2S

x
y

Fig. 3.2.2. The position of xy 2 Gi+1 in the proof of Theorem 3.2.5

Like Theorem 3.2.3, Theorem 3.2.5 enables us to construct all
3-connected graphs inductively from K4, by simple local alterations
and without ever leaving the class of 3-connected graphs. Given a 3-
connected graph already constructed, pick any vertex v and split it into
two adjacent vertices v0, v00; then join these to all the former neighbours
of v, each to at least two. This is the essential core of a result of Tutte
known as his wheel theorem.4

For larger integers k it is no longer true that in any k-connected
graph we can contract an edge so as to obtain another k-connected
graph. However, for every k there is a constant nk such that in every
k-connected graph we can either delete or contract an edge so that the
resulting graph has no separation of order less than k in which both sides
have at least nk vertices. See the notes.

Theorem 3.2.6. (Tutte 1963) [4.5.2]

The cycle space of every 3-connected graph G is generated by its non-

separating induced cycles.

Proof. Given a cycle C in G, let b(C) denote the largest order of a b

component of G�C if there is one, and put b(C) := 0 if V (C) = V (G).
Suppose the theorem is false, and consider a cycle C with b(C) maximum C

that is not generated by non-separating induced cycles.

4 Graphs of the form Cn
⇤K1 are called wheels; thus, K4 is the smallest wheel. wheel
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If V (C) = V (G), then C is the sum of two cycles C1, C2 ✓ C + e,
where e a chord. As b(C1), b(C2) > 0 = b(C), our choice of C implies
that C1 and C2 are generated by non-separating induced cycles. But
then so is their sum C, a contradiction.

Assume now that G�C 6= ;, and let B be a component of G�CB

of order |B| = b(C). Suppose first that

G�B contains a C-path P = u . . . v such that each of the

two u–v paths on C has an inner vertex in N(B).
(⇤)

P

vC

u

B

C1

C2

Fig. 3.2.3. C1 and C2 are drawn in broken lines

Then C is the sum of the two cycles C1, C2 ✓ C[P containing P , and for
each of these Ci there is a component of G�Ci that contains B properly
(Fig. 3.2.3). Hence b(Ci) > |B| = b(C), with a contradiction as earlier.

Suppose finally that (⇤) fails. Then every vertex of C sends an edge
to B. (Indeed, if not then C contains an N(B) - path Q = x . . . y with
Q̊ 6= ;. As G is 3-connected, C�Q 6= ;, and there is a Q̊ – (C�Q) path
inG�{x, y}. Such a path P would satisfy (⇤).) Since V (C) =N(B), any
chord of C would also be a path P as in (⇤), so C has no chord. Hence
unless C itself is induced and non-separating, G�C has a component
B0 6= B. Let P = u . . . v be a C-path through B0, and let Q be a C–P

P

B0

Q

v
C

u

B

C1

C2

C3

Fig. 3.2.4. Three cycles C1, C2, C3 summing to C, and each
missing a vertex of C that sends an edge to B
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path in G� {u, v}. Note that Q too avoids B. Now C [P [Q contains
three cycles C1, C2, C3 summing to C and each missing a vertex of C
(Fig. 3.2.4). As every vertex of C sends an edge to B, we therefore have
b(Ci) > |B| = b(C) for every i, with the familiar contradiction. ⇤

3.3 Menger’s theorem

The following theorem is one of the cornerstones of graph theory. It is
another example of the particularly attractive type of theorem disussed
in the notes for Chapter 2, a discussion which equally applies here:

Theorem 3.3.1. (Menger 1927)
Let G = (V,E) be a graph and A,B ✓ V . Then the minimum number

[3.5.2]
[8.2.5]
[8.4.3]

[12.4.3]
[12.6.3]

of vertices separating A from B in G is equal to the maximum number

of disjoint A–B paths in G.

We o↵er three proofs. WheneverG,A,B are given as in the theorem,
we denote by k (G,A,B) the minimum number of vertices separating A
from B in G. Clearly, G cannot contain more than k = k (G,A,B) k

disjoint A–B paths; our task will be to show that k such paths exist.

First proof. We apply induction on kGk. If G has no edge, then
|A \ B| = k and we have k trivial A–B paths. So we assume that
G has an edge e = xy. If G has no k disjoint A–B paths, then neither
does G/e; here, we count the contracted vertex ve as an element of A
(resp. B) in G/e if in G at least one of x, y lies in A (resp. B). By the
induction hypothesis, G/e contains an A–B separator Y of fewer than
k vertices. Among these must be the vertex ve, since otherwise Y ✓ V
would be an A–B separator in G. Then X := (Y r {ve})[ {x, y} is an
A–B separator in G of exactly k vertices.

We now consider the graph G � e. Since x, y 2 X, every A–X
separator in G� e is also an A–B separator in G and hence contains at
least k vertices. So by induction there are k disjoint A–X paths in G�e,
and similarly there are k disjoint X–B paths in G� e. As X separates
A from B, these two path systems do not meet outside X, and can thus
be combined to k disjoint A–B paths. ⇤

Let P be a set of disjoint A–B paths, and let Q be another such set.
We say that Q exceeds P if the set of vertices in A that lie on a path in exceeds

P is a proper subset of the set of vertices in A that lie on a path in Q,
and likewise for B. Then, in particular, |Q| > |P|+1.

Second proof. We prove the following stronger statement:
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If P is any set of fewer than k = k (G,A,B) disjoint A–B
paths in G, then G contains a set of |P|+1 disjoint A–B
paths exceeding P.

Keeping G and A fixed, we let B vary and apply induction on |
S
P|. Let

R be an A–B path that avoids the (fewer than k) vertices of B that lie
on a path in P. If R avoids all the paths in P, then P [ {R} exceeds P,
as desired. (This will happen when P = ;, so the induction starts.) If
not, let x be the last vertex of R that lies on some P 2 P (Fig. 3.3.1).

A B

R

P

x Px

Rx

P

Fig. 3.3.1. Paths in the second proof of Menger’s theorem

Put

B0 := B [V (xP [xR) and P 0 :=
�
P r {P}

�
[ {Px} .

Then |P 0| = |P| but |
S
P 0| < |

S
P|, and k(G,A,B0) > k(G,A,B), so by

the induction hypothesis there is a set Q0 of |P 0|+1 disjoint A–B0 paths
exceeding P 0. Then Q0 contains a path Q ending at x, and a unique
path Q0 whose last vertex y is not among the last vertices of the paths
in P 0.

If y /2 xP , we let Q be obtained from Q0 by appending xP to Q,
and appending yR to Q0 if y /2 B. Otherwise y 2 x̊P , and we let Q be
obtained from Q0 by appending xR to Q and yP to Q0. In all cases Q
exceeds P, as desired. ⇤

Applied to a bipartite graph, Menger’s theorem specializes to the
assertion of König’s theorem (2.1.1). For our third proof, we shall adapt
the alternating path proof of König’s theorem to the more general set-
up of Theorem 3.3.1. Let again G,A,B be given, and let P be a setP

of disjoint A–B paths in G. Let us say that an A–B separator X ✓ V
lies on P if it consists of a choice of exactly one vertex from each pathon

in P. If we can find such a separator X, then clearly k 6 |X| = |P|, and
Menger’s theorem will be proved.

Put

V [P] :=
[

{V (P ) | P 2 P }

E[P] :=
[

{E(P ) | P 2 P } .
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Let a walk W = x0e0x1e1 . . . en�1xn in G with ei 6= ej for i 6= j be said W,xi, ei

to alternate with respect to P (Fig. 3.3.2) if it starts in Ar V [P] and
the following three conditions hold for all i < n (with e�1 := e0 in (iii)): alternating

walk

(i) if ei = e 2 E[P], then W traverses the edge e backwards, i.e.
xi+1 2 Px̊i for some P 2 P;

(ii) if xi = xj with i 6= j, then xi 2 V [P];

(iii) if xi 2 V [P], then {ei�1, ei}\E[P] 6= ;.

Px0

xn

A

B

W

Fig. 3.3.2. An alternating walk from A to B

Note that, by (ii), any vertex outside V [P] occurs at most once
on W . And since the edges ei of W are all distinct, (iii) implies that any
vertex v 2 V [P] occurs at most twice on W . For v 6= xn, this can happen
in exactly the following two ways. If xi = xj with 0 < i < j < n, then

either ei�1, ej 2 E[P] and ei, ej�1 /2 E[P]

or ei, ej�1 2 E[P] and ei�1, ej /2 E[P] .

Unless otherwise stated, any use of the word ‘alternate’ below will
refer to our fixed path system P.

The next two lemmas together make up our third proof of Menger’s
theorem. We state and prove them in a way that makes them reusable
in Chapter 8, when we prove Menger’s theorem for infinite graphs.

Lemma 3.3.2. If an alternating walk W as above ends in B r V [P], [8.4.7]

then G contains a set of disjoint A–B paths exceeding P.

Proof. We may assume that W has only its first vertex in ArV [P] and
only its last vertex in B r V [P]. Let H be the graph on V (G) whose
edge set is the symmetric di↵erence of E[P] with {e0, . . . , en�1}. In H,
the ends of the paths in P and of W have degree 1 (or 0, if the path or
W is trivial), and all other vertices have degree 0 or 2.

For each vertex a 2 (A\V [P])[ {x0}, therefore, the component of
H containing a is a path, P = v0 . . . vk say, which starts in a and ends
in A or B. Using conditions (i) and (iii), one easily shows by induction
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on i = 0, . . . , k� 1 that P traverses each of its edges e = vivi+1 in the
forward direction with respect to P or W . (Formally: if e 2 P 0 with
P 0

2 P, then vi 2 P 0v̊i+1; if e = ej 2 W , then vi = xj and vi+1 = xj+1.)
Hence, P is an A–B path. (When G is infinite, this last conclusion uses
the fact that W meets only finitely many paths in P, and hence every
component of H is finite.)

Similarly, for every b 2 (B \ V [P])[ {xn} there is an A–B path in
H that ends in b. The set of A–B paths in H therefore exceeds P.

⇤

Lemma 3.3.3. If no alternating walk W as above ends in B r V [P],[8.4.7]

then G contains an A–B separator on P.

Proof. Let

A1 := A\V [P] and A2 := ArA1 ,A1, A2

and

B1 := B \V [P] and B2 := BrB1 .B1, B2

For every path P 2 P, let xP be the last vertex of P that lies on somexP

alternating walk; if no such vertex exists, let xP be the first vertex of P .
Our aim is to show that

X := {xP | P 2 P }X

meets every A–B path in G; then X is an A–B separator on P.
Suppose there is an A–B path Q that avoids X. We know that QQ

meets V [P], as otherwise it would be an alternating walk ending in B2.
Now the A–V [P] path in Q is either an alternating walk or consists only
of the first vertex of some path in P. Therefore Q also meets the vertex
set V [P 0] of

P 0 := {PxP | P 2 P } .P
0

Let y be the last vertex of Q in V [P 0], say y 2 P 2 P, and let x := xP .y, P, x

As Q avoids X and hence x, we have y 2 Px̊. In particular, x = xP is
not the first vertex of P , and so there is an alternating walk W endingW

at x. Then W [xPyQ is a walk from A2 to B (Fig. 3.3.3). If this walk

P

Q

W

y
x

z Qy

Fig. 3.3.3. Alternating walks in the proof of Lemma 3.3.3.
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alternates and ends in B2, we have our desired contradiction.
How could W [ xPyQ fail to alternate? For example, W might

already use an edge of xPy. But if x0 is the first vertex of W on xP ẙ, x0,W 0

then W 0 := Wx0Py is an alternating walk from A2 to y. (By Wx0 we
mean the initial segment of W ending at the first occurrence of x0 on W ;
from there, W 0 follows P back to y.) Even our new walk W 0yQ need not
yet alternate: for example, W 0 might still meet ẙQ. By definition of P 0

and W , however, and the choice of y on Q, we have

V (W 0)\V [P] ✓ V [P 0] and V (ẙQ)\V [P 0] = ; .

Thus, W 0 and ẙQ can meet only outside P.
If W 0 does indeed meet ẙQ, we let z be the first vertex of W 0 on ẙQ z

and set W 00 := W 0zQ. Otherwise we set W 00 := W 0 [ yQ. In both W 00

cases W 00 alternates with respect to P 0, because W 0 does and ẙQ avoids
V [P 0]. (W 00 satisfies condition (iii) at y in the second case even if y oc-
curs twice on W 0, because W 00 then contains the entire walk W 0 and not
just its initial segment W 0y.) By definition of P 0, therefore, W 00 avoids
V [P]rV [P 0]. ThusW 00 also alternates with respect to P and ends in B2,
contrary to our assumptions. ⇤

Third proof of Menger’s theorem. Let P contain as many disjoint
A–B paths in G as possible. Then by Lemma 3.3.2, no alternating walk
ends in B r V [P]. By Lemma 3.3.3, this implies that G has an A–B
separator X on P, giving k 6 |X| = |P| as desired. ⇤

A set of a–B paths is called an a–B fan if any two of the paths have fan

only a in common.

Corollary 3.3.4. For B ✓ V and a 2 V rB, the minimum number of

vertices separating a from B in G is equal to the maximum number of

paths forming an a–B fan in G.

Proof. Apply Theorem 3.3.1 to G� a with A := NG(a). ⇤

Corollary 3.3.5. Let a and b be two distinct vertices of G.

(i) If ab /2 E, then the minimum number of vertices separating a
from b in G is equal to the maximum number of independent a–b
paths in G.

(ii) The minimum number of edges separating a from b in G is equal

to the maximum number of edge-disjoint a–b paths in G.

Proof. (i) Apply Theorem 3.3.1 to G � {a, b}, with A := NG(a) and
B := NG(b).

(ii) Apply Theorem 3.3.1 to the line graph of G, with A := E(a)
and B := E(b). ⇤
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Theorem 3.3.6. (Global Version of Menger’s Theorem)
[4.2.7]
[6.6.1]
[9.4.2]

(i) A graph is k-connected if and only if it contains k independent

paths between any two vertices.

(ii) A graph is k-edge-connected if and only if it contains k edge-

disjoint paths between any two vertices.

Proof. (i) If a graph G contains k independent paths between any two
vertices, then |G| > k and G cannot be separated by fewer than k ver-
tices; thus, G is k-connected.

Conversely, suppose that G is k-connected (and, in particular, has
more than k vertices) but contains vertices a, b not linked by k indepen-a, b

dent paths. By Corollary 3.3.5 (i), a and b are adjacent; let G0 := G�ab.G0

Then G0 contains at most k � 2 independent a–b paths. By Corollary
3.3.5 (i), we can separate a and b in G0 by a set X of at most k � 2X

vertices. As |G| > k, there is at least one further vertex v /2 X [ {a, b}v

in G. Now X separates v in G0 from either a or b – say, from a. But
then X [ {b} is a set of at most k� 1 vertices separating v from a in G,
contradicting the k-connectedness of G.

(ii) follows straight from Corollary 3.3.5 (ii). ⇤

3.4 A-paths and Mader’s theorem

In analogy to Menger’s theorem we may consider the following questions.
Given a set A of vertices in a graph, how many disjoint, edge-disjoint, or
independent A-paths can we find in that graph? Is the largest number
of such paths related to the least size of a vertex or edge cover of all its
A-paths?

An early theorem of Gallai goes in this direction. In Erdős-Pósa
spirit – see Chapter 2.3 – it says that if a graph fails to contain many
disjoint A-paths it has a small set of vertices that covers all its A-paths,
and thus ‘totally disconnects’ A:

Theorem 3.4.1. (Gallai 1961)
Let A be a set of vertices in a graph G, and k > 1 an integer. Then G
either contains k disjoint A-paths or has a set of at most 2k� 2 vertices

that meets every A-path.

The graph K2k�1, with A its entire vertex set, shows that 2k� 2 is
lowest possible as a general bound, one that depends only on k.

Theorem 3.4.1, as well as its analogue for edge-disjoint paths (with
the same bound of 2k � 2), will be an easy consequence of Mader’s
theorem below, via its Corollary 3.4.3. See Exercises 25 and 30.
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Mader’s theorem solves our initial problem for independent H-paths
rather than A-paths. Recall that, for H ✓ G, an H-path in G is an A-
path for A = V (H) that is not just a single edge of H. If H is induced
in G, as it will be for Mader’s theorem, the H-paths in G are thus
precisely its A-paths of length at least 2, for A = V (H).

In addition to implying Gallai’s theorem and its edge-analogue,
Mader’s theorem also implies a similar statement about independent
A-paths: just subdivide any A-paths of length 1, which turns them into
H-paths (with V (H) = A) without changing the number of A-paths.

In the fashion of Menger’s theorem, Mader’s theorem observes an
upper bound on the number of independentH-paths that arises naturally
from the size of certain separators, and then states that this bound is
always attained by some set of paths.

What could such an upper bound look like? Clearly, ifX ✓ V (G�H) X

and F ✓ E(G�H) are such that every H-path in G has a vertex or an F

edge in X [ F , then G cannot contain more than |X [ F | independent
H-paths. Hence, the least cardinality of such a set X [ F is a natural
upper bound for the maximum number of independent H-paths. (Note
that every H-path meets G�H, because H is induced in G and edges
of H do not count as H-paths.)

In contrast to Menger’s theorem, this bound can still be improved.
The minimality of |X [ F | implies that no edge in F has an end
in X: otherwise this edge would not be needed in the separator. Let
Y := V (G�H)rX, and denote by CF the set of components of the CF

graph (Y, F ). Since every H-path avoiding X contains an edge from F ,
it has at least two vertices in @C for some C 2 CF , where @C denotes @C

the set of vertices in C that send an edge of G to G�X�C (Fig. 3.4.1).

@C

CF
C

H X

Fig. 3.4.1. An H-path in G � X

The number of independent H-paths in G is therefore bounded above by

MH(G) := min
⇣
|X|+

X

C2CF

⌅
1

2
|@C|

⇧⌘
, MH(G)

where the minimum is taken over all X and F as described above:
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X ✓ V (G�H) and F ✓ E(G�H �X) such that every H-path in GX

has a vertex or an edge in X [F .
Mader’s theorem says that this upper bound is always attained by

some set of independent H-paths:

Theorem 3.4.2. (Mader 1978)
Given a graph G with an induced subgraph H, there are always MH(G)
independent H-paths in G.

In order to obtain more immediate analogues to the vertex and edge
version of Menger’s theorem, let us consider the two special cases of the
above problem where either F or X is required to be empty. Given an
induced subgraph H ✓ G, we denote by H(G) the least cardinality ofH(G)

a vertex set X ✓ V (G�H) that meets every H-path in G. Similarly,
we let �H(G) denote the least cardinality of an edge set F ✓ E(G) that�H(G)

meets every H-path in G.

Corollary 3.4.3. Given a graph G with an induced subgraph H, there

are at least
1

2
H(G) independent H-paths and at least

1

2
�H(G) edge-

disjoint H-paths in G.

Proof. To prove the first assertion, let k be the maximum number of inde-k

pendent H-paths in G. By Theorem 3.4.2, there are sets X ✓ V (G�H)
and F ✓ E(G�H �X) with

k = |X|+
X

C2CF

⌅
1

2
|@C|

⇧

such that every H-path in G has a vertex in X or an edge in F . For
every C 2 CF with @C 6= ;, pick a vertex v 2 @C and let YC := @Cr{v};
if @C = ;, let YC := ;. Then

⌅
1

2
|@C|

⇧
> 1

2
|YC | for all C 2 CF . Moreover,

for Y :=
S

C2CF
YC every H-path has a vertex in X [Y . HenceY

k > |X|+
X

C2CF

1

2
|YC | > 1

2
|X [Y | > 1

2
H(G)

as claimed.
The second assertion follows from the first by considering the line

graph of G (Exercise 27). ⇤

It may come as a surprise to see that the bounds in Corollary 3.4.3
are best possible (as general bounds): one can find examples for G and
H where G contains no more than 1

2
H(G) independent H-paths or no

more than 1

2
�H(G) edge-disjoint H-paths (Exercises 28 and 29).
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3.5 Linking pairs of vertices

Let G be a graph, and let X ✓ V (G) be a set of vertices. We call X
linked in G if whenever we pick distinct vertices s1, . . . , s`, t1, . . . , t` in linked

X we can find disjoint paths P1, . . . , P` in G such that each Pi links si to
ti and has no inner vertex in X. Thus, unlike in Menger’s theorem, we
are not merely asking for disjoint paths between two sets of vertices: we
insist that each of these paths shall link a specified pair of endvertices.

If |G| > 2k and every set X of at most 2k vertices is linked in G,
then G is k-linked . Clearly, this is equivalent to requiring merely that k-linked

|G| > 2k and disjoint paths Pi = si . . . ti exist for every choice of exactly
2k distinct vertices s1, . . . , sk, t1, . . . , tk: just add dummy vertices to X
to bring it up to size 2k. In practice, the latter is easier to prove, because
we need not worry about inner vertices in X.

Clearly, every k-linked graph is k-connected. The converse, however,
seems far from true: being k-linked is clearly a much stronger property
than k-connectedness. Still, we shall prove in this section that we can
force a graph to be k-linked by assuming that it is f(k)-connected, for
some function f :N! N. We first borrow a lemma from Chapter 7 to
give a nice and simple proof that such a function f exists at all. In the
remainder of the section we then prove that f can even be chosen linear.

The basic idea in the simple proof is as follows. If we can prove
that G contains a subdivision K of a large complete graph, we can use
Menger’s theorem to link the vertices of X disjointly to branch vertices
of K, and then hope to pair them up as desired through the subdivided
edges of K. This requires, of course, that our paths do not hit too many
of the subdivided edges before reaching the branch vertices of K.

The lemma saying that large enough connectivity does indeed force
the existence of such a complete topological minor K will be proved in
Chapter 7.2, where we consider several results of this type. By Theo-
rem 1.4.3 it su�ces to assume that G has large average degree:

Lemma 3.5.1. There is a function h:N!N such that, for every r 2 N,
every graph of average degree at least h(r) contains Kr

as a topological

minor.

Theorem 3.5.2. (Jung 1970; Larman & Mani 1970)
There is a function f :N!N such that every f(k)-connected graph is k-
linked, for all k 2 N.
Proof. We prove the assertion for f(k) = h(3k) + 2k, where h is a (3.3.1)

function as in Lemma 3.5.1. Let G be an f(k)-connected graph. Then G

d(G) > �(G) > (G) > h(3k); let K be a TK3k in G as provided by K

Lemma 3.5.1, and let U denote its set of branch vertices. U

For the proof that G is k-linked, let distinct vertices s1, . . . , sk si, ti

and t1, . . . , tk be given. By definition of f(k), we have (G) > 2k.
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Hence by Menger’s theorem (3.3.1), G contains disjoint paths P1, . . . , Pk,
Q1, . . . , Qk, such that each Pi starts in si, each Qi starts in ti, and allPi, Qi

these paths end in U but have no inner vertices in U . Let the set P ofP

these paths be chosen so that their total number of edges outside E(K)
is as small as possible.

si

Pi

P

Li

vi

ui

Mi

Qi ti

wi

Fig. 3.5.1. Constructing an si–ti path via ui

Let u1, . . . , uk be those k vertices in U that are not an end of a
path in P. For each i = 1, . . . , k, let Li be the U -path in K (i.e., the
subdivided edge of the K3k) from ui to the end of Pi in U , and let vi be
the first vertex of Li on any path P 2 P. By definition of P, P has no
more edges outside E(K) than PviLiui does, so viP = viLi and hence
P = Pi (Fig. 3.5.1). Similarly, if Mi denotes the U -path in K from ui

to the end of Qi in U , and wi denotes the first vertex of Mi on any
path in P, then this path is Qi. Then the paths siPiviLiuiMiwiQiti are
disjoint for di↵erent i and show that G is k-linked. ⇤

The function h of Lemma 3.5.1 which our proof in Chapter 7.2
will yield will be exponential in r, and will therefore give only an ex-
ponential upper bound for the function f(k) in Theorem 3.5.2. As
2"(G) > �(G) > (G), the following result implies the linear bound of
f(k) = 16k:

Theorem 3.5.3. (Thomas & Wollan 2005)[7.2.3]

Let G be a graph and k 2 N. If G is 2k-connected and "(G) > 8k, then
G is k-linked.

We begin our proof of Theorem 3.5.3 with a lemma.

Lemma 3.5.4. Any graph H with �(H) > 8k > |H|/2 has a k-linked
subgraph.

Proof. If H itself is k-linked there is nothing to show, so suppose not.
Then we can find a set X of 2k vertices s1, . . . , sk, t1, . . . , tk that cannotX

be linked in H by disjoint paths Pi = si . . . ti. Let P be a set of as manyP

such paths as possible, without inner vertices in X and all of length
at most 7. If there are several such sets P, we choose one with |

S
P|

minimum. We may assume that P contains no path from s1 to t1. Lets1, t1
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J be the subgraph of H induced by X and all the vertices on the paths
in P, and let K := H � J . J,K

Note that each vertex v 2 K has at most three neighbours on any
given Pi 2 P: if it had four, then replacing the segment uPiw between
its first and its last neighbour on Pi by the path uvw would reduce |

S
P|

and thus contradict our choice of P. So v has at most 3 neighbours in J
for every i = 1, . . . , k, at most 3k in total. As �(H) > 8k by assumption,
as well as |H| 6 16k and |X| = 2k, we deduce that

�(K) > 5k and |K| 6 14k . (1)

Our next aim is to show that K is disconnected. Since each of the
paths in P has at most eight vertices, we have |J � {s1, t1}| 6 8(k� 1).
Therefore s1 has a neighbour s in K, and t1 has a neighbour t in K. Put
S := { s0 2 K | dK(s, s0) 6 2 } and T := { t0 2 K | dK(t, t0) 6 2 }. Since
H �

S
P contains no s1–t1 path of length at most 7, we have S \T = ;,

and there is no S–T edge in K. To prove that K is disconnected, it thus
su�ces to show that V (K) = S [T . But for any vertex v 2 K� (S [T )
the sets NK(s), NK(t) and NK(v) are disjoint and each have size at
least 5k, contradicting (1).

So K is disconnected; let C be its smaller component. By (1),

2�(C) > 2�(K) > 7k+3k > 1

2
|K|+3k > |C|+3k . (2)

We complete the proof by showing that C is k-linked. As �(C) > 5k,
we have |C| > 2k. Let Y be a set of at most 2k vertices in C. By (2),
every two vertices in Y have at least 3k common neighbours, at least k
of which lie outside Y . We can therefore link any desired ` 6 k pairs
of vertices in Y inductively by paths of length 2 whose inner vertex lies
outside Y . ⇤

Before we launch into the proof of Theorem 3.5.3, let us look at its
main ideas. To prove that G is k-linked, we have to consider a given set
X of up to 2k vertices and show that X is linked in G. Ideally, we would
like to use Lemma 3.5.4 to find a linked subgraph L somewhere in G,
and then use our assumption of (G) > 2k to obtain a set of |X| disjoint
X–L paths by Menger’s theorem (3.3.1). Then X could be linked via
these paths and L, completing the proof.

Unfortunately, we cannot expect to find a subgraph H such that
�(H) > 8k and |H| 6 16k (in which L could be found by Lemma 3.5.4);
cf. Corollary 11.2.3. However, it is not too di�cult to find a minorH 4 G
that has such a subgraph (Ex. 21, Ch. 7), even so that the vertices of X
come to lie in distinct branch sets of H. We may then regard X as a
subset of V (H), and Lemma 3.5.4 provides us with a linked subgraph L
of H. The only problem now is that H need no longer be 2k-connected,
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that is, our assumption of (G) > 2k will not ensure that we can link X
to L by |X| disjoint paths in H.

And here comes the clever bit of the proof: it relaxes the assumption
of  > 2k to a weaker assumption that does get passed on to H. This
weaker assumption is that if we can separate X from another part of G
(or H) by fewer than |X| vertices, then this other part must be ‘light’:
roughly, its own value of " must not exceed 8k. If X then fails to link
to L by |X| disjoint paths, and hence H has a separation {A,B} with
X ✓ A and L ✓ B and |A\B| < |X|, we know that " is still at least 8k
on H[A], because the B-part of H was light.

The idea now is to continue the proof inside H 0 := H[A] by induc-
tion. This still needs some ingenuity, since it is not enough that " is
large on H 0: we also need that for every low-order separation (A0, B0) of
H 0 with X ✓ A0 the B0-part is light. That need not be true. But when
it fails, we shall be able to use induction on H 0[B0] to show that A0 \B0

is linked in H 0[B0], and use this for our proof that X is linked in H.
Given k 2 N, a graph G, and A,B,X ✓ V (G), call the orderedX-

separation

pair (A,B) an X- separation of G if {A,B} is a proper separation of G
of order at most |X| and X ✓ A. An X- separation (A,B) is small ifsmall/linked

|A\B| < |X|, and linked if A\B is linked in G[B].
Call a set U ✓ V (G) light in G if kUk+6 8k |U |, where kUk+denotesk k

+

the number of edges of G with at least one end in U . A set of verticeslight

is heavy if it is not light.heavy

Proof of Theorem 3.5.3. We shall prove the following, for fixed k 2 N:k

G = (V,E)

X

Let G = (V,E) be a graph and X ✓ V a set of at most 2k
vertices. If V rX is heavy and for every small X- separ-

ation (A,B) the set BrA is light, then X is linked in G.

(⇤)

To see that (⇤) implies the theorem, assume that (G) > 2k and
"(G) > 8k, and let X be a set of exactly 2k vertices. Then G has no
small X- separation. And V rX is heavy, since

kV rXk+ > kGk�
✓
2k

2

◆
> 8k |V |� 16k2 = 8k |V rX| .

By (⇤), X is linked in G, completing the proof that G is k-linked.
We prove (⇤) by induction on |G|, and for each value of |G| by induc-

tion on kV rXk+. If |G| = 1 then X is linked in G. For the induction
step, let G and X be given as in (⇤). We first prove the following:

We may assume that G has no linked X- separation. (1)

For our proof of (1), suppose that G has a linked X- separation(A,B)

(A,B). Let us choose one with A minimal, and put S := A\B.S
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We first consider the case that |S| = |X|. If G[A] contains |X|
disjoint X–S paths, then X is linked in G because (A,B) is linked,
completing the proof of (⇤). If not, then by Menger’s theorem (3.3.1)
G[A] has a small X- separation (A0, B0) such that B0 ◆ S. If we choose
this of minimum order, i.e. with |A0 \B0| minimum, we can link A0 \B0

to S in G[B0] by |A0 \B0| disjoint paths, again by Menger’s theorem.
But then (A0, B0[B) is a linked X- separation of G that contradicts the
choice of (A,B).

So |S| < |X|. Let G0 be obtained from G[A] by adding any missing G0

edges on S, so that G0[S] is a complete subgraph of G0. As (A,B) is now
a small X- separation, our assumption in (⇤) says that B r A is light
in G. Thus, G0 arises from G by deleting |BrA| vertices outside X and
at most 8k |BrA| edges, and possibly adding some edges. As V rX is
heavy in G, this implies that

ArX is heavy in G0.

In order to be able to apply the induction hypothesis to G0, let
us show next that for every small X- separation (A0, B0) of G0 the set
B0rA0 is light in G0. Suppose not, and choose a counterexample (A0, B0) (A0, B0)

with B0 minimal. As G0[S] is complete, we have S ✓ A0 or S ✓ B0.
If S ✓ A0 then B \B0 ✓ S ✓ A0, so (A0 [B,B0) is a small X- sep-

aration of G. Moreover,

B0 r (A0 [B) = B0 rA0,

and no edge of G0�E on S is incident with this set (Fig 3.5.2). Our as-
sumption that this set is heavy in G0, by the choice of (A0, B0), therefore
implies that it is heavy also in G. As (A0[B,B0) is a smallX- separation
of G, this contradicts our assumptions in (⇤).

B

A

A0 B0
X

G0S

Fig. 3.5.2. If S ✓ A0, then (A0
[ B, B0) is an X- separation of G

Hence S ✓ B0. By our choice of (A0, B0), the graph G00 := G0[B0]
satisfies the premise of (⇤) for X 00 := A0\B0. Indeed, B0rX 00 = B0rA0
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is heavy, and by the minimality of B0 any small X 00- separation (A00, B00)
of G00 will be such that B00rA00 is light, because (A0 [A00, B00) will be a
small X- separation of G0, and B00 rA00 = B00 r (A0 [A00).

By the induction hypothesis, therefore, X 00 is linked in G00. But
then X 00 is also linked in G[B0 [B]: as S was linked in G[B], we simply
replace any edges added on S in the definition of G0 by disjoint paths
through B (Fig. 3.5.3). But now (A0, B0 [B) is a linked X- separation
of G that violates the minimality of A in the choice of (A,B).

B

A

S

A0 B0
X00

G 00

X

Fig. 3.5.3. If S ✓ B0, then (A0, B0
[ B) is linked in G

We have thus shown that G0 satisfies the premise of (⇤) with respect
to X. Since {A,B} is a proper separation, G0 has fewer vertices than G.
By the induction hypothesis, therefore, X is linked in G0. Replacing
edges of G0 �E on S by paths through B as before, we can turn any
linkage of X in G0 into one in G, completing the proof of (⇤). This
completes the proof of (1).

Our next goal is to show that, by the induction hypothesis, we may
assume that G has not only large average degree but even large mini-
mum degree. For our proof that X is linked in G, let s1, . . . , s`, t1, . . . , t`
be the distinct vertices in X which we wish to link by disjoint paths
Pi = si . . . ti. Let us add to G any missing edges on X except those of
the form siti; as the paths Pi are not allowed to have inner vertices in X,G[X]

these new edges a↵ect neither the premise nor the conclusion in (⇤).
After this modification, we can now prove the following:

We may assume that any two adjacent vertices u, v which

do not both lie inX have at least 8k�1 common neighbours.
(2)

To prove (2), let e = uv be such an edge, let n denote the number ofe = uv

common neighbours of u and v, and let G0 := G/e be the graph obtainedn

by contracting e. Since u, v are not both in X we may view X as a subsetG0

also of V 0 := V (G0), replacing u or v in X with the contracted vertex veV 0

if X \ {u, v} 6= ;. Our aim is to show that unless n > 8k� 1 as desired
in (2), G0 satisfies the premise of (⇤). Then X will be linked in G0 by
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the induction hypothesis, so the desired paths P1, . . . , P` exist in G0. If
one of them contains ve, replacing ve by u or v or uv turns it into a path
in G, completing the proof of (⇤).

In order to show that G0 satisfies the premise of (⇤) with respect
to X, let us show first that V 0 rX is heavy. Since V rX was heavy
and |V 0rX| = |V rX|� 1, it su�ces to show that the contraction of e
resulted in the loss of at most 8k edges incident with a vertex outside X.
If u and v are both outside X, then the number of such edges lost is
only n+ 1: one edge at every common neighbour of u and v, as well
as e. But if u 2 X, then v /2 X, and we lost all the X– v edges xv of G
with x 6= u, too: while xv counted towards kV rXk+, the edge xve lies
in G0[X] and does not count towards kV 0 rXk+. If x is not a common
neighbour of u and v, then this is an additional loss. But u is adjacent to
every x 2 X r {u} except at most one (by our assumption about G[X]),
so every such x except at most one is in fact a common neighbour of u
and v. Thus in total, we lost at most n+ 2 edges. Unless n > 8k � 1
(which would prove (2) directly for u and v), this means that we lost at
most 8k edges, as desired for our proof that V 0 rX is heavy.

It remains to show that for every small X- separation (A0, B0) of G0

the set B0 rA0 is light. Let (A0, B0) be a counterexample, chosen with (A0, B0)

B0 minimal. Then G0[B0], as in the proof of (1), satisfies the premise
of (⇤) with respect to X 0 := A0 \B0. Hence X 0 is linked in G0[B0] by X0

induction. Let A and B be obtained from A0 and B0 by replacing ve,
where applicable, with both u and v, and put X 00 := A\B. We shall (A,B), X00

prove that the separation (A,B) of G contradicts our assumption (1).
Let us consider two possible positions of ve in turn. If ve lies

in B0rA0, then u, v 2 BrA. Then X 00 = X 0 is linked in G[B], because
it is linked in G0[B0]: if ve occurs on one of the linking paths for X 0,
just replace it by u or v or uv as earlier. This contradicts (1). The
other case is that ve lies in A0, possibly in X 0. We show that G[B]
satisfies the premise of (⇤) with respect to X 00; then X 00 will be linked
in G[B] by induction, again contradicting (1). Since (A0, B0) is a small
X- separation, we have

|X 00| 6 |X 0|+1 6 |X| 6 2k ,

even if ve lies in X 0. Moreover, BrX 00 = B0rA0 is heavy in G, because
it is heavy in G0 by the choice of (A0, B0). Now consider a small X 00-
separation (A00, B00) of G[B]. Then (A[A00, B00) is a small X- separation
of G, because |X 00| 6 |X|. Therefore B00 rA00 = B00 r (A[A00) is light
by the assumption in (⇤). Hence G[B] does satisfy the premise of (⇤)
for X 00, completing the proof of (2).

Using induction by contracting an edge, we have just shown that the
vertices in V rX may be assumed to have large degree. Using induction
by deleting an edge, we now show that their degrees cannot be too large.
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Since (⇤) holds if V = X, we may assume that V rX 6= ;; let d⇤ denoted⇤

the smallest degree in G of a vertex in V rX. Let us prove the following:

We may assume that 8k 6 d⇤ 6 16k� 1. (3)

The lower bound in (3) follows from (2) if we assume that G has no
isolated vertex outside X, which we may clearly assume by induction.
For the upper bound, let us see what happens if we delete an edge ee = uv

whose ends u, v are not both in X. If G� e satisfies the premise of (⇤)
with respect to X, then X is linked in G� e by induction, and hence
in G. If not, then either V rX is light in G� e, or G� e has a small
X- separation (A,B) such that B r A is heavy. If the latter happens
then e must be an (ArB)–(BrA) edge: otherwise, (A,B) would be a
small X- separation also of G, and B rA would be heavy also in G, in
contradiction to our assumptions in (⇤). But if e is such an edge then
any common neighbours of u and v lie in A\B, so there are fewer than
|X| 6 2k such neighbours. This contradicts (2).

So V rX must be light in G� e. For G, this yields

kV rXk+ 6 8k |V rX|+1 . (4)

In order to show that this implies the desired upper bound for d⇤, let us
estimate the number f(x) of edges that a vertex x 2 X sends to V rX.f(x)

There must be at least one such edge, xy say, as otherwise (X,V r {x})
would be a small X- separation of G that contradicts our assumptions
in (⇤). But then, by (2), x and y have at least 8k�1 common neighbours,
at most 2k� 1 of which lie in X. Hence f(x) > 6k. As

2 kV rXk+ =
X

v2VrX

dG(v)+
X

x2X

f(x) ,

an assumption of d⇤ > 16k would thus imply that

2 (8k |V rX|+1) >
(4)

2 kV rXk+ > 16k |V rX|+6k |X| ,

yielding the contradiction of 2 > 6k |X|. This completes the proof of (3).

To complete our proof of (⇤), pick a vertex v0 2 V rX of degree d⇤,
and consider the subgraph H induced in G by v0 and its neighbours.
By (2) we have �(H) > 8k, and by (3) and the choice of v0 we have
|H| 6 16k. By Lemma 3.5.4, then, H has a k-linked subgraph; let L be
its vertex set. By definition of ‘k-linked’, we have |L| > 2k > |X|. If G
contains |X| disjointX–L paths, thenX is linked in G, as desired. If not,
then G has a small X- separation (A,B) with L ✓ B. If we choose (A,B)
of minimum order, then G[B] contains |A\B| disjoint (A\B)–L paths
by Menger’s theorem (3.3.1). But then (A,B) is a linked X- separation
that contradicts (1). ⇤
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Exercises

For the first three exercises let G be a graph with vertices a and b, and let
X ✓ V (G)r {a, b} be an a–b separator in G.

1.� Show that X is minimal as an a–b separator if and only if every vertex
in X has a neighbour in the component Ca of G�X containing a, and
another in the component Cb of G � X containing b.

2.� (continued)

Let X 0
✓ V (G)r {a, b} be another a–b separator, and define C0

a and
C0

b correspondingly. Show that both

Ya := (X \ C0
a) [ (X \ X 0) [ (X 0

\ Ca)
and

Yb := (X \ C0
b) [ (X \ X 0) [ (X 0

\ Cb)

separate a from b (see figure).

X0

XX0

a bYa

X

3. (continued)

Are Ya and Yb minimal a–b separators if X and X 0 are? Are |Ya| and
|Yb| minimum for a–b separators if |X| and |X 0

| are?

4. Let X and X 0 be minimal separators in G. Show that if X meets at
least two components of G � X 0, then X 0 meets all the components of
G � X and X meets all the components of G � X 0.

5.� Deduce the k = 2 case of Menger’s theorem (3.3.1) from Proposi-
tion 3.1.1.

6.� Prove the elementary properties of blocks mentioned after their formal
definition.

7. Show that the block graph of any connected graph is a tree.

8.� Let G be a k-connected graph, and let xy be an edge of G. Show that
G/xy is k-connected if and only if G � {x, y} is (k � 1)-connected.

9. (i) Let e be an edge in a 2-connected graph G 6= K3. Show that either
G � e or G/e is again 2-connected.

(ii) Does every 2-connected graph G 6= K3 have an edge e such that
G/e is still 2-connected?

10.+ Let e be an edge in a 3-connected graph G 6= K4. Show that either
G .

� e or G/e is again 3-connected.
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11. Show without using Theorem 3.2.6 that every edge of a 3-connected
graph lies on some non-separating induced cycle.

12. Give an inductive proof of Theorem 3.2.6 based on Lemma 3.2.2. You
may use the previous exercise.

13.+ Give an inductive proof of Theorem 3.2.6 based on Lemma 3.2.4.

14.+ Show that every transitive graph G with (G) = 2 is a cycle.

15.� At which point does the first proof of Menger’s theorem fail if we assign
the contracted vertex ve to A in G/e only if A in G contains both ends
of e, and similarly for B?

16. When one tries to prove an unknown implication a ) b, it can be
dangerous to attempt to prove a ) c ) b for some assertion c
that clearly implies b: if c is too strong, then a ) c may fail even
if a ) b is true. But the first proof of Menger’s theorem appears to
be doing just that: it proves the seemingly very strong assertion that,
given G, A, B and any edge e of G, we can contract or delete e without
decreasing k(G, A, B) – from which the existence of k disjoint A–B
paths follows easily by induction. Can one see already at the outset of
the proof that this route will in fact not be dangerous?

17. (i) Find the error in the following ‘simple proof’ of Menger’s theorem
(3.3.1). Let X be an A–B separator of minimum size. Denote by GA

the subgraph of G induced by X and all the components of G�X that
meet A, and define GB correspondingly. By the minimality of X, there
can be no A–X separator in GA with fewer than |X| vertices, so GA

contains k disjoint A–X paths by induction. Similarly, GB contains k
disjoint X–B paths. Together, all these paths form the desired A–B
paths in G.

(ii) Fill the gap in the proof of (i) by considering, if possible, a vertex
or edge outside A and B.

18. Prove Menger’s theorem by induction on kGk, as follows. Given an
edge e = xy, consider a smallest A–B separator S in G� e. Show that
the induction hypothesis implies a solution for G unless S [ {x} and
S [ {y} are smallest A–B separators in G. Then show that if choosing
neither of these separators as X in the previous exercise gives a valid
proof, there is only one easy case left to do.

19. Work out the details of the proof of Corollary 3.3.5 (ii).

20.� Show that the least number of edges separating two disjoint sets A, B
of vertices in a graph G equals the maximum number of edge-disjoint
A–B paths in G.

21. Is there a function f :N ! N such that, for every k 2 N, every f(k)-
edge-connected graph contains between any two vertices k edge-disjoint
paths every two of which traverse their common vertices in the same
order?
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22. Let k > 2. Show that every k-connected graph of order at least 2k
contains a cycle of length at least 2k.

23. Let k > 2. Show that in a k-connected graph any k vertices lie on a
common cycle.

24. Find a subset D of the plane and two infinite subsets A, B ✓ D such
that for every finite set X ✓ D there is an A–B arc in D rX but D
contains no infinite set of disjoint A–B arcs.

25.+ Prove the following weakening of Gallai’s theorem without the help of
Mader’s theorem. Find a constant c such that, for every k, G and A,
either G contains k disjoint A-paths or G has a set of at most ck vertices
that meets all its A-paths.

26.+ Given a collection S of disjoint vertex sets in a graph G = (V, E), a path
in G is an S-path if it joins distinct sets in S and has no inner vertices
in S :=

S
S. Show that the following version of Mader’s theorem is

equivalent to Theorem 3.4.2: The maximum number of disjoint S-paths
in G is always equal to the minimum value of |V0|+

Pr

i=1
b

1
2 |@Vi|c taken

over all partitions {V0, . . . , Vr} of V such that every S-path in G � V0

has an edge spanned by some Vi, where @Vi is the set of vertices in Vi

that lie in S or have a neighbour outside V0 [ Vi.

27. Derive the edge part of Corollary 3.4.3 from the vertex part.

(Hint. Consider the H-paths in the graph obtained from the disjoint
union of H and the line graph L(G) by adding all the edges he such
that h is a vertex of H and e 2 E(G)rE(H) is an edge at h.)

28.� To the disjoint union of the graph H = K2m+1 with k copies of K2m+1

add edges joining H bijectively to each of the K2m+1. Show that the
resulting graph G contains at most km = 1

2H(G) independent H-
paths.

29. Find a bipartite graph G, with partition classes A and B say, such that
for H := G[A] there are at most 1

2�H(G) edge-disjoint H-paths in G.

30.� Deduce Gallai’s theorem, as well as an edge analogue with the same
bound of 2k � 2, from Mader’s theorem via Corollary 3.4.3.

31. Derive a suitable version of Menger’s theorem from Mader’s theorem.

32.+ Derive Tutte’s 1-factor theorem (2.2.1) from Mader’s theorem.

(Hint. Extend the given graph G to a graph G0 by adding, for each
vertex v 2 G, a new vertex v0 and joining v0 to v. Choose H ✓ G0 so that
the 1-factors in G correspond to the large enough sets of independent
H-paths in G0.)

33.� Show that 2k-edge-connected graphs are k-edge-linked in the sense that
for all distinct vertices s1, . . . , sk, t1, . . . , tk there are edge-disjoint paths
Pi = si . . . ti for i = 1, . . . , k.

34.� Show that k-linked graphs are (2k � 1)-connected. Are they even 2k-
connected?
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35. For every k 2 N find an ` = `(k), as large as possible, such that not
every `-connected graph is k-linked.

36. Show that if G is k-linked and s1, . . . , sk, t1, . . . , tk are not necessarily
distinct vertices such that si 6= ti for all i, then G contains independent
paths Pi = si . . . ti for i = 1, . . . , k.

37. Go through the proof of Theorem 3.5.3 monitoring the use of kV rXk
+.

How would the proof fail if kG[V rX]k was used instead? Which ar-
guments would become simpler?

38. In the informal discussion preceding the proof of Theorem 3.5.3 we
noted that, by Corollary 11.2.3, we cannot expect to find in G a sub-
graph H that satisfies the premise of Lemma 3.5.4. But then the proof
of (⇤) does find such a subgraph H. Can you explain this?

39. Use Theorem 3.5.3 to show that the function h in Lemma 3.5.1 can be
chosen as h(r) = cr2, for some c 2 N.

Notes

Although connectivity theorems are doubtless among the most natural, and
also the most applicable, results in graph theory, there is still no monograph on
this subject. The most comprehensive sources to date are A. Schrijver, Com-
binatorial optimization, Springer 2003, and A. Frank, Connections in combi-
natorial optimization, Oxford University Press 2011. Some areas are covered
in B. Bollobás, Extremal Graph Theory , Academic Press 1978, in R. Halin,
Graphentheorie, Wissenschaftliche Buchgesellschaft 1980, and in A. Frank’s
chapter of the Handbook of Combinatorics (R.L. Graham, M. Grötschel &
L. Lovász, eds.), North-Holland 1995. A survey specifically of techniques and
results on minimally k-connected graphs (see below) is given by W. Mader,
On vertices of degree n in minimally n-connected graphs and digraphs, in
(D. Miklós, V.T. Sós & T. Szőnyi, eds.) Paul Erdős is 80, Vol. 2, Proc. Colloq.
Math. Soc. János Bolyai, Budapest 1996.

Theorem 3.2.3 is often attributed to Barnette and Grünbaum (1969). It
can also be extracted from W.T. Tutte, Connectivity in graphs, Oxford Uni-
versity Press 1966. Tutte’s wheel theorem, proved in W.T. Tutte, A theory of
3-connected graphs, Nederl. Akad.Wet. Proc. Ser. A 64 (1961), 441–455, di↵ers
from our Theorem 3.2.5 as follows. As an alternative to the contraction of an
edge in the reduction step, the wheel theorem also allows its deletion. Of edges
to be contracted, however, it requires that they do not lie in any triangle. The
starting set for the construction of all 3-connected graphs therefore consists of
all wheels, not only K4.

Tutte’s wheel theorem has been extended to 3-connected graphs H other
than K4: from any 3-connected graph G < H that is not a wheel we can
obtain H by contracting or deleting edges step by step, remaining 3-connected
at every step. (As in Tutte’s theorem, one is not allowed to contract edges
that lie in a triangle.) This was proved by S. Negami, A characterization of 3-
connected graphs containing a given graph, J.Comb.Theory, Ser. B 32 (1982),
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69–74. It also follows from an earlier theorem of Seymour on matroid decom-
positions, and is sometimes called Seymour’s splitter theorem for 3-connected
graphs.

The fact, mentioned after the proof of Theorem 3.2.5, that in k-connected
graphs we can either delete or contract an edge so that the resulting graphs
have no separations of order < k with unboundedly large sides follows from
Lemma 3.1 of J. Geelen, B. Gerards, N. Robertson and G. Whittle, On the ex-
cluded minors for the matroids of branch-width k, J.Comb.Theory, Ser. B 88
(2003), 261–265.

Our proof of Theorem 3.2.6 is the original from W.T. Tutte, How to draw
a graph, Proc. Lond.Math. Soc. 13 (1963), 743–767. Alternative proofs are
indicated in Exercises 12 and 13.

An approach to the study of connectivity not touched upon in this chapter
is the investigation of edge-minimal k-connected graphs, those that lose their
k-connectedness as soon as we delete an edge. Like all k-connected graphs,
these have minimum degree at least k. Exercise 17 in Chapter 1 says that every
edge-minimal k-edge-connected graph has a vertex of degree exactly k. Halin
(1969) proved that this holds even for all edge-minimal k-connected graphs.

The existence of a vertex of small degree can be useful in induction proofs
about k-connected graphs. Halin’s theorem was the starting point for a series
of more and more sophisticated studies of minimal k-connected graphs; see the
books of Bollobás and Halin cited above, and in particular Mader’s survey.

Menger’s theorem goes back to his paper, Zur allgemeinen Kurventheorie,
Fundamenta Math.10 (1927), 96–115. It is probably the most-used classi-
cal result in graph theory. Our first proof is due to Halin; he published it
only in his book, from where our proof is extracted. The second is due to
T. Böhme, F. Göring and J. Harant, Menger’s theorem, J.Graph Theory 37
(2001), 35–36, the third to T. Grünwald (later Gallai), Ein neuer Beweis eines
Mengerschen Satzes, J. Lond.Math. Soc. 13 (1938), 188–192. A fourth proof
is sketched in Exercise 18, and in Chapter 6 we shall obtain a fifth proof as
an application of a theorem about network flows (Ch. 6, Ex. 3.) The global
version of Menger’s theorem (Theorem 3.3.6) was first stated and proved by
Whitney (1932). Topological generalizations of Menger’s theorem have been
known since the 1930s; see C. Thomassen and A. Vella, Graph-like continua
and Menger’s theorem, Combinatorica 28 (2008), 595–623.

Theorem 3.4.1 is due to T. Gallai, Maximum-Minimum Sätze und verall-
gemeinerte Faktoren von Graphen, Acta Math. Hungar. 12 (1961), 131–173.

Mader’s Theorem 3.4.2 is taken from W. Mader, Über die Maximalzahl
kreuzungsfreier H -Wege, Arch. Math. 31 (1978), 387–402; our formulation is
easily seen to be equivalent to the original. The shortest proof known to me
is given by Schrijver in his book. The theorem may be viewed as a common
generalization of Menger’s theorem and Tutte’s 1-factor theorem (Exercise 32).

Theorem 3.5.3 is due to R. Thomas and P. Wollan, An improved linear
bound for graph linkages, Eur. J. Comb. 26 (2005), 309–324. Using a more
involved version of Lemma 3.5.4, they prove that 2k-connected graphs even
with only " > 5k must be k-linked. And for graphs of large enough girth the
condition on " can be dropped altogether: as shown by W. Mader, Topological
subgraphs in graphs of large girth, Combinatorica 18 (1998), 405–412, such
graphs are k-linked as soon as they are 2k-connected, which is best possible.
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(Mader assumes a lower bound on the girth that depends on k, but this is
not necessary; see D. Kühn & D. Osthus, Topological minors in graphs of large
girth, J.Comb.Theory, Ser. B 86 (2002), 364–380.) In fact, for every s 2 N
there exists a ks such that if G 6◆ Ks,s and (G) > 2k > ks then G is k-linked;
see D. Kühn & D. Osthus, Complete minors in Ks,s-free graphs, Combinatorica
25 (2005) 49–64.




