
12 Graph Minors

Our goal in this last chapter is a single theorem, one which dwarfs any
other result in graph theory and may doubtless be counted among the
deepest theorems that mathematics has to o↵er: in every infinite set of

graphs there are two such that one is a minor of the other. This graph mi-

nor theorem, inconspicuous though it may look at first glance, has made
a fundamental impact both outside graph theory and within. Its proof,
due to Neil Robertson and Paul Seymour, takes well over 500 pages.

So we have to be modest: of the actual proof of the graph minor
theorem this chapter will convey only a very rough impression. How-
ever, as with most truly fundamental results, the proof has sparked o↵
the development of methods of quite independent interest and potential.
This is true particularly for the use of tree-decompositions , a concept
that is not only central to graph minor theory but has found algorithmic
applications too, and tangles, a radically new notion of high connectivity
somewhere inside a given graph.

Section 12.1 gives an introduction to well-quasi-ordering , a concept
central to the graph minor theorem. In Section 12.2 we apply this to
prove the graph minor theorem for trees. We study tree-decompositions
in Sections 12.3–12.4, and tangles in Section 12.5. In Section 12.6 we look
at forbidden-minor theorems: results in the spirit of Kuratowski’s theo-
rem (4.4.6) or Wagner’s theorem (7.3.4), which describe the structure of
the graphs not containing some specified graph or graphs as a minor.

In Section 12.7 we give a direct proof of the ‘generalized Kuratowski’
theorem that embeddability in any fixed surface can be characterized by
forbidding finitely many minors. We conclude with an overview of the
proof and implications of the graph minor theorem itself.
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12.1 Well-quasi-ordering

A reflexive and transitive binary relation6 on a setX is a quasi-ordering.6, <

We write x < y for ‘x 6 y and y 66 x’. A quasi-ordering 6 on X is a
well-quasi-ordering , and the elements of X are well-quasi-ordered by 6,well-quasi-

ordering

if for every infinite sequence x0, x1, . . . in X there are indices i < j such
that xi 6 xj . Then (xi, xj) is a good pair of this sequence. A sequencegood pair

containing a good pair is a good sequence; thus, a quasi-ordering on X is
a well-quasi-ordering if and only if every infinite sequence in X is good.good/bad

sequence

An infinite sequence is bad if it is not good.

Proposition 12.1.1. A quasi-ordering 6 on X is a well-quasi-ordering

if and only if X contains neither an infinite antichain nor an infinite

strictly decreasing sequence x0 > x1 > . . ..

Proof. The forward implication is trivial. Conversely, let x0, x1, . . .(9.1.2)

be any infinite sequence in X. Let K be the complete graph on
N = {0, 1, . . .}. Colour the edges ij (i < j) of K with three colours:
green if xi 6 xj , red if xi > xj , and amber if xi, xj are incomparable.
By Ramsey’s theorem (9.1.2), K has an infinite induced subgraph whose
edges all have the same colour. If there is neither an infinite antichain
nor an infinite strictly decreasing sequence in X, then this colour must
be green, i.e. x0, x1, . . . has an infinite subsequence in which every pair
is good. In particular, the sequence x0, x1, . . . is good. ⇤

In the proof of Proposition 12.1.1, we showed more than was needed:
rather than finding a single good pair in x0, x1, . . ., we found an infinite
increasing subsequence. We have thus shown the following:

Corollary 12.1.2. If X is well-quasi-ordered, then every infinite se-

quence in X has an infinite increasing subsequence. ⇤

The following lemma, and the idea of its proof, are fundamental to
the theory of well-quasi-ordering. Let 6 be a quasi-ordering on a set X.
For finite subsets A,B ✓ X, write A6B if there is an injective mapping6
f :A!B such that a 6 f(a) for all a 2 A. This naturally extends 6 to
a quasi-ordering on [X]<!, the set of all finite subsets of X.[X]<!

Lemma 12.1.3. If X is well-quasi-ordered by 6, then so is [X]<!
.

[12.2.1]
[12.7.1]

Proof. Suppose that 6 is a well-quasi-ordering on X but not on [X]<!.
We start by constructing a bad sequence (An)n2N in [X]<!, as follows.
Given n 2 N, assume inductively that Ai has been defined for every
i < n, and that there exists a bad sequence in [X]<! starting with
A0, . . . , An�1. (This is clearly true for n = 0: by assumption, [X]<!

contains a bad sequence, and this has the empty sequence as an initial
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segment.) Choose An 2 [X]<! so that some bad sequence in [X]<! starts
with A0, . . . , An and |An| is as small as possible.

Clearly, (An)n2N is a bad sequence in [X]<!; in particular, An 6= ;
for all n. For each n pick an element an 2 An and set Bn := Anr {an}.

By Corollary 12.1.2, the sequence (an)n2N has an infinite increasing
subsequence (ani

)i2N. By the minimal choice of An0 , the sequence

A0, . . . , An0�1, Bn0 , Bn1 , Bn2 , . . .

is good; consider a good pair. Since (An)n2N is bad, this pair cannot
have the form (Ai, Aj) or (Ai, Bj), as Bj 6 Aj . So it has the form
(Bi, Bj). Extending the injection Bi!Bj by ai 7! aj , we deduce again
that (Ai, Aj) is good, a contradiction. ⇤

12.2 The graph minor theorem for trees

The graph minor theorem can be expressed by saying that the finite
graphs are well-quasi-ordered by the minor relation 4. Indeed, by Pro-
position 12.1.1 and the obvious fact that no strictly descending sequence
of minors can be infinite, being well-quasi-ordered is equivalent to the
non-existence of an infinite antichain, the formulation used earlier.

In this section, we prove a strong version of the graph minor theorem
for trees:

Theorem 12.2.1. (Kruskal 1960) [12.7.1]

The finite trees are well-quasi-ordered by the topological minor relation.

We shall base the proof of Theorem 12.2.1 on the following notion
of an embedding between rooted trees, which strengthens the usual em-
bedding as a topological minor. Consider two trees T and T 0, with roots
r and r0 say. Let us write T 6 T 0 if there exists an isomorphism ', from T 6 T 0

some subdivision of T to a subtree T 00 of T 0, that preserves the tree-order
on V (T ) associated with T and r. (Thus if x < y in T then '(x) < '(y)
in T 0; see Fig. 12.2.1.) As one easily checks, this is a quasi-ordering on
the class of all rooted trees.

Proof of Theorem 12.2.1. We show that the rooted trees are well-quasi- (12.1.3)

ordered by the relation 6 defined above; this clearly implies the theorem.
Suppose not. To derive a contradiction, we proceed as in the proof

of Lemma 12.1.3. Given n 2 N, assume inductively that we have chosen
a sequence T0, . . . , Tn�1 of rooted trees such that some bad sequence of
rooted trees starts with this sequence. Choose as Tn a minimum-order Tn
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Fig. 12.2.1. An embedding of T in T 0 showing that T 6 T 0

rooted tree such that some bad sequence starts with T0, . . . , Tn. For each
n 2 N, denote the root of Tn by rn.rn

Clearly, (Tn)n2N is a bad sequence. For each n, let An denote theAn

set of components of Tn � rn, made into rooted trees by choosing the
neighbours of rn as their roots. Note that the tree-order of these trees
is that induced by Tn. Let us prove that the set A :=

S
n2N An of allA

these trees is well-quasi-ordered.
Let (T k)k2N be any sequence of trees in A. For every k 2 N chooseTk

an n = n(k) such that T k
2 An. Pick a k with smallest n(k). Thenn(k)

T0, . . . , Tn(k)�1, T
k, T k+1, . . .

is a good sequence, by the minimal choice of Tn(k) and T k ( Tn(k). Let
(T, T 0) be a good pair of this sequence. Since (Tn)n2N is bad, T cannot
be among the first n(k) members T0, . . . , Tn(k)�1 of our sequence: then
T 0 would be some T i with i > k, i.e.

T 6 T 0 = T i 6 Tn(i) ;

since n(k) 6 n(i) by the choice of k, this would make (T, Tn(i)) a good
pair in the bad sequence (Tn)n2N. Hence (T, T 0) is a good pair also in
(T k)k2N, completing the proof that A is well-quasi-ordered.

By Lemma 12.1.3,1 the sequence (An)n2N in [A]<! has a good pair
(Ai, Aj); let f :Ai !Aj be injective with T 6 f(T ) for all T 2 Ai. Nowi, j

extend the union of the embeddings T ! f(T ) to a map ' from V (Ti)
to V (Tj) by letting '(ri) := rj . This map ' preserves the tree-order
of Ti, and it defines an embedding to show that Ti 6 Tj , since the edges
rir 2 Ti map naturally to the paths rjTj'(r). Hence (Ti, Tj) is a good
pair in our original bad sequence of rooted trees, a contradiction. ⇤

1 Any readers worried that we might need the lemma for sequences or multisets
rather than just sets here, note that isomorphic elements of An are not identified: we
always have |An| = d(rn).
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12.3 Tree-decompositions

Trees are graphs with some very distinctive and fundamental properties;
consider Theorem 1.5.1, or the more sophisticated example of Kruskal’s
theorem. It is therefore legitimate to ask to what degree those prop-
erties can be transferred to more general graphs, graphs that are not
themselves trees but tree-like in some sense.2 In this section, we study
a concept of tree-likeness that permits generalizations of all the tree
properties referred to above (including Kruskal’s theorem), and which
plays a crucial role in the proof of the graph minor theorem.

Let G be a graph, T a tree, and let V = (Vt)t2T be a family of
bags Vt ✓ V (G) indexed by the nodes t of T . The pair (T,V) is called a bags

tree-decomposition of G if it satisfies the following three conditions: tree-

decomposition

(T1) V (G) =
S

t2T Vt;

(T2) for every edge e 2 G there exists a t 2 T such that both ends of e
lie in Vt;

(T3) Vt1 \Vt3 ✓ Vt2 whenever t1, t2, t3 2 T satisfy t2 2 t1Tt3.

Conditions (T1) and (T2) together say that G is the union of the sub-
graphs G[Vt]. We call these subgraphs the parts of (T,V), and say that parts

(T,V) is a tree-decomposition of G into the bags Vt or the parts G[Vt].
Condition (T3) implies that the bags of (T,V) are organized roughly like
a tree (Fig. 12.3.1).

T G

t1

t2

t3
t?

?

e?
?

Vt3

Fig. 12.3.1. Edges and bags ruled out by (T2) and (T3)

Before we discuss the role that tree-decompositions play in the proof
of the minor theorem, let us note some of their basic properties. Consider
a fixed tree-decomposition (T,V) of G, with V = (Vt)t2T as above. (T,V), Vt

Perhaps the most important feature of a tree-decomposition is that
it transfers the separation properties of its tree to the graph decomposed:

2 What exactly this ‘sense’ should be will depend both on the property considered
and on its intended application.
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Lemma 12.3.1. Let t1t2 be any edge of T and let T1, T2 be the com-

[12.4.3]
[12.5]
[12.6.5]

ponents of T � t1t2, with t1 2 T1 and t2 2 T2. Then Vt1 \ Vt2 separates

U1 :=
S

t2T1
Vt from U2 :=

S
t2T2

Vt in G (Fig. 12.3.2).

t1

t2
U1

U2

Vt1 \ Vt2

T1

T2

Fig. 12.3.2. Vt1 \Vt2 separates U1 from U2 in G

Proof. Consider a shortest U1–U2 path. By (T1) it has length at most 1,
so by (T2) it has length 0. By (T3), its vertex lies in Vt1 \Vt2 . ⇤

We shall say that the separation {U1, U2} of G in Lemma 12.3.1 isinduced

separation

induced by the edge t1t2 of T , or more generally by (T,V). Its separator
U1 \U2 = Vt1 \Vt2 is the adhesion set of Vt1 and Vt2 .

The adhesion of a tree-decomposition is the maximum size of itsadhesion

adhesion sets. (If T is trivial, we let it be zero.) The torsos of a tree-torsos

decomposition are the supergraphs of its parts G[Vt] obtained by making
their adhesion sets complete: by adding to G[Vt] any edges not in G
whose ends lie in a common adhesion set Vt \Vt0 with tt0 2 E(T ).

Tree-decompositions are passed on to subgraphs, indeed to minors:

Lemma 12.3.2. For every H ✓ G, the pair
�
T, (Vt \ V (H))t2T

�
is a

[12.4.1]
[12.4.4]
[12.4.3]
[12.6.2] tree-decomposition of H. ⇤

Lemma 12.3.3. Suppose that G = IH with branch sets Uh, h 2 V (H).[12.4.1]
[12.4.3]

Let f :V (G)!V (H) be the map assigning to each vertex of G the index

of the branch set containing it. For each t 2 T let Wt := { f(v) | v 2 Vt },
and put W := (Wt)t2T . Then (T,W) is a tree-decomposition of H.

Proof. The assertions (T1) and (T2) for (T,W) follow immediately from
the corresponding assertions for (T,V). Now let t1, t2, t3 2 T be as
in (T3), and consider a vertex h 2 Wt1 \Wt3 of H; we show that h 2 Wt2 .
By definition of Wt1 and Wt3 , the set Uh meets both Vt1 and Vt3 . As Uh

is connected in G, this implies by Lemma 12.3.1 that Uh also meets Vt2 .
Hence h 2 Wt2 , by definition of Wt2 . ⇤

Here is another useful consequence of Lemma 12.3.1:
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Lemma 12.3.4. Any set of vertices not contained in a bag of (T,V) [12.4.3]

contains two vertices that are separated by an adhesion set of (T,V).

Proof. Given W ✓ V (G), orient the edges of T as follows. For each edge
t1t2 2 T , define U1, U2 as in Lemma 12.3.1; then Vt1 \ Vt2 separates U1

from U2. Unless Vt1 \Vt2 separates two vertices from W, we can find an
i 2 {1, 2} such that W ✓ Ui, and orient t1t2 towards ti.

Let t be the last node of a maximal directed path in T ; then all the
edges of T at t are oriented towards t. We claim that W ✓ Vt. Given
w 2 W , let t0 2 T be such that w 2 Vt0 . If t0 6= t, then the edge e at t
that separates t0 from t in T is directed towards t, so w also lies in Vt00

for some t00 in the component of T � e containing t. Therefore w 2 Vt

by (T3). ⇤

The following special case of Lemma 12.3.4 is used particularly often:

Corollary 12.3.5. Every complete subgraph of G is contained in some [12.6.2]

part of (T,V). ⇤

The tree-decomposition (T,V) of G is called simplicial if all the simplicial

separators Vt1 \ Vt2 induce complete subgraphs in G. This assumption
can enable us to lift assertions about the parts of the decomposition to
G itself. For example, if all the parts in a simplicial tree-decomposition
of G are k-colourable, then so is G (Exercise 19). The same applies to
the property of not containing a Kr minor for some fixed r.

Conversely, if G can be constructed recursively from a set H of
graphs by pasting along complete subgraphs, then G has a simplicial
tree-decomposition into elements of H. For example, by Wagner’s The-
orem 7.3.4, any graph without a K5 minor has a supergraph with a
simplicial tree-decomposition into plane triangulations and copies of the
Wagner graph W , and similarly for graphs without K4 minors (see Pro-
position 12.6.2).

Tree-decompositions may thus lead to intuitive structural charac-
terizations of graph properties. A particularly simple example is the
following characterization of chordal graphs:

Proposition 12.3.6. G is chordal if and only if G has a tree-decompo-
[12.4.4]
[12.6.2]

sition into complete parts.

Proof. We apply induction on |G|. We first assume that G has a tree- (5.5.1)

decomposition (T,V) such that G[Vt] is complete for every t 2 T ; let
us choose (T,V) with |T | minimum. If |T | 6 1, then G is complete
and hence chordal. So let t1t2 2 T be an edge, and for i = 1, 2 define
Ti and Gi := G[Ui] as in Lemma 12.3.1. Then G = G1 [G2 by (T1)
and (T2), and V (G1 \G2) = Vt1 \ Vt2 by the lemma; thus, G1 \G2 is
complete. Since (Ti, (Vt)t2Ti

) is a tree-decomposition of Gi into complete
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parts, both Gi are chordal by the induction hypothesis. (By the choice
of (T,V), neither Gi is a subgraph of G[Vt1 \ Vt2 ] = G1 \G2, so both
Gi are indeed smaller than G.) Since G1 \G2 is complete, any induced
cycle in G lies in G1 or in G2 and hence has a chord, so G too is chordal.

Conversely, assume that G is chordal. If G is complete, there is
nothing to show. If not then, by Proposition 5.5.1, G is the union of
smaller chordal graphs G1, G2 with G1 \G2 complete. By the induction
hypothesis, G1 and G2 have tree-decompositions (T1,V1) and (T2,V2)
into complete parts. By Corollary 12.3.5, G1 \ G2 lies inside one of
those parts in each case, say with indices t1 2 T1 and t2 2 T2. As one
easily checks, ((T1[T2)+ t1t2,V1[V2) is a tree-decomposition of G into
complete parts. ⇤

Let us wind up this section with an application of tree-decompo-
sitions to connectivity that generalizes the idea of the block-cutvertex
tree from Lemma 3.1.4. A set U ✓ V (G) of at least k vertices is (< k)-
inseparable in G if no two vertices from U can be separated in G by
fewer than k other vertices (which may or may not lie in U).

A maximal (< k)-inseparable set of vertices is a k-block . Thus, thek-block

1-blocks of a graph are its components; its 2-blocks are the non-singleton
vertex sets spanning a block as defined in Chapter 3. In general, a k-
block need not induce a highly connected subgraph: the many paths
between its vertices that are needed to make it (< k)-inseparable can all
lie outside it. Its ‘connectivity’ is thus measured in the ambient graph;
its vertices themselves may even be independent.

Theorem 12.3.7. For every integer k > 1, every graph G has a tree-

decomposition (T,V) with the following properties:

(i) (T,V) has adhesion < k.

(ii) Distinct k-blocks lie in di↵erent bags. Moreover, every two blocks

are separated by an adhesion set that is no larger than the smallest

set of vertices that separates them in G.

(iii) Every automorphism of G acts on the set of bags of (T,V), and
the action on V (T ) which this induces is an automorphism of T .

Note that, by (i) and Lemma 12.3.4, every k-block is contained in some
bag. This is unique by (i) and (T3), so the bags in (ii) are well de-
fined. Assertion (iii) means that, for every automorphism ' of G and
every t 2 T , the set '(Vt) is another bag Vt0 (possibly Vt), and this map
': t 7! t0 is an automorphism of T .3 Such tree-decompositions are called
canonical .

3 This can be important both theoretically and in applications. For example,
when a computer constructs a tree-decomposition, then this may depend on how we
present the graph to it as input. But if it finds a canonical decomposition, then this
will always be the same up to automorphism, in the sense just defined.
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12.4 Tree-width

As indicated by Figure 12.3.1, the bags of (T,V) reflect the structure of
the tree T , so in this sense the graph G decomposed resembles a tree.
However, this is valuable only inasmuch as the structure of G within
each part is negligible: the smaller the bags, the closer the resemblance.

This observation motivates the following definition. The width of width

(T,V) is the number

max
�
|Vt|� 1 : t 2 T

 
,

and the tree-width tw(G) of G is the least width of any tree-decomposi- tree-width

tw(G)
tion of G. As one easily checks,4 trees themselves have tree-width 1.

By Lemmas 12.3.2 and 12.3.3, the tree-width of a graph will never
be increased by deletion or contraction: (12.3.2)

(12.3.3)

Lemma 12.4.1. If H 4 G then tw(H) 6 tw(G). ⇤ [12.6.2]

Graphs of bounded tree-width are su�ciently similar to trees that it
becomes possible to adapt the proof of Kruskal’s theorem to the class of
these graphs; very roughly, one has to iterate the ‘minimal bad sequence’
argument from the proof of Lemma 12.1.3 tw(G) times. This takes us a
step further towards a proof of the graph minor theorem:

Theorem 12.4.2. (Robertson & Seymour 1990) [12.7.1]
[12.7.3]

For every integer k > 0, the graphs of tree-width < k are well-quasi-

ordered by the minor relation.

In order to make use of Theorem 12.4.2 for a proof of the full graph
minor theorem, we should be able to say something about the graphs
which it does not cover, i.e., to deduce some information about a graph
from the assumption that its tree-width is large. Our next result, the
tree-width duality theorem, achieves just that: it identifies a canonical
obstruction to small tree-width, a structural phenomenon that occurs in
a graph if and only if its tree-width is large.

Let us say that two subsets of V (G) touch if they have a vertex in touch

common or G contains an edge between them. A set of mutually touch-
ing connected vertex sets in G is a bramble. Extending our terminology bramble

of Chapter 2, we say that a subset of V (G) covers (or is a cover of) a cover

bramble B if it meets every element of B. The least number of vertices
covering a bramble is the order of that bramble. A k-bramble is one of order

order k.

4 Indeed the ‘�1’ in the definition of width serves no other purpose than to make
this statement true.
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A typical example of a bramble is the set of crosses in a grid. The
k⇥ k grid is the graph on {1, . . . , k}2 with the edge setgrid

{ (i, j)(i0, j0) : |i� i0|+ |j� j0| = 1 } .

The crosses of this grid are the k2 sets

Cij := { (i, `) | ` = 1, . . . , k } [ { (`, j) | ` = 1, . . . , k } .

Thus, the cross Cij is the union of the grid’s ith row and its jth column.
Clearly, the crosses of the k⇥k grid form a k-bramble: they are covered
by any row or column, while any set of fewer than k vertices misses both
a row and a column, and hence a cross.

Theorem 12.4.3. (Seymour & Thomas 1993)
Let k > 0 be an integer. A graph has tree-width < k if and only if it

contains no bramble of order > k.

Proof. Let G = (V,E) be a graph. For the forward implication, let B be

(3.3.1)
(12.3.1)
(12.3.2)
(12.3.3) any bramble in G. We show that every tree-decomposition (T, (Vt)t2T )

of G has a bag that covers B.
As in the proof of Lemma 12.3.4 we start by orienting the edges t1t2

of T . If X := Vt1 \Vt2 covers B, we are done. If not, then for each B 2 B
disjoint from X there is an i 2 {1, 2} such that B ✓ Ui rX (defined as
in Lemma 12.3.1); recall that B is connected. This i is the same for all
such B, because they touch. We now orient the edge t1t2 towards ti.

If every edge of T is oriented in this way, it has a node t all whose
incident edges are oriented towards it. Then Vt covers B – just as in the
proof of Lemma 12.3.4.

For our proof of the converse implication we need the notion of a
good tree-decomposition (T,V) of G, with V = (Vt)t2T say: one wheregood

|Vt| 6 k for at least one t and |Vt| 6 k whenever t is not a leaf of T .
Then |Vt| 6 k for the unique neighbour t of any leaf x with |Vx| > k.
The set Vx rVt 6= ; is the petal of such a leaf x with |Vx| > k.petal

Suppose now that tw(G) > k, and let us find a bramble of order > k.
Note that G has a good tree-decomposition – for example, with T = K2

and parts ;, V. And since tw(G) > k, every good tree-decomposition of G
has a petal. Let B be a minimal set of petals of good tree-decompositions
satisfying

(i) B contains a petal of every good tree-decomposition;

(ii) B is closed under taking supersets among petals: if X ✓ X 0 are
both petals of good tree-decompositions and X 2 B, then X 0

2 B.

Let B0 := {X 2 B | G[X] is connected }. To complete our proof we show
that B0 is a bramble of order > k.
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Let us show first that no set Z of at most k vertices covers B0. As
tw(G) > k we have V rZ 6= ;, and if C1, . . . , Cn are the components of
G�Z, then G has a tree-decomposition into Z and the sets V (Ci)[Z,
whose decomposition tree is a star with Z as its central bag. This is
a good tree-decomposition, so by (i) it has a petal in B. But any such
petal is one of the Ci, so it is connected and thus lies in B0. Hence Z
fails to cover B0, as claimed.

It remains to show that every two sets in B0 touch. In fact, let us
show that every two sets in B touch. If not, we can find X,Y 2 B that
do not touch and are ✓-minimal in B. Since Br {X} and Br {Y } still
satisfy (ii), the minimality of B implies that they violate (i). So there
exists a good tree-decomposition (T1,V1) whose only petal in B is X,
and a good tree-decomposition (T2,V2) whose only petal in B is Y . Let
us choose T1 and T2 disjoint.

Let X be the petal of x 2 T1, and Y the petal of y 2 T2. By
Lemma 12.3.1, x is unique in T1 and y is unique in T2. Deleting any
vertices outside N(X) and N(Y ) from the adhesion sets of x and y,
respectively, we may assume that their bags are exactly X [N(X) and
Y [N(Y ). (The trimmed bags still have size > k, since otherwise the
modified tree-decomposition would have no petal in B.) Since any petal
in (T1,V1) containing Y would lie in Br {X}, by (ii), there is no such
petal. Similarly, no petal in (T2,V2) contains X.

To complete our proof we show the following:

There is a good tree-decomposition (T,V) all whose petals
are contained in petals of (T1,V1) and (T2,V2) and in which

neither X nor Y is a petal.

(⇤)

Since X and Y are the only petals of (T1,V1) and (T2,V2) in B and have
no proper subsets in B, the (T,V) from (⇤) has no petal in B, by (ii) for B.
As this contradicts (i), our proof will then be complete.

So let us prove (⇤). As X and Y do not touch, the set N(X)
is disjoint from both X and Y and separates them in G. Hence G
has a separation {A,B} such that X ✓ A r B and Y ✓ B r A. As A,B

|N(X)| 6 k since X is a petal, choosing {A,B} of minimum order
ensures that S := A \B has size at most k. By the minimality of S S

and Menger’s Theorem 3.3.1, there is a family {Ps | s 2 S } of disjoint Ps, Qs

S–N(X) paths in G[A] and a family {Qs | s 2 S } of disjoint S–N(Y )
paths in G[B].

Let H be the minor of G obtained by deleting A r
S

s2S V (Ps) H

and contracting each of the paths Ps. Identifying the contracted branch
sets V (Ps) with their representatives s, we may think of H as obtained
from G[B] by adding some edges on S. Let (T1,V 0

1
) be the tree-decompo-

sition which (T1,V1) induces on H as in Lemmas 12.3.2 and 12.3.3, and
think of it as a tree-decomposition of G[B]. Thus for any t 2 T1, with a
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bag V 1

t 2 V1, say, its bag Vt in V 0

1
is

Vt = (V 1

t \B)[ { s 2 S | V 1

t \V (Ps) 6= ; } (1)

(Fig. 12.4.1). In particular, Vx = S, since Vx =X[N(X) ✓ A andN(X)
meets every Ps. Similarly, let J be the minor of G obtained by deletingJ

B r
S

s2S V (Qs) and contracting the paths Qs, and let (T2,V 0

2
) be the

tree-decomposition which (T2,V2) induces on J . As before, think of this
as a tree-decomposition of G[A] in which S is the bag corresponding to y.

s

Y

S

A B

X
Vt

Ps

XN(  )

Fig. 12.4.1. To obtain Vt from V 1
t \B, add two vertices from S

Let T be obtained from the (disjoint) trees T1 and T2 by identifyingT

x and y into a new node r. As Y and X are non-empty, x is not the only
node of T1 and y is not the only node of T2, so r is not a leaf of T . Let
Vr := S. For all t 2 T � r let Vt be the bag in V 0

1
or V 0

2
that correspondsVt

to t there, thought of as a subset of B if t 2 T1, or of A if t 2 T2. We
claim that (T,V) with V = (Vt)t2T is a good tree-decomposition of G(T,V)

satisfying (⇤).
Using that (T1,V 0

1
) and (T2,V 0

2
) are tree-decompositions of G[B]

and G[A], it is easy to check that (T,V) is indeed a tree-decomposition
of G. The non-leaves of T are precisely those of T1 and T2, plus r. We
have already seen that |S| 6 k. For t 2 T1 � x, its bag Vt in V is no
larger than its bag V 1

t in V1: by (1), there exists for every s 2 Vt r V 1

t

a vertex of Ps in V 1

t rVt. Similarly, the bags Vt with t 2 T2 are no larger
than their corresponding bags in V2. Thus, (T,V) is good.

To show that (T,V) satisfies (⇤), consider a petal Z in (T,V) of aZ

leaf z of T . Then z is a leaf also of T1 or T2. Let us assume that z 2 T1;
then Vz ✓ B. By axiom (T3) for (T,V), any vertex of Vz \Vr lies in the
adhesion set of Vz, so Z \ S = ;. Hence Z ✓ B rA. But this implies
that Z lies inside the petal Z1 of z in (T1,V1): recall that the bag V 1

z

corresponding to z in V1 has size at least |Vz| > k (so it can have a petal)
and di↵ers from Vz only by vertices in A, and likewise for the neighbour
of z in T1 and T . Finally, Z 6= X because X ✓ ArB, and Z 6= Y since
the petal Z1 ◆ Z of z in (T1,V1) does not contain Y by assumption.
This completes the proof of (⇤), and hence of the theorem. ⇤
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Often, Theorem 12.4.3 is stated in terms of the bramble number of a
graph, the largest order of any bramble in it. The theorem then says that
the tree-width of a graph is exactly one less than its bramble number.

How useful even the easy forward implication of Theorem 12.4.3 can
be is exemplified once more by our example of the crosses bramble in the
k⇥ k grid: this bramble has order k, so by the theorem the k⇥ k grid
has tree-width at least k� 1. (Try to show this without the theorem!)

In fact, the k ⇥ k grid has tree-width k (Exercise 34). But more
important than its precise value is the fact that the tree-width of grids
tends to infinity with their size. For as we shall see, large grid minors
pose another canonical obstruction to small tree-width: not only do large
grids (and hence all graphs containing large grids as minors; cf. Lemma
12.4.1) have large tree-width, but conversely every graph of large tree-
width has a large grid minor (Theorem 12.6.3).

In Section 12.5 we shall place these within the wider framework of
tangles, another central notion in graph minor theory. Using tangles one
can formulate a more general duality theory between highly connected
substructures and trees, of which Theorem 12.4.3 is but a special case.

Tree-width can also be expressed as follows:

Proposition 12.4.4. tw(G) = min
�
!(H)� 1 | G ✓ H; H chordal

 
.

Proof. By Corollary 12.3.5 and Proposition 12.3.6, each of the graphs H
(12.3.2)
(12.3.5)
(12.3.6)considered for the minimum has a tree-decomposition of width !(H)�1.

Every such tree-decomposition induced one of G by Lemma 12.3.2, so
tw(G) 6 !(H)� 1 for every H.

Conversely, let us construct an H as above with !(H)� 1 6 tw(G).
Let (T,V) be a tree-decomposition of G of width tw(G). For every
t 2 T let Kt denote the complete graph on Vt, and put H :=

S
t2T Kt.

Clearly, (T,V) is also a tree-decomposition of H. By Proposition 12.3.6,
H is chordal, and by Corollary 12.3.5, !(H)� 1 is at most the width of
(T,V), i.e. at most tw(G). ⇤

A tree-decomposition (T,V) of G with V = (Vt)t2T is linked , or linked/lean

lean, if it satisfies the following condition:

(T4) Given t1, t2 2 T and vertex sets Z1 ✓ Vt1 and Z2 ✓ Vt2 such that
|Z1| = |Z2| =: k, either G contains k disjoint Z1–Z2 paths or there
exists an edge tt0 2 t1Tt2 with |Vt \Vt0 | < k.

The ‘branches’ in a lean tree-decomposition are thus stripped of any bulk
not necessary to maintain their connecting qualities. Indeed, if a branch
is thick (i.e. the adhesion sets Vt \ Vt0 along a path in T are all large),
then G is highly connected along this branch, and the bags themselves
are no larger than their ‘external connectivity’ in G requires: for t1 = t2,
(T4) says that two k-sets of vertices will only lie in a common bag if
they cannot be separated (in G) by fewer than k vertices.
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In our quest for tree-decompositions into ‘small’ bags, we now have
two criteria to choose between: the global ‘worst case’ criterion of width,
and the more subtle local criterion of leanness. Surprisingly, it is always
possible to find a tree-decomposition that is optimal with respect to both
criteria at once:

Theorem 12.4.5. (Thomas 1990)
Every graph G has a lean tree-decomposition of width tw(G).

Another natural feature one might ask of a tree-decomposition is
that its parts, as induced subgraphs of G, be connected. Let us call such
a tree-decomposition connected , and let the connected tree-width ctw(G)
of G be the least width of a connected tree-decomposition of G.

The connected tree-width of most graphs is greater than their or-
dinary tree-width. For example, every cycle has tree-width 2, but
ctw(Cn) = dn/2e (Exercise 33). And unlike ordinary tree-width, the
connected tree-width of a subgraph of G can be greater than that of G.
(For example, let G be obtained from a long cycle by adding a chord
between opposite vertices.) However, if C ✓ G is a geodesic cycle, i.e.,
if dC(u, v) = dG(u, v) for all vertices u, v 2 C, then ctw(C) 6 ctw(G).

The presence of long geodesic cycles in a graph thus is an obstruction
to small connected tree-width – as is, trivially, large ordinary tree-width.
By the following theorem, however, these are the only obstructions:

Theorem 12.4.6. There is a function f :N2!N such that every graph

of tree-width 6 w 2 N that has no geodesic cycle of length > k 2 N has

connected tree-width at most f(w, k).

12.5 Tangles

We have already in this chapter met a few types of substructures of possi-
bly sparse graphs that are highly connected in some sense, but which are
not just k-connected subgraphs (or minors) for some large k. Large grid
minors are an example, the k-blocks defined at the end of Section 12.3
are another, as are brambles of high order. All these substructures have
one feature in common: for every low-order separation of the graph they
lie essentially, though not necessarily entirely, on one of its two sides.

For example, given a bramble B of order k in a graph G = (V,E), ifG = (V,E)

{A,B} is a separation of order < k then ArB or BrA, but not both,
contains a set from B. This helped us prove the easy implication of the
tree-width duality theorem: B orients every edge of the decomposition
tree T of any tree-decomposition (T,V) of adhesion < k ‘towards’ the
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side of its induced separation that contains one of the sets in B, and the
edges thus oriented point to a central node t of T for which Vt covers B.

It has turned out that, more often than not, the only feature of a
highly connected substructure that mattered in the proofs of theorems
about it was the information of how it ‘orients’ the low-order separations
of G in this way. Collecting just this information together leads to a more
abstract notion of a highly connected substructure, called a tangle. The
purpose of this section is to make this precise, to prove a duality theorem
for tangles in the spirit of Theorem 12.4.3, and to point out how this
setting can be used to express the duality between global tree-structure
of a graph and its highly connected substructures more generally.

In the context of tangles, we often denote the order |A \ B| of a |s|

separation s = {A,B} simply as |s|. The orientations of {A,B} are the
two oriented separations (A,B) and (B,A). We say that (A,B) is ori- oriented

separation

ented, or ‘points’, towards B and its subsets. Given oriented separations
(A,B) and (C,D), we write (A,B) > (C,D) if A ✓ C and B ◆ D. 6

Two separations of G are nested if they have 6-comparable orienta- nested

tions; otherwise they cross. The separation {E,F} in Figure 12.5.1, for cross

example, is nested with the two crossing separations {A,B} and {C,D},
because (E,F ) > (A,B), (C,D). The separations induced by a tree-
decomposition are clearly nested, and every nested set of separations of
a graph is induced by some tree-decomposition; see after Lemma 12.3.1.

Given two separations {A,B} and {C,D} of G, it is easy to check
that also {A [ C,B \D} is a separation of G. We call the four sepa-
rations of this form the corners of the separations {A,B} and {C,D} corners

(Fig. 12.5.1). They come in pairs of opposite corners: the corner opposite
to {A [D,B \ C}, for example, is {B [ C,A \D}. Two corners that

opposite

adjacent

are not opposite are adjacent . The adjacent corners {A[C,B \D} and
{A[D,B \C} lie on the same side of {A,B}, on its B-side.

D

C

E F

A

B

B \ D

Fig. 12.5.1. The separation {A[C, B\D} is one of the four cor-
ners of {A, B} and {C, D}. The separation {E, F} is
nested with {A, B} and {C, D} and all their corners.
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The sum of the orders of a pair of opposite corners always equals the
sum of the orders of the original two crossing separations. For example:

|(A[D)\ (B \C)|+ |(B [C)\ (A\D)| = |A\B|+ |C \D|.

The 6-part of this equality, the fact that opposite corners c, d of any two
separations r, s satisfy

|c|+ |d| 6 |r|+ |s| , (†)submodularity

is sometimes referred to as submodularity of the order function s 7! |s|. It
implies, for example, that of any two opposite corners of two separations
of order < k at least one also has order < k. More generally, (†) implies
that |c| 6 |r| or |d| 6 |s| (or both), which is the standard way to apply it.

Given a set S of separations, we write
!
S := { (A,B) | {A,B} 2 S }!

S

for the set of all their orientations. An orientation of S is a subset of
!
S

that contains for every element of S exactly one of its two orientations.
Unless otherwise mentioned, from now on in this section S will be the setS

of all the separations of G, so
!
S is the set of all its oriented separations.

A set � of oriented separations of G is consistent if it does notconsistent

contain (B,A) whenever (A,B) > (C,D) with (C,D) 2 �.5

For example, if (T,V) is a tree-decomposition of G with V = (Vt)t2T ,
and Vt is not contained in any other bag, then orienting the separations
that (T,V) induces towards Vt orients them consistently. A k-block X
of G even defines a consistent orientation of the entire set

Sk := { s 2 S : |s| < k }Sk

of separations of order < k of G: the orientation { (A,B) 2

�!
Sk | X ✓ B }.

A bramble B of order n > k also defines an orientation of Sk: the
set O = { (A,B) 2

�!
Sk | 9X 2 B : X ✓ B rA }. Unlike in the case of

k-blocks, there need not be any fixed bramble set that lies in every B
with (A,B) 2 O; indeed the intersection of all these B may be empty.
(Example?) But O then shows the large order of B in another way, in
that we cannot cover B by few sets A with (A,B) 2 O: since any bramble
set meeting A also meets A\B (as it touches the bramble set in BrA),
and |A\B|6 k�1, we need at least n/(k�1) sets A to cover B. The idea
that this is enough not only to reflect but to constitute a kind of highly
connected substructure in G has led to the following concept of a tangle.

An orientation O of a set of separations avoids a set F of subsetsavoids

of
!
S if no subset of O is an element of F . A tangle of order k in G, or

k-tangle for short, is an orientation of Sk that avoidstangle

T :=
�
{(A1, B1), (A2, B2), (A3, B3)}

��G[A1][G[A2][G[A3] = G
 
.T

5 Intuitively, � is consistent if no two of its elements point away from each other.
In particular, it will not contain both orientations of any given separation.
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Note that the separations (Ai, Bi) in the definition of T need not be
distinct. For example, no tangle contains a separation of the form (V,A).
And if (A,B) > (C,D) then no tangle contains both (B,A) and (C,D),
since G[B] [G[C] ◆ G[D] [G[C] = G. Thus, tangles are consistent.
More generally, tangles ⌧ clearly have the following two properties:

If ⌧ contains the oriented separations (A,B) and (C,D),
it does not contain their oriented corner (B \D,A[C).

(P)

Given separations {A,B} and {C,D}, if ⌧ contains (A,B)
it does not contain both (B\D,A[C) and (B\C,A[D).

(R)

Sets of oriented separations satifying (P) are known as profiles, and (P) profile

is the profile property of tangles.6 Note that it can be satisfied in two
ways: either by (A[C,B \D) 2 ⌧ , or by the fact that ⌧ does not orient
the corner {A[C,B \D} at all; this happens if that corner has order k
or larger, but ⌧ is only a k-tangle. Profiles satisfying (R) are robust .

Like its k-blocks, compare Theorem 12.3.7, the tangles of a graph
can be ‘separated’ by a tree-decomposition. Since the tangles in a graph
see it in terms of its separations rather than its subgraphs, this is natu-
rally expressed not in terms of the bags of the decomposition but of the
separations it induces.

Let us say that a separation distinguishes two tangles, not neces- distinguish

sarily of the same order, if they both orient it but do so di↵erently.
Distinct tangles of the same order are always distinguished by some
separation; otherwise they would be identical. But a k-tangle cannot be
distinguished from the `-tangle it induces for ` < k, the set of those of induced

tangle

its oriented separations that have order < `.
A separation that distinguishes two tangles does so e�ciently if e�cient

they are not distinguished by any separation of smaller order. A set T
of separations distinguishes some set of tangles in a graph G e�ciently

if every two tangles in this set that are distinguished by some separation
of G are distinguished e�ciently by a separation in T .

Theorem 12.5.1. (Robertson & Seymour 1991)
Every graph G has a nested set of separations that distinguishes all the

tree-of-

tangles

theorem
tangles in G e�ciently.

It is not hard to construct from any nested set of separations, such as
that in Theorem 12.5.1, a tree-decomposition that induces precisely this
set of separations as defined after Lemma 12.3.1 (Exercises 16 and 51).

6 If we think of tangles as orienting separations towards their ‘big’ side, condition
(P) is reminiscent of ultrafilters: the intersection of two big sets cannot be small.
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We shall give two proofs for Theorem 12.5.1. The first proof is based
on a combinatorial lemma, the splinter lemma, which encapsulates the
essence of earlier direct proofs that sought to find the required nested
set of tangle-distinguishing separations directly among the corners of
arbitrary e�cient tangle-distinguishing separations.

Our second proof of Theorem 12.5.1 comes with an important
strengthening: the nested set of tangle-distinguishing separations it finds
is not constructed by a sequence of choices, as in the first proof, but is
identified by an explicitly stated property of separations. As a conse-
quence, this set is invariant under the automorphisms of the graph G.
We state this result separately as Theorem 12.5.8.

In both proofs we shall need the following lemma about nested and
crossing separations (see Figure 12.5.1):

Lemma 12.5.2. (Fish Lemma)
Any separation r that is nested with two crossing separations s and t is
also nested with their four corners.

Proof. Since r is nested with s, the two have orientations !r > !s (Ex. 40).
Similarly, r and t have orientations !r 0 > !

t 0. If !r 0 6= !r , then !r 6 !
t

with
!
t the inverse of

!
t 0. Then !s 6 !r 6 !

t , showing that s and t are
nested. This contradicts our assumptions, so !r 0 = !r > !s ,

!
t 0.

Let !r =: (E,F ) and !s =: (A,B) and
!
t 0 =: (C,D) (Fig. 12.5.1).

Then (E,F ) > (A \ C,B [ D) as well as, more trivially, (E,F ) >
(A[C,B\D) and (E,F ) > (A[D,B\C) and (E,F ) > (C[B,A\D).
In particular, r is nested with all four corners of s and t. ⇤

Let us say that a family (A1, . . . , An) of sets of separations of a graph
splinters if, for all i 6= j, any crossing ai 2 Ai rAj and aj 2 Aj rAi

have a corner in Ai [Aj .

Lemma 12.5.3. (Splinter Lemma)
Every splintering family (A1, . . . , An) of non-empty sets of separations

has a nested family (a1, . . . , an) of representatives ai 2 Ai.

Proof. We apply induction on n, which starts trivially with n = 1. For
the induction step let (a1, . . . , an�1) be a nested family of representativesa1, . . . , an�1

ai 2 Ai of (A1, . . . , An�1). If any of those ai lies in An, let an := ai ;
then (a1, . . . , an) is as desired. Suppose now that ai 2 Ai rAn for all
i < n, and choose an 2 An so as to cross ai for as few i < n as possible.an

Let us show that, for all i < n, the set A0

i of elements of Ai thatA0
i

are nested with an is non-empty. If an 2 Ai then an 2 A0

i; we may thus
assume that an 2 AnrAi (as well as ai 2 AirAn). We may also assume
that ai and an cross, as otherwise ai 2 A0

i. Since (A1, . . . , An) splinters,
ai and an have a corner c in Ai[An. By the fish lemma, c is nested with
all the aj that an is nested with (since these aj are also nested with ai),
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and with ai in addition. Hence c /2 An by the choice of an, and therefore
c 2 Ai. Since c is nested with an, this yields c 2 A0

i. This completes the
proof that the A0

i are non-empty.
Let us show that the family (A0

1
, . . . , A0

n�1
) splinters. Consider any

crossing separations a0i 2 A0

irA0

j and a0j 2 A0

j rA0

i with i 6= j. Since a0i is
nested with an it cannot lie in Aj rA0

j , and similarly a0j /2 AirA0

i. Thus,
a0i 2 AirAj and a0j 2 Aj rAi. As (A1, . . . , An) splinters, a0i and a0j have
a corner c in Ai [Aj . We need to show that c 2 A0

i [A0

j , i.e., that c is
nested with an. But this follows from the fish lemma, since an is nested
with both a0i 2 A0

i and a0j 2 A0

j .
As the family (A0

1
, . . . , A0

n�1
) splinters, the induction hypothesis

implies that it has nested representatives a00i 2 A0

i. As these are nested
with an by definition of the A0

i, the family (a00
1
, . . . , a00n�1

, an) can serve
as our desired nested family of representatives of (A1, . . . , An). ⇤

Proof of Theorem 12.5.1. Pick an enumeration of the distinguishable
pairs of tangles in G, and let Ai denote the set of separations of G that Ai

e�ciently distinguish the ith pair. By Lemma 12.5.3 it su�ces to show
that the family of these Ai splinters.

To prove this, consider any indices i 6= j with crossing separations
s 2 Ai rAj and t 2 Aj rAi. Assume that these have orders |s| 6 |t|;
that s e�ciently distinguishes the ith pair of tangles, � and �0; and that
t e�ciently distinguishes the jth pair of tangles, ⌧ and ⌧ 0 (Figure 12.5.2).
As |s| 6 |t|, the tangle ⌧ orients s; we may assume it orients s as � does.
As s is not in Aj but has order |s| 6 |t|, it does not distinguish ⌧ from ⌧ 0;
so ⌧ 0 too orients s as ⌧ and � do.

Fig. 12.5.2. Crossing separations s 2 Ai r Aj and t 2 Aj r Ai

and their four corner separations c, c0, d, d0

Consider the corner c of s and t at the top right in Figure 12.5.2. If c
has order |c| 6 |t|, then ⌧ orients it. Since ⌧ has the profile property (P),
and it orients t towards the right in the diagram and s upwards, it cannot
orient c towards the centre. So ⌧ orients c towards the top right. But
⌧ 0 orients c towards the centre, since it orients t towards the left and
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is consistent. Thus, c distinguishes ⌧ from ⌧ 0, and by our assumption
that |c| 6 |t| it does so e�ciently, giving c 2 Aj as desired. We may
thus assume that |c| > |t|. Analogously with c0 instead of c, we are done
unless |c0| > |t|, which we therefore assume.

But now, by submodularity (†), these assumptions about the orders
of c and c0 imply that their opposite corners d0 and d have order < |s|.
Hence both � and �0 orient them. As � orients s upwards, it must orient
d and d0 towards the centre, by consistency. But since d and d0 have
order < |s|, they cannot distinguish � from �0, so �0 too orients them
towards the centre. As �0 orients s downwards, it thus violates (R).

This contradiction completes the proof that the family of all Ai

splinters, as was our aim to show. ⇤

The construction of a nested set of e�cient tangle-distinguishing
separations in our first proof of Theorem 12.5.1 makes a number of
choices, those of the an at the start of the proof of the splinter lemma.
Objects defined for a graph without making such choices, but so that
they are invariant under its automorphisms,7 are called canonical . Ourcanonical

second proof of Theorem 12.5.1 provides such a canonical nested set
of tangle-distinguishing separations: the set of all separations that ef-

ficiently distinguish some pair of tangles and cross as few other such

separations as possible. We shall make this definition precise later.
Given a pair ⌧, ⌧ 0 of tangles in G, let D(⌧, ⌧ 0) denote the set ofD(⌧, ⌧ 0)

separations of G that distinguish ⌧, ⌧ 0 e�ciently. Our second proof of
Theorem 12.5.1 rests on a property of these sets that has its own name.
An entanglement in G is any non-empty set T of separations of G thatentangle-

ment

satisfies the following condition:

Whenever some t 2 T is crossed by a separation s of G so

that two corners of s and t that lie on the same side of t
have order at most |t|, then at least one of these corners

has order exactly |t| and also lies in T .

(E)

Lemma 12.5.4. For every pair ⌧, ⌧ 0 of distinguishable tangles in G, the

separations of G that distinguish them e�ciently form an entanglement.

Proof. Let crossing separations t 2 D(⌧, ⌧ 0) and s be given as in condi-
tion (E), with corners c, d on the same side of t. These are as shown in
Figure 12.5.2, together with the tangles ⌧, ⌧ 0 that t distinguishes.

Since c and d have order at most |t|, the tangle ⌧ orients them. As ⌧
orients t towards the right, it cannot orient both c and d inwards, by (R).
But if ⌧ orients c outwards, say, then c distinguishes ⌧ from ⌧ 0, which
orients t towards the left and hence, by consistency, orients c inwards.
Since t distinguishes ⌧ and ⌧ 0 e�ciently we cannot have |c| < |t|, so
|c| = |t| as required. ⇤

7 See the discussion following Theorem 12.3.7 for why this can be important.
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We need three more general lemmas about crossing separations.

Lemma 12.5.5. Let s, t be two crossing separations of G, with opposite

corners c, d. Then every separation r of G satisfies the following:

(i) If r crosses c or d, it also crosses s or t.

(ii) If r crosses c and d, it also crosses s and t.

Proof. (i) is equivalent to the fish lemma (12.5.2).
(ii) If r = {A,B} and {C,D} 2 {s, t} are nested, they have compa-

rable orientations; indeed we may assume that (A,B) > (C,D) (Ex. 40).
Since c and d are opposite corners of s and t, one of them lies on the
D-side of {C,D}. This corner has a side contained in D ✓ B, while its
other side contains C ◆ A. It is therefore nested with r. ⇤

Given a set S of separations of G and any separation a of G, let S

xS(a) =: x(a) denote the number of separations in S that a crosses. x

Lemma 12.5.6. Let s, t 2 S be two crossing separations, with opposite

corners c, d. Then x(c)+x(d) < x(s)+x(t).

Proof. To evaluate x on our separations c, d, s, t, we have to count the
separations r 2 S which they cross. Counting only separations r /2 {s, t},
we obtain x(c)+x(d) 6 x(s)+x(t) from Lemma 12.5.5. The inequality
gets strict when we allow r 2 {s, t}, since s and t cross each other but
not their corners c and d. ⇤

Let S be any set of sets of separations of G.8 Let us say that a
separation s of G is S-friendly if it lies in some S 2 S such that no other S-friendly

separation in S crosses fewer separations in
S

S than s does. Note that
every S 2 S has at least one S-friendly element.

Lemma 12.5.7. Suppose that for all sets S, S0
2 S, possibly S = S0

,

and any crossing separations s 2 S and s0 2 S0
, one of the following two

assertions holds:

(i) s and s0 have opposite corners c 2 S and c0 2 S0
;

(ii) s and s0 have pairs of opposite corners c, d in S and c0, d0 in S0
.

Then the S-friendly separations of G are nested.

Proof. Let us show that crossing separations s, s0 of G cannot both be
S-friendly. Suppose they are. Then s 2 S and s0 2 S0 for some S, S0

2 S
witnessing this. By assumption, these satisfy (i) or (ii).

Suppose first that (i) holds. Then x(c) + x(c0) < x(s) + x(s0) by
Lemma 12.5.6, where x = xŜ for Ŝ =

S
S. So either x(c) < x(s) or

x(c0) < x(s0). In the first case s is not S-friendly, by c 2 S and our
choice of S for s. In the second case s0 is not S-friendly, by c0 2 S0 and
our choice of S0 for s0.

8 When we apply Lemma 12.5.7 later, S will be a set of entanglements in G.
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Suppose now that (ii) holds. We may assume that x(s) 6 x(s0).
Lemma 12.5.6 now gives x(c0) + x(d0) < x(s) + x(s0) 6 2x(s0), so
x(c0) < x(s0) or x(d0) < x(s0). In either case s0 is not S-friendly, by
c0, d0 2 S0 and our choice of S0 for s0. ⇤

The following general theorem about entanglements in graphs im-
plies Theorem 12.5.1. Indeed, take as the S in Theorem 12.5.8 the set of
all sets D(⌧, ⌧ 0) of e�cient distinguishers of distinguishable tangles in G;
recall that, by Lemma 12.5.4, these sets D(⌧, ⌧ 0) are entanglements.

Theorem 12.5.8. (Carmesin & Kurkofka, 2024)
Let S be any set of entanglements in a graph G. Then the S-friendly
separations of G are nested.

Proof. It su�ces to show that S satisfies the premise of Lemma 12.5.7.
So consider S, S0

2 S with crossing separations s 2 S and s0 2 S0 as in
the lemma, with |s| 6 |s0| say. Let us call a corner of s and s0 relevantrelevant

if it has order at most |s0|. Let us show the following:

At least three corners of s and s0 are relevant. (1)

Suppose at most two corners of s and s0 are relevant. By submodu-
larity (†) and |s| 6 |s0|, at least one of any two opposite corners must be
relevant, so there are adjacent relevant corners. As their opposite two
corners are irrelevant and thus have order > |s0|, our adjacent relevant
corners have order < |s| by submodularity. If they lie on the same side
of s, then this contradicts our assumption that S is an entanglement. If
they lie on the same side of s0, it contradicts our assumption that S0 is
an entanglement. This completes the proof of (1).

Wemay assume that all four corners of s and s0 are relevant. (2)

To prove (2), suppose only three corners are relevant. Two of these,
c0 and d0 say, lie on the same side of s0. One of them, c0 say, then lies
in S0 and has order exactly |s0|, by (E) for S0. By submodularity, the
corner c opposite c0 has order at most |s|; in particular, c is relevant
too (Fig. 12.5.3). By assumption, the remaining corner d is irrelevant
and hence has order > |s0|. By submodularity, therefore, its opposite
corner d0 has order < |s|. Condition (E) applied to S and s now yields
that |c| = |s| and c 2 S. We thus have (i) of Lemma 12.5.7, as desired.
This completes the proof of (2).

By (E) for S0, the separation s0 has corners on both sides that have
order |s0| and lie in S0. Assume first that these are adjacent, say c0

and d. Let c be the corner opposite c0, and d0 that opposite d. By
submodularity, c and d0 have order at most |s|. As they lie on the same
side of s, one of them lies in S, by (E) for S. Since its opposite corner
lies in S0, we have (i) of Lemma 12.5.7 as desired.
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Fig. 12.5.3. Corners of s and s0 in the proof of Theorem 12.5.8.
Relevant corners in the proof of (2) are shaded.

Suppose now that the two corners on the di↵erent sides of s0 that
have order |s0| and lie in S0 are opposite corners, say c0 and c in
Figure 12.5.3. By submodularity, this means that our assumption of
|s| 6 |s0| must hold with equality: |s| = |s0|. Applying (E) to the side
of s on which d lies, we find that d or c0 lies in S. If c0 does, then c0 2 S
and c 2 S0 satisfy (i) of Lemma 12.5.7. So we assume that d 2 S.

Applying (E) to the other side of s, we find that c or d0 lies in S. If
c does, then again c and c0 satisfy (i) of Lemma 12.5.7. So we assume that
d0 2 S. We now have (ii) of Lemma 12.5.7, with d, d0 2 S and c, c0 2 S0.
This completes our verification of the premise of Lemma 12.5.7. ⇤

Theorem 12.5.8, like Theorem 12.5.1, tells us how all the tangles in
a graph G are distinguished by a certain set N of nested separations.
These are induced by a tree-decomposition of G (Exercises 16, 51). More
generally, for every k 2 N the set Nk of separations of order < k in N
is induced by a tree-decomposition (Tk,Vk) of G. Then every k-tangle
⌧ in G orients all the separations in Nk towards Vt for some t 2 Tk

depending on ⌧ , where Vk = (Vt)t2Tk
as usual. We may think of the

tangle ⌧ as ‘living in’ this node t of Tk, or in the bag Vt it specifies.
For i < j, the tree Ti is obtained from Tj by contracting the edges that
correspond, as in Lemma 12.3.1, to separations in Nj rNi, while the
bags of Vi are unions of bags of Vj indexed by the t 2 Tj that lie in a
common branch set of this contraction minor Ti 4 Tj .

The tree-structure which a nested set of separations imposes on G
can also be made visible in a more direct way, without a detour via
tree-decompositions, as follows.

The set
!
E(T ) of the oriented edges of a tree T is partially ordered by

letting !e > !
f whenever !e = (e, x, y) and

!
f = (f, u, v) are such that the !e > !

f

unique {x, y}–{u, v} path in T starts in y and ends in u. Note that every
two edges of T are ‘nested’ in our earlier sense that they have comparable
orientations. Call a subset ⌧ of

!
E(T ) consistent if it contains no  e such consistent
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that !e > !
f 2 ⌧ for some f . The consistent orientations of E(T ) are

precisely those towards some node t of T (Ex. 50). The set of minimal
elements of such an orientation, then, is the set

�t := { (e, s, t) 2

!
E(T ) | e = st 2 T }�t

of all the incoming edges at t.
Given a set S of separations of G, an S-tree is a pair (T,↵) suchS-tree

that T is a tree and ↵:
!
E(T )!

!
S respects the orderings on these sets

and commutes with inversion: ↵(!e) > ↵(
!
f ) if !e > !

f (Fig. 12.5.4), and
↵( e) = (B,A) whenever ↵(!e) = (A,B).9 We then say that (T,↵) is an
S-tree over a set F of subsets of

!
S if ↵(�t) 2 F for every node t of T .over

Note that we do not require ↵ to be injective, not even on the sets �t.

A B

!e

C D

!
f

Fig. 12.5.4. An S-tree with ↵(!e) = (A, B) > (C, D) = ↵(
!
f )

As every two edges of a tree have comparable orientations, the image
of

!
E(T ) under ↵ for an S-tree (T,↵) defines a nested subset of S. Con-

versely, every nested set N of separations of G underlies the image of ↵
for a suitable S-tree (T,↵), with S = N say. For example, a set N of ef-
ficient tangle-distinguishers as in Theorem 12.5.1 can be displayed by an
N -tree (T,↵) in this way. Its minors T1 4 T2 4 . . . defined earlier, then,
display the sets Nk of e�cient tangle-distinguishers of order < k in N for
k = 1, 2, . . . : those that distinguish, among others, the k-tangles in G.

The second main theorem about tangles, the tangle–tree duality the-
orem, employs Sk-trees to display the tree-structure of graphs that have
no k-tangles for some desired k. Intuitively, the bags of the correspond-
ing tree-decompositions will be ‘too small’ to be home to a tangle. To
express this directly in terms of S-trees, we need another definition.

Recall that the k-tangles inG are the orientations of Sk that avoid T .
A set � of oriented separations is a star if (A,B) > (D,C) for all distinctstar

(A,B), (C,D) 2 � (Fig. 12.5.5). Let T ⇤ := {� 2 T | � is a star }.T
⇤

As we shall see in a moment, Sk-trees over T ⇤ are natural certifi-
cates for the non-existence of k-tangles. The tangle–tree duality theorem
guarantees that these certificates exist whenever a graph has no k-tangle:

9 A tree-decomposition (T,V), for example, makes T into an S-tree for the set S
of separations it induces.
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A \ B

A
B

E
F

C

D

A B

B A

Fig. 12.5.5. The separations (A, B), (C, D), (E, F ) form a star

Theorem 12.5.9. (Robertson & Seymour 1991)
tangle–tree

duality

theorem
The following assertions are equivalent for all graphsG and integers k > 0 :

(i) G has no tangle of order k;

(ii) G has an Sk-tree over T ⇤
.

Lemma 12.5.10. (Uncrossing Lemma)
Every consistent orientation of Sk that has a subset � 2 T also has a

subset in T ⇤
.

Proof. Let � = { (Ai, Bi) | i = 1, 2, 3 } 2 T be contained in a consistent
orientation O of Sk. We show that, unless � is a star, we can replace one
of its elements by a strictly greater separation in O while keeping it in T .
In finitely many steps this will turn � into a star: a subset of O in T ⇤.

If � is not a star we may assume that (A1, B1) 6> (B2, A2). By (†) and
� ✓

�!
Sk we may further assume that (C,D) := (A1 \B2, B1 [A2) 2

�!
Sk ;

the other case, that (B1 \A2, A1 [B2) 2

�!
Sk , is analogous. Since O is

consistent and (C,D) > (A1, B1) 2 O, we cannot have (D,C) 2 O. Thus,
(C,D) 2 O. But (C,D) > (A1, B1), since either A1 6✓ B2 or B1 6◆ A2

by assumption. Replacing (A1, B1) in � with (C,D) to obtain �0, say,
gives the desired reduction: since any vertex or edge of G[A1] that does
not lie in G[C] lies in G[A2], and (A2, B2) 2 �0, we have �0

2 T . ⇤

Proof of Theorem 12.5.9. (ii)!(i) Suppose G has an Sk-tree (T,↵)
over T ⇤. Then any k-tangle ⌧ in G defines via ↵ an orientation of the
edges of T . Let t 2 T be the last node of any maximal path in T whose
edges are all oriented forward. Then all the edges at t are oriented
towards t, and ↵ maps these oriented edges to a star in T . In particular,
⌧ has a subset in T and thus cannot be a tangle.

(i)!(ii) To make this implication susceptible to an induction proof,
our strategy is to relax both (i) and (ii) in some carefully designed way
that makes it easier to prove the implication at the induction start. The
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relaxation, however, gets a little less in each inductive step, so that at the
end it has evaporated and we have our desired implication of (i)!(ii).
More precisely, we shall prove that certain sets T + satisfy one of

(1) Sk has a consistent orientation that avoids T ⇤ [ T +;

(2) G has an Sk-tree over T ⇤ [ T +.

This yields (i)!(ii) when T + = ;. Indeed, if G has no k-tangle then, by
Lemma 12.5.10, (1) cannot hold. So (2) must hold, but (2) is just (ii)
when T + = ;.

The sets T + for which we prove this will depend on certain sets O
of oriented separations, which we shall vary in the induction. Given O,
let T + :=

�
{(B,A)} : (A,B) 2 O

 
r T ⇤. Thus, Sk-trees over T ⇤ [ T +

T
+

are given more freedom compared with Sk-trees over T ⇤: singleton stars
associated with their leaves need not lie in T ⇤, as long as they lie in T +.
This happens when the inverse of their element lies in O but is not of the
form (A, V ). In the latter case, {(V,A)} lies in T ⇤, and hence not in T +.

The sets O we consider in our induction will be all the sets O ✓
�!
Sk

that have the following two properties common to all k-tangles. First,
they will contain all the separations (A, V ) with |A| < k .

Second, they will be closed upwards in
�!
Sk : they contain any

(A,B) 2

�!
Sk such that (A,B)> (C,D) for some (C,D) 2 O. In particular,

our induction covers the smallest such set, O = { (A, V ) : |A| < k }, for
which T + = ;.

Since all singletons {(B,A)} in T ⇤ satisfy B = V, by definition of T ,
our sets O contain the corresponding separations (A,B). So the relation-
ship between each O and the T + it gives rise to is precisely

O =
�
(A,B) 2

�!
Sk : {(B,A)} 2 T ⇤ [ T +

 
. (⇤)

If O contains a separation (X,Y ) together with its inverse (Y,X),
then (T,↵) with T = K2 and ↵:

!
E(T )! {(X,Y ), (Y,X)} satisfies (2),

by (⇤). We now assume that O is antisymmetric: that it contains no
inverse pair of separations. Then O is a consistent orientation of some
subset SO of Sk.SO

Let us prove by induction on |Sk rSO| that T + satisfies (1) or (2).
At the induction start, O is an orientation of all of Sk. Hence if (1) fails
then O has a subset � 2 T ⇤ [ T +. By (⇤) and the antisymmetry of O,
we have |�| > 2. Let T be the star K1,n with n = |�| leaves, and let ↵
map its oriented edges (e, s, t) with s a leaf bijectively to the elements
of �. Then (T,↵) satisfies (2), by definition of � and (⇤).

In the induction step we have Sk r SO 6= ;. Choose {U1,W1} and
{U2,W2} in Sk rSO so that both (Ui,Wi) are maximal in

�!
Sk r

�!
SO andUi,Wi

(U1,W1) > (W2, U2).10 Then the (Ui,Wi) are maximal even in
�!
Sk rO:

10 It is easy to see that such separations exist, just choose them in turn.
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for any (U,W ) > (Ui,Wi) in
�!
Sk r O we would have (W,U) 2 O by

the maximality of (Ui,Wi) in
�!
Sk r

�!
SO, so (Wi, Ui) > (W,U) would

be in O (this being closed upwards in
�!
Sk), contradicting the fact that

(Ui,Wi) /2
�!
SO.

Thus, the sets Oi := O[{(Ui,Wi)} are again closed upwards in
�!
Sk , Oi

and are orientations of subsets of Sk that contain SO properly. We may
therefore apply the induction hypothesis to these Oi, to obtain (1) or (2)
for T +

i :=
�
{(B,A)} : (A,B) 2 Oi

 
r T ⇤ ◆ T + instead of T +. T

+
i

Since (1) holds with T + as soon as it holds with T +

1
or T +

2
, we

may assume that both T +

i satisfy (2). Let (Ti,↵i) be the correspond- (Ti,↵i)

ing Sk-trees over T ⇤ [ T +

i . If one of these is in fact over T ⇤ [ T + we
are done, so we assume not. Then each Ti has a node ui such that
↵i(ei, wi, ui) = (Wi, Ui) for every edge ei = wiui of Ti at ui. ei, ui, wi

Every such ui must be a leaf. For otherwise (Wi, Ui) > (Ui,Wi), and
therefore Wi ✓ Ui. But then Ui = V and hence (Wi, Ui) 2 O, contrary
to the choice of (Ui,Wi). Similarly, these leaves ui are unique. Indeed if
u0

i is another leaf, with incident edge e0i = u0

iw
0

i say, then (e0i, u
0

i, w
0

i) >
(ei, wi, ui) and therefore ↵i(e0i, u

0

i, w
0

i) > ↵i(ei, wi, ui) = (Wi, Ui). Hence
if ↵i(e0i, u

0

i, w
0

i) = (Ui,Wi) then (Ui,Wi) > (Wi, Ui), with a contradiction
as earlier. Thus, our Sk-trees (Ti,↵i) are nearly over T ⇤[T +: they are,
except at their leaf ui.

Choose {X1, X2} 2 Sk of minimum order with X1, X2

(U1,W1) > (X1, X2) > (W2, U2);

such a separation exists, because (U1,W1) is a candidate. We shall
modify the maps ↵i to maps ↵0

i defining Sk-trees (Ti,↵0

i). These will
again be over T ⇤ [T + except at ui, where we shall have ↵0

i(ei, wi, ui) =
(X3�i, Xi). Our plan will then be to join the newly labelled trees Ti�ui

together by adding the edge wiw3�i and mapping it to their common
separation (X3�i, Xi), to obtain our desired Sk-tree over T ⇤ [ T +.

To define ↵0

i, consider an edge e of Ti. Name its ends t, t0 so that
(ei, ui, wi) > (e, t, t0). Then if ↵i(e, t, t0) = (A,B), say, let

↵0

i(e, t, t
0) = (A0, B0) := (A[Xi, B \X3�i) ↵0

i

and ↵0

i(e, t
0, t) = (B0, A0). (Fig. 12.5.6).

Let us show that ↵0

i maps
!
E(Ti) to

�!
Sk . Given an edge e 2E(Ti),

let !e be such that (ei, ui, wi) > !e, as in the definition of ↵0

i. Then for
↵i(

!e) = (A,B) we have ↵0

i(
!e) = (A0, B0) = (A[Xi, B \X3�i). By (†)

we have |A0 \B0| 6 |A\B| < k, as desired, if the order of

(Yi, Y3�i) := (A\Xi, B [X3�i)

is no less than the order of {X1, X2}. And it cannot be less, as that would
contradict our choice of {X1, X2} since (U1,W1) > (Y1, Y2) > (W2, U2).
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A
A

B

B

A
B

ui

wi

Ti

tt

Xi

Ui
Ui

Wi

Wi

X3�i

Fig. 12.5.6. Shifting (A, B) to (A0, B0)

Indeed, recall that Ui ✓ Xi as well as Ui ✓ A, and Wi ◆ X3�i as well
as Wi ◆ B, because (Ui,Wi) > (Xi, X3�i) as well as (Ui,Wi) > (A,B).
Hence (Ui,Wi) > (Yi, Y3�i), and (Yi, Y3�i) > (Xi, X3�i) > (W3�i, U3�i).

Next, let us show that ↵0

i, like ↵i, respects the orderings of
!
E(Ti)

and
�!
Sk . Consider any !e > !

f 2

!
E(Ti), with (A,B) = ↵i(

!e) > ↵i(
!
f ) =

(C,D) say. Then A ✓ C and B ◆ D. If (ei, ui, wi) > !e , then ↵0

i(
!e) =:

(A0, B0) > (C 0, D0) := ↵0

i(
!
f ), because A0 = A[Xi ✓ C [Xi = C 0 and

B0 = B \X3�i ◆ D\X3�i = D0. On the other hand if (ei, ui, wi) >  e
but (ei, ui, wi) >

!
f , then A0 = A\X3�i ✓ A ✓ C ✓ C [Xi = C 0 while

B0 = B [Xi ◆ B ◆ D ◆ D \X3�i = D0, so again (A0, B0) > (C 0, D0).
Since ↵0

i, by definition, commutes with inversions of orientations, this
covers all the cases to be considered.

So (Ti,↵0

i) is indeed an Sk-tree. Let us show that (Ti,↵0

i), like (Ti,↵i),
is an Sk-tree over T ⇤ [ T + except at ui, where

↵0

i(ei, wi, ui) = (Wi \X3�i, Ui [Xi) = (X3�i, Xi) .

Consider a node t 6= ui, and let e = st be its incident edge
in uiTit. Let ↵i(e, s, t) =: (A,B) and ↵0

i(e, s, t) =: (A0, B0). As
(ei, ui, wi) > (e, s, t),

(Ui,Wi) > (A,B) > (A[Xi, B \X3�i) = (A0, B0).

Suppose first that ↵i(�t) = {(A,B)}. Let us show that t must be a leaf.
If not, then ↵i(e0, s0, t) = (A,B) for another edge e0 = s0t at t. Then

(A,B) > (B,A), and hence B = V. But then (A,B) 2 O, and hence
(Ui,Wi) 2 O since O is closed upwards in

�!
Sk . This contradicts our choice

of (Ui,Wi). Hence t is indeed a leaf of Ti.
Since (Ti,↵i) is over T ⇤[T + except at ui, we thus have (B,A) 2 O

by (⇤). As O is closed upwards in
�!
Sk , this means that (B0, A0) > (B,A)

is also in O. Thus, ↵0

i(�t) = {(A0, B0)} 2 T ⇤ [ T + by (⇤), as desired.
Suppose now that |↵i(�t)| > 2. Then ↵i(�t) 2 T ⇤; let us show that

also ↵0

i(�t) 2 T ⇤. Since ↵0

i respects the orderings of
!
E(Ti) and

�!
Sk , we

already know that ↵0

i(�t) is a star. To show that ↵0

i(�t) 2 T , consider any
edge e0 = s0t 6= st. Let (C,D) := ↵i(e0, s0, t) and (C 0, D0) := ↵0

i(e
0, s0, t).
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Then (ei, ui, wi) > (e0, t, s0) by the choice of e 6= e0. Hence C 0 = C\X3�i,
but also A0 = A [Xi. Thus, any vertex or edge of G[C] that is not
in G[C 0] lies in G[Xi] ✓ G[A0]. The fact that ↵i(�t) 2 T thus implies
↵0

i(�t) 2 T , as desired.
Let T be the tree obtained from the disjoint union of T1 � u1 and

T2 � u2 by joining w1 to w2 by a new edge e. Let ↵:
!
E(T )!

�!
Sk map

(e, w3�i, wi) to ↵0

i(ei, ui, wi) = (Xi, X3�i) for i = 1, 2, and otherwise ex-
tend the ↵0

i. Then ↵ commutes with the inversion of !e and of (X1, X2),
and ↵(�t) = ↵0

i(�t) 2 T ⇤ [ T + for all t 2 T , in particular for t = wi.
Hence, (T,↵) satisfies (2). ⇤

Theorem 12.5.9, as stated above, is a special case of a more general
result in which T ⇤ can be replaced by other collections F of ‘forbidden’
stars of oriented separations. Given a set S of separations, an F-tangle F-tangle

of S is a consistent orientation of S that has no subset � 2 F . For

Fk :=
�
� ✓

!
S : � is a star and

��T {B : (A,B) 2 �}
�� < k

 

we obtain the following more tangle-like duality theorem for tree-width:

Theorem 12.5.11. The following two assertions are equivalent for all

graphs G and integers k > 0 :

(i) G has tree-width less than k� 1;

(ii) G has no Fk-tangle of Sk.

It is not hard to show that (i) is equivalent to the existence of an Sk-tree
over Fk in G (Ex. 59). Theorem 12.5.11 in that form and Theorem 12.5.9
are both corollaries of a more general theorem about tangle-tree duality
in so-called ‘abstract separation systems’; see the notes.

Moreover, any Fk-tangle of Sk gives rise to a k-bramble (Ex. 59).
Thus, Theorem 12.5.11 implies the tree-width duality theorem (12.4.3).

12.6 Tree-decompositions and forbidden minors

If H is any set or class of graphs, then the class

Forb4(H) := {G | G 6< H for all H 2 H} Forb4(H)

of all graphs without a minor inH is a graph property, i.e. is closed under
isomorphism.11 When it is written as above, we say that this property
is expressed by specifying the graphs H 2 H as forbidden (or excluded) forbidden

minors

minors .

11 As usual, we abbreviate Forb4({H}) to Forb4(H).
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By Proposition 1.7.1, Forb4(H) is closed under taking minors, or(1.7.1)

minor-closed : if G0 4 G 2 Forb4(H) then G0
2 Forb4(H). Every minor-

closed property can in turn be expressed by forbidden minors:

Lemma 12.6.1. A graph property P can be expressed by forbidden[5.2]

minors if and only if it is closed under taking minors.

Proof. For the ‘if’ part, note that P = Forb4(P), where P is the com-P

plement of P. ⇤

In Section 12.7, we shall return to the general question of how a
given minor-closed property is best represented by forbidden minors.
In this section, we begin by looking at a particular example of such a
property: bounded tree-width.

Consider the property of having tree-width less than some given
integer k. By Lemmas 12.4.1 and 12.6.1, this property can be expressed
by forbidden minors. Choosing their set H as small as possible, we find
that H = {K3} for k = 2: the graphs of tree-width < 2 are precisely the
forests. For k = 3, we have H = {K4}:

Proposition 12.6.2. A graph has tree-width < 3 if and only if it has

no K4
minor.

Proof. By Corollary 12.3.5, we have tw(K4) > 3. By Lemma 12.4.1,

(7.3.1)
(12.3.2)
(12.3.5)
(12.3.6)
(12.4.1)

therefore, a graph of tree-width < 3 cannot contain K4 as a minor.
Conversely, let G be a graph without a K4 minor; we assume that

|G| > 3. Add edges to G until the graph G0 obtained is edge-maximal
without a K4 minor. By Proposition 7.3.1, G0 can be constructed recur-
sively from triangles by pasting along K2s. By induction on the number
of recursion steps and Corollary 12.3.5, every graph constructible in this
way has a tree-decomposition into triangles (as in the proof of Propo-
sition 12.3.6). Such a tree-decomposition of G0 has width 2, and by
Lemma 12.3.2 it is also a tree-decomposition of G. ⇤

As k grows, the list of forbidden minors characterizing the graphs
of tree-width < k seems to grow fast. They are known explicitly only up
to k = 4; see the notes.

A question converse to the above is to ask for which H (other than
K3 and K4) the tree-width of the graphs in Forb4(H) is bounded. This
is the case, for example, when H is grid:

Theorem 12.6.3. (Robertson & Seymour 1986)[12.7.1]
[12.7.3]

For every integer r there is an integer k such that every graph of tree-

width at least k has an r⇥ r grid minor.

This grid theorem may, at first glance, look like just a specific and
technical result. But it has a sweeping consequence:
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Corollary 12.6.4. Given a graph H, the graphs without an H minor

have bounded tree-width if and only if H is planar.

Proof. Since all grids and their minors are planar, every class Forb4(H) (4.4.6)

with a non-planarH contains all grids, which have unbounded tree-width
(see after Theorem 12.4.3).

Conversely, every planar graph H is a minor of some grid: take a
drawing of the graph, fatten its vertices and edges, and superimpose a
su�ciently fine plane grid. Hence, by Theorem 12.6.3, the graphs in
Forb4(H) have bounded tree-width as soon as H is planar. ⇤

Theorem 12.6.3 has another interesting application. Recall that a
classH of graphs has the Erdős-Pósa property if the number of vertices in
a graph needed to cover all its subgraphs in H is bounded by a function
of its maximum number of disjoint subgraphs in H. Now let H be a H

fixed connected graph, and consider the class H = IH of graphs that H

contract to a copy of H. (Thus, G has a subgraph in H if and only if
H 4 G.)

Theorem 12.6.5. (Robertson & Seymour 1986)
H has the Erdős-Pósa property if H is planar.

Proof. We have to find a function f :N!N such that, given k 2 N and (12.3.1)

a graph G, either G contains k disjoint models of H or there is a set U
of at most f(k) vertices in G such that H 64 G�U .

By Corollary 12.6.4, there exists for every k > 1 an integer wk such
that every graph of tree-width at least wk contains the disjoint union of
k copies of H (which is again planar) as a minor. Define

f(k) := 2f(k� 1)+wk

inductively, starting with f(0) = f(1) = 0.
To verify that f does what it should, we apply induction on k. For

k 6 1 there is nothing to show. Now let k and G be given for the induc-
tion step. If tw(G) > wk, we are home by definition of wk. So assume
that tw(G) < wk, and let (T, (Vt)t2T ) be a tree-decomposition of G of
width < wk. Let us direct the edges t1t2 of the tree T as follows. Let
T1, T2 be the components of T � t1t2 containing t1 and t2, respectively,
and put

G1 := G[
[

t2T1

(Vt rVt2)] and G2 := G[
[

t2T2

(Vt rVt1)] .

We direct the edge t1t2 towards Gi if H 4 Gi, thereby giving t1t2 either
one or both or neither direction.

If every edge of T receives at most one direction, we follow these to
a node t 2 T such that no edge at t in T is directed away from t. As H is
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connected, this implies by Lemma 12.3.1 that Vt meets every IH ✓ G.
This completes the proof with U = Vt, since |Vt| 6 wk 6 f(k) by the
choice of our tree-decomposition.

Suppose now that T has an edge t1t2 that received both directions.
For each i = 1, 2 let us ask if we can cover all the models of H in Gi by at
most f(k� 1) vertices. If we can, for both i, then by Lemma 12.3.1 the
two covers combine with Vt1 \Vt2 to the desired cover U for G. Suppose
now that G1 has no such cover. Then, by the induction hypothesis,
G1 contains k � 1 disjoint models of H. Since t1t2 was also directed
towards t2, there is another such model in G2. This gives the desired
total of k disjoint models of H in G. ⇤

Theorem 12.6.5 contains the Erdős-Pósa theorem 2.3.2 as the special
case that H = K3. It is best possible in that if H is non-planar, then
H = IH does not have the Erdős-Pósa property (Exercise 62).

We conclude this section with some structure theorems for graphs
not containing a given complete graph as a minor. These theorems are
more di�cult to prove than the results we have seen so far in this chap-
ter, and they are not even that easy to state. But it’s worth an e↵ort:
already the first of them, the excluded-Kn theorem, is both central to
the proof of the graph minor theorem and can be applied elsewhere.

A linear decomposition of G is a family (Vi)i2I of vertex sets indexed
linear

decom-

position by some linear order I such that
S

i2I Vi = V (G), every edge of G has
both its ends in some Vi, and Vi \ Vk ✓ Vj whenever i < j < k. When
G is finite, this is just a tree-decomposition whose decomposition tree
is a path, and usually called a path-decomposition. If each Vi contains
at most k vertices and k is minimal with this property, then (Vi)i2I has
width k� 1.

Let S0 be a subspace of a surface12 S obtained by removing the
interiors of finitely many disjoint closed discs, with boundary circles
C1, . . . , Ck say. This space is determined up to homeomorphism by SC1, . . . , Ck

and the number k, and we denote it by S�k. Each Ci is the image of aS� k

continuous map fi: [0, 1]! S0 that is injective except for fi(0) = fi(1).
We call C1, . . . , Ck the cu↵s of S0 and the points f1(0), . . . , fk(0) theircu↵s

roots. The other points of each Ci are linearly ordered by fi as images
of (0, 1); when we use cu↵s as index sets for linear decompositions below,
we shall be referring to these linear orders. An embedding of a graph
in S (or in S� k) is defined analogously to embeddings in the plane.

Let H be a graph, S a surface, and k 2 N. We say that H is k-nearly
embeddable in S if H has a set X of at most k vertices such that H �Xk-near

embedding

can be written as H0 [H1 [ . . .[Hk so that

(N1) there exists an embedding �:H0 ,! S�k that maps only vertices
to cu↵s and no vertex to the root of a cu↵;

12 A compact connected 2-manifold without boundary; see Appendix B.
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(N2) the graphs H1, . . . , Hk are pairwise disjoint (and may be empty),
and H0 \Hi = ��1(�(H0)\Ci) for each i;

(N3) every Hi with i > 1 has a linear decomposition (V i
z )z2Ci\�(H0)

of
width < k such that ��1(z) 2 V i

z for all z.

Here, then, is the structure theorem for graphs without a Kn minor.13

Note that, for n = 5, Wagner’s Theorem (7.3.4) remains stronger and
more precise. The case of n = 4 is covered by Proposition 7.3.1.

Theorem 12.6.6. (Robertson & Seymour 2003)
For every n > 5 there exists a k 2 N such that every graph not contain-

ing Kn
as a minor has a tree-decomposition whose torsos are k-nearly

embeddable in a surface in which Kn
is not embeddable.

Theorem 12.6.6 is true also for infinite graphs; see the notes.

Note that there are only finitely many surfaces in which Kn is not
embeddable. The set of those surfaces in the statement of Theorem
12.6.6 could therefore be replaced by just two surfaces: the orientable
and the non-orientable surface of maximum genus in this set.

Theorem 12.6.6 also has a converse, though only a qualitative one.
A decomposition as described does not by itself preclude the presence of
a Kn minor. But for every n there is an r such that no graph with such a
decomposition has a Kr minor. This is because the adhesion sets of the
tree-decomposition have bounded size, e.g. by 2k+n, since they induce
complete subgraphs in the torsos, and these are k-nearly embeddable in
a surface that does not accommodate Kn.

For graphs without a given topological minor, there is a related
structure theorem:

Theorem 12.6.7. (Grohe & Marx 2012)
For every n > 5 there exists a k 2 N such that every graph not contain-

ing Kn
as a topological minor has a tree-decomposition whose torsos are

either k-nearly embeddable in a surface of Euler genus 6 k or have at

most k vertices of degree > k.

(See Appendix B for the definition of the Euler genus of a surface.)

There are also structure theorems for excluding infinite minors, and
we now state two of these.

First, the structure theorem for excluding K@0 . Call a graph H
nearly planar if H has a finite set X of vertices such that H �X can nearly

planar

be written as H0 [H1 so that (N1–2) hold with S = S2 (the sphere)
and k = 1, while (N3) holds with k = |X|. (In other words, deleting

13 Robertson and Seymour proved several versions of this theorem, of which The-
orem 12.6.6 is the simplest. See the notes.
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a bounded number of vertices makes H planar except for a subgraph
of bounded linear width sewn on to the unique cu↵ of S2 � 1.) A tree-
decomposition (T, (Vt)t2T ) of a graph G has finite adhesion if all itsfinite

adhesion

adhesion sets are finite and for every infinite path t1t2 . . . in T the value
of lim infi!1 |Vti \Vti+1 | is finite.

Unlike its counterpart for Kn, the excluded-K@0 structure theorem
has a direct converse. It thus characterizes the graphs without a K@0

minor, as follows:

Theorem 12.6.8. A graph G has no K@0 minor if and only if G has a

tree-decomposition of finite adhesion whose torsos are nearly planar.

Finally, a structure theorem for excludingK@0 as a topological minor.
Let us say that G has finite tree-width if G admits a tree-decompositionfinite

tree-width

(T, (Vt)t2T ) into finite parts such that for every infinite path t1t2 . . . in
T the set

S
j>1

T
i>j Vti is finite.

Theorem 12.6.9. The following assertions are equivalent for connected

graphs G:

(i) G does not contain K@0 as a topological minor;

(ii) G has finite tree-width;

(iii) G has a normal spanning tree T such that for every ray R in T
there are only finitely many vertices v such that G contains an

infinite v–(R� v) fan.

12.7 The graph minor theorem

Graph properties that are closed under taking minors occur frequently
in graph theory. Among the most natural examples are the properties
of being embeddable in some fixed surface, such as planarity.

By Kuratowski’s theorem, planarity can be expressed by forbidding
the minors K5 and K3,3. This is a good characterization of planarity in
the following sense. Suppose we wish to persuade someone that a certain
graph is planar: this is easy (at least intuitively) if we can produce a
drawing of the graph. But how do we persuade someone that a graph is
non-planar? By Kuratowski’s theorem, there is also an easy way to do
that: we just have to exhibit an IK5 or IK3,3 in our graph, as an easily
checked ‘certificate’ for non-planarity. Our simple Proposition 12.6.2 is
another example of a good characterization: if a graph has tree width
< 3, we can prove this by exhibiting a suitable tree-decomposition; if
not, we can produce an IK4 as evidence.
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Theorems that characterize a property P by a set of forbidden mi-
nors are doubtless among the most attractive results in graph theory.
As we saw in Lemma 12.6.1, such a characterization exists whenever P (12.6.1)

is minor-closed: then P = Forb4(P), where P is the complement of P.
However, one naturally seeks to make the set of forbidden minors as
small as possible. And there is indeed a unique smallest such set: the
set

KP := {H | H is 4-minimal in P } Kuratowski

set KP

satisfies P = Forb4(KP) and is contained in every other set H such that
P = Forb4(H). We call KP the Kuratowski set for P.

Clearly, the elements of KP are incomparable under the minor re-
lation 4. Now the graph minor theorem of Robertson & Seymour says
that any set of 4-incomparable graphs must be finite:

Theorem 12.7.1. (Robertson & Seymour 1986–2004) graph minor

theorem

The finite graphs are well-quasi-ordered by the minor relation 4.

We shall give a sketch of the proof of the graph minor theorem at the
end of this section.

Corollary 12.7.2. The Kuratowski set for any minor-closed graph

property is finite. ⇤

As a special case of Corollary 12.7.2 we have, at least in principle,
a Kuratowski-type theorem for every surface S: the property P(S) of P(S)

embeddability in S is characterized by the finite set KP(S) of forbidden
minors.

Corollary 12.7.3. For every surface S there exists a finite set of graphs

H1, . . . , Hn such that a graph is embeddable in S if and only if it contains

none of H1, . . . , Hn as a minor. ⇤

While Corollary 12.7.3 is immediate from the graph minor theorem,
it can also be proved more directly. It is our next goal to do this. The
main step is to prove that the graphs in KP(S) do not contain arbitrarily
large grids as minors (Lemma 12.7.4). Then their tree-width is bounded
(Theorem 12.6.3), so KP(S) is well-quasi-ordered (Theorem 12.4.2) and
therefore finite.

The proof of Lemma 12.7.4 gives a good impression of the inter-
play between graph minors and surface topology, which – by way of
Theorem 12.6.6, which we could not prove here – is also one of the
key ingredients of the proof of the graph minor theorem. Appendix B
summarizes the necessary background on surfaces, including a lemma
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R2

R5

f

Fig. 12.7.1. The hexagonal grid H6 with central face f and
rings R2 and R5

used in the proof. For convenience (cf. Proposition 1.7.3 (ii)), we shall
work with hexagonal rather than square grids.

Denote by Hr the plane hexagonal grid whose dual has radius rHr

(Figure 12.7.1). The face corresponding to the central vertex of its dual
is its central face. (Generally, when we speak of the faces of Hr, wefaces

mean its hexagonal faces, not its outer face.) Call a subgrid Hk of Hr

standard if their central faces coincide. We write Sk for the perimeterstandard

cycle of the standard subgrid Hk in Hr; for example, S1 is the hexagonS1, . . . , Sr

bounding the central face of Hr. The ring Rk is the subgraph of Hr
ring Rk

formed by Sk and Sk+1 and the edges between them.

Lemma 12.7.4. For every surface S there exists an integer r such that

no graph that is minimal with the property of not being embeddable

in S contains Hr
as a topological minor.

Proof. Let G be a graph that cannot be embedded in S and is minimal

(4.1.2)
(4.2.2)
(4.3.2)
(App. B) with this property. Our proof will run roughly as follows. Since G

is minimally not embeddable in S, we can embed it in an only slightly
larger surface S0. If G contains a very large Hr grid, then by Lemma B.6
some large Hm subgrid will be flat in S0, that is, the union of its faces
in S0 will be a disc D0. We then pick an edge e from the middle of this
Hm grid and embed G� e in S. Again by Lemma B.6, one of the rings
of our Hm will be flat in S. In this ring we can embed the (planar)
subgraph of G which our first embedding had placed in D0; note that
this subgraph contains the edge e. The rest of G can then be embedded
in S outside this ring much as before, yielding an embedding of all of G
in S (a contradiction).

More formally, let " := "(S) denote the Euler genus of S. Let r
be large enough that Hr contains "+3 disjoint copies of Hm+1, where"

m := 3"+4. We show that G has no THr subgraph.r,m

Let e0 = u0v0 be any edge of G, and choose an embedding �0 of
G� e0 in S. Choose a face with u0 on its boundary, and another with v0
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on its boundary. Cut a disc out of each face and add a handle between
the two holes, to obtain a surface S0 of Euler genus "+2 (Lemma B.3).
Embedding e0 along this handle, extend �0 to an embedding of G in S0. �0:G ,! S0

Suppose G has a subgraph H = THr. Let f :Hr !H map the H

vertices of Hr to the corresponding branch vertices of H, and its edges f

to the corresponding paths in H between those vertices. Let us show
that Hr has a subgrid Hm (not necessarily standard) whose hexagonal
face boundaries correspond (by �0 �f) to circles in S0 that bound disjoint
open discs there.

By the choice of r, we can find "+3 disjoint copies of Hm+1 in Hr.
The standard subgrids Hm of these Hm+1 are not only disjoint, but
su�ciently spaced out in Hr that their deletion leaves a tree T ✓ Hr

that sends an edge to each of them (Figure 12.7.2). Hence whenever
we pick one hexagon from each of these Hm and delete the images C
of those hexagons in S0, the component D0 of the remainder of S0 that
contains (�0 � f)(T ) meets all those C in its boundary. By Lemma B.6
and "(S0) = "+2, therefore, it cannot be true that none of our circles C
bounds a disc in S0 that is disjoint from (�0 � f)(T ).

Fig. 12.7.2. Disjoint copies of Hm (m = 3) linked up by a tree
in the rest of Hr

Hence for one of our copies of Hm in Hr, the image of every hexagon
in S0 bounds an open disc that is disjoint from (�0 � f)(T ). Let us show
that these discs are disjoint. If not, then one of them, D say, contains
a point x from the boundary of another such disc. But then D also
contains (�0 � f)(T ), contrary to assumption, because we can walk from
x to (�0 � f)(T ) in (�0 � f)(Hr) ✓ S0 avoiding the boundary of D.

From now on, we shall work with this fixed Hm and will no longer
consider its supergraph Hr. We write Ci := f(Si) for the images in G Ci

of the concentric cycles Si of this Hm (i = 1, . . . ,m).
Pick an edge e = uv of C1, and choose an embedding � of G�e in S.

e
�:G� e ,! S

As before, Lemma B.6 implies that one of the "+1 disjoint rings R3i+2

in our Hm (i = 0, . . . , "), Rk say, has the property that its hexagons k
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correspond (by � �f) to circles in S that bound disjoint open discs there
(Figure 12.7.3). Let R ◆ (� � f)(Rk) be the closure in S of the unionR

of those discs, which is a cylinder in S. One of its two boundary circles
is the image under � of the cycle C := Ck+1 in G to which f maps theC

perimeter cycle Sk+1 of our special ring Rk ✓ Hm.

Fig. 12.7.3. A tree linking up hexagons selected from the rings
R2, R5, R8 . . .

Let H 0 := f(Hk+1) ✓ G, where Hk+1 is standard in our Hm. RecallH0

that �0 � f maps the hexagons of Hk+1 to circles in S0 bounding disjoint
open discs there. The closure in S0 of the union of these discs is a disc
D0 in S0, bounded by �0(C). Deleting a small open disc inside D0 thatD0

does not meet �0(G), we obtain a cylinder R0 ✓ S0 that contains �0(H 0).R0

We shall now combine the embeddings �:G�e ,! S and �0:G ,! S0

to an embedding �00:G ,! S, which will contradict the choice of G.�00

Let ':�0(C)! �(C) be a homeomorphism between the images of C in
S0 and in S that commutes with these embeddings, i.e., is such that
�|C = (' � �0)|C . Then extend this to a homeomorphism ':R0 ! R.'

The idea now is to define �00 as ' � �0 on the part of G which �0 maps
to D0 (which includes the edge e on which � is undefined), and as � on
the rest of G (Fig. 12.7.4).

To make these two partial maps compatible, we start by defining
�00 on C as �|C = (' � �0)|C . Next, we define �00 separately on the
components of G�C. Since �0(C) bounds the disc D0 in S0, we know
that �0 maps each component J of G�C either entirely to D0 or entirely
to S0 rD0. On all the components J such that �0(J) ✓ D0, and on all
the edges they send to G, we define �00 as ' � �0. Thus, �00 embeds
these components in R. Since e 2 f(Hk) = H 0 � C, this includes the
component of G�C that contains e.

It remains to define �00 on the components of G�C which �0 maps
to S0 rD0. As �0(Ck) ✓ D0, these do not meet Ck. Since �(C [Ck) is
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S
S0

R

R0

D0

�(u0) �0(v0)

�0(e0)

�0(e)

�0(C)

�0(G)
'

�(u)

�(v)

�(G � e)

�(C)

�(Ck+2)

Fig. 12.7.4. Combining �0: G ,! S0 and �: G�e ,! S to �00: G ,! S

the frontier of R in S, this means that �(J) ✓ S rR or �(J) ✓ R for
every such component J .

For the component J0 of G�C that contains Ck+2 we cannot have J0

�(J0) ✓ R: as Sk+2 \ Rk = ;, this would mean that �(Ck+2) lies in
a disc D ✓ R corresponding to a face of Rk, which is impossible since
Sk+2 sends edges to vertices of Sk+1 outside the boundary of that face.
We thus have �(J0) ✓ S rR, and define �00 as � on J0 and on all the
J0–C edges of G.

Next, consider any remaining component J of G�C that sends no
edge to C. If �(J) ✓ SrR, we define �00 on J as �. If �(J) ✓ R, then
J is planar. Since J sends no edge to C, we can have �00 map J to any
open disc in R that has not so far been used by �00.

It remains to define �00 on the components J 6= J0 of G�C which
�0 maps to S0rD0 and for which G contains a J–C edge. Let J be the J

set of all those components J . We shall group them by the way they
attach to C, and define �00 for these groups in turn.

. . .

D00

J0

J0

J0

fi

w

Q

Ck+2

C = Ck+1

vi+1

vn

R0

� J0

� J

Pi

D0
v1 vi. . .

Fig. 12.7.5. Define �00 jointly for the components J, J 0 2 J

that attach to the same Pi ✓ C
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Since m > k+2, the disc D0 lies inside a larger disc in S0, which is
the union of D0 and closed discs D00 bounded by the images under �0 � fD00

of the hexagons in Rk+1. By definition of J , the embedding �0 maps
every J 2 J to such a disc D00 (Fig. 12.7.5). On the path P in C such
that �0(P ) = �0(C)\D00 (which is the image under f of one or two con-
secutive edges on Sk+1), let v1, . . . , vn be the vertices with a neighbour
in J0, in their natural order along P , and write Pi for the segment of PPi

from vi to vi+1. For any vi with 1 < i < n, pick a vi–J0 edge and extend
it through J0 to a path Q from vi to Ck+2 (which exists by definition
of J0); let w be its first vertex that �0 maps to the boundary circle of D00.
By Lemma 4.1.2 applied to �0(viQw) and the two arcs joining �0(vi) to
�0(w) along the boundary circle of D00, there is no arc through D00 that
links �0(Pi�1) to �0(Pi) but avoids �0(viQw). Hence, every J 2 J with
�0(J) ✓ D00 has all its neighbours on C in the same Pi, and �0 maps
J to the face fi of the plane graph �0(G[J0 [C])\D00 whose boundaryfi

contains Pi. We shall define �00 jointly on all those J 2 J which �0 maps
to this fi, for i = 1, . . . , n� 1 in turn.

To do so, we choose an open disc Di in SrR that has a boundary
circle containing �(Pi) and avoids the image of �00 as defined until now.
Such Di exists in a strip neighbourhood of �(C) in S, because compo-
nents J 0

2 J attaching to a segment Pj 6= Pi of C send no edge to P̊i.
Choose a homeomorphism 'i from the boundary circle of fi to that of
Di so that �|Pi

= ('i � �0)|Pi
, and extend this to a homeomorphism 'i

from the closure of fi in S0 to the closure of Di in S. For every J 2 J
with �0(J) ✓ fi, and for all J–C edges of G, define �00 as 'i ��0. ⇤

Proof of Corollary 12.7.3. By their minimality, the graphs in
(1.7.3)
(12.4.2)
(12.6.3) KP(S) are incomparable under the minor-relation. If their tree-width is

bounded, then KP(S) is well-quasi-ordered by the minor relation (The-
orem 12.4.2), and hence must be finite. So assume their tree-width is
unbounded, and let r be as in Lemma 12.7.4. By Theorem 12.6.3, some
H 2 KP(S) has a grid minor large enough to contain Hr. By Proposition
1.7.3, Hr is a topological minor of H, contrary to the choice of r. ⇤

We finally come to the proof of the graph minor theorem itself. The
complete proof would still fill a book or two, but we are well equipped
now to get a good understanding of its main ideas and overall structure.
For background on surfaces, we once more refer to Appendix B.

Proof of the graph minor theorem (sketch). We have to show that

(12.1.3)
(12.2.1)
(12.4.2)
(12.6.3) every infinite sequence

G0, G1, G2, . . .

of finite graphs contains a good pair: two graphs Gi 4 Gj with i < j.
We may assume that G0 64 Gi for all i > 1, since G0 forms a good pair



12.7 The graph minor theorem 403

with any graph Gi of which it is a minor. Thus all the graphs G1, G2, . . .
lie in Forb4(G0), and we may use the structure common to these graphs
in our search for a good pair.

We have already seen how this works when G0 is planar: then the
graphs in Forb4(G0) have bounded tree-width (Corollary 12.6.4) and
are therefore well-quasi-ordered by Theorem 12.4.2. In general, we need
only consider the cases of G0 = Kn: since G0 4 Kn for n := |G0|, we
may assume that Kn 64 Gi for all i > 1.

The proof now follows the same lines as above: again the graphs
in Forb4(Kn) can be characterized by their tree-decompositions, and
again their tree structure helps, as in Kruskal’s theorem, with the proof
that they are well-quasi-ordered. But as in Wagner’s theorem (7.3.4) for
n = 5, the parts in these tree-decompositions are no longer constrained in
terms of order now but in more subtle structural terms. Roughly speak-
ing, for every n there exists a finite set S of surfaces such that every graph
without a Kn minor has a tree-decomposition into parts each ‘nearly’
embeddable in one of the surfaces S 2 S; see Theorem 12.6.6. By a
generalization of Theorem 12.4.2 – and hence of Kruskal’s theorem – it
now su�ces, essentially, to prove that the set of all the parts in these tree-
decompositions is well-quasi-ordered: then the graphs decomposing into
these parts are well-quasi-ordered, too. Since S is finite, every infinite
sequence of such parts has an infinite subsequence whose members are
all (nearly) embeddable in the same surface S 2 S. Thus all we have to
show is that, given any surface S, all the graphs embeddable in S are
well-quasi-ordered by the minor relation.

This is shown by induction on the Euler genus of S, using the same
approach as before: if H0, H1, H2, . . . is an infinite sequence of graphs
embeddable in S, we may assume that none of the graphs H1, H2, . . .
contains H0 as a minor. If S = S2 we are back in the case that H0 is
planar, so the induction starts. For the induction step we now assume
that S 6= S2. Again, the exclusion of H0 as a minor constrains the
structure of the graphs H1, H2, . . ., this time topologically: each Hi with
i > 1 has an embedding in S which meets some circle Ci ✓ S that does
not bound a disc in S in no more than a bounded number of vertices
(and no edges), say in Xi ✓ V (Hi). (The bound on |Xi| depends on H0,
but not on Hi.) Cutting along Ci and capping the hole(s), we obtain one
or two new surfaces of smaller Euler genus. If the cut produces only one
new surface Si, then our embedding of Hi �Xi still counts as a near-
embedding of Hi in Si (since Xi is small). If this happens for infinitely
many i, then infinitely many of the surfaces Si are also the same, and
the induction hypothesis gives us a good pair among the corresponding
graphs Hi. On the other hand, if we get two surfaces S0

i and S00

i for
infinitely many i (without loss of generality the same two surfaces), then
Hi decomposes accordingly into subgraphsH 0

i andH 00

i embedded in these
surfaces, with V (H 0

i \H 00

i ) = Xi. The set of all these subgraphs taken



404 12. Graph Minors

together is again well-quasi-ordered by the induction hypothesis, and
hence so are the pairs (H 0

i, H
00

i ) by Lemma 12.1.3. Using a sharpening
of the lemma that takes into account not only the graphs H 0

i and H 00

i

themselves but also how Xi lies inside them, we finally obtain indices
i, j not only with H 0

i 4 H 0

j and H 00

i 4 H 00

j , but also such that these
minor embeddings extend to the desired minor embedding of Hi in Hj –
completing the proof of the graph minor theorem.

The graph minor theorem does not extend to graphs of arbitrary
cardinality, but it might extend to countable graphs. Whether or not it
does appears to be a di�cult problem. It may be related to the following
intriguing conjecture, which easily implies the graph minor theorem for
finite graphs (Exercise 68). Call a graph H a proper minor of G if there
is a contraction from a subgraph of G onto H that is not an isomorphism
from G to H.

Self-minor conjecture. (Seymour 1980s)
Every countably infinite graph is a proper minor of itself.

In addition to its impact on ‘pure’ graph theory, the graph mi-
nor theorem has had far-reaching algorithmic consequences. Using their
structure theorem for the graphs in Forb4(Kn), Theorem 12.6.6, Robert-
son and Seymour have shown that testing for any fixed minor is ‘fast’:
for every graph H there is a polynomial-time algorithm14 that decides
whether or not the input graph contains H as a minor. By the minor
theorem, then, every minor-closed graph property P can be decided in
polynomial (even cubic) time: if KP = {H1, . . . , Hk} is the correspond-
ing set of forbidden minors, then testing a graph G for membership in
P reduces to testing the k assertions Hi 4 G.

The following example gives an indication of how deeply this algo-
rithmic corollary a↵ects the complexity theory of graph algorithms. Let
us call a graph knotless if it can be embedded in R3 so that none of its
cycles forms a non-trivial knot. Before the graph minor theorem, it was
an open problem whether knotlessness is decidable, that is, whether any
algorithm exists (no matter how slow) that decides for any given graph
whether or not that graph is knotless. To this day, no such algorithm
is known. The property of knotlessness, however, is easily ‘seen’ to be
closed under taking minors: contracting an edge of a graph embedded
in 3-space will not create a knot where none had been before. Hence, by
the minor theorem, there exists an algorithm that decides knotlessness –
even in polynomial (cubic) time!

However spectacular such unexpected solutions to long-standing
problems may be, viewing the graph minor theorem merely in terms
of its corollaries will not do it justice. At least as important are the

14 indeed a cubic one – although with an enormous constant depending on H
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techniques developed for its proof, the various ways in which minors are
handled or constructed. Most of these have not even been touched upon
here, yet they seem set to influence the development of graph theory for
many years to come.

Exercises

1.� Let 6 be a quasi-ordering on a set X. Call two elements x, y 2 X
equivalent if both x 6 y and y 6 x. Show that this is indeed an
equivalence relation on X, and that 6 induces a partial ordering on the
set of equivalence classes.

2. Let (A,6) be a quasi-ordering. For subsets X ✓ A write

Forb6(X) := { a 2 A | a 6> x for all x 2 X } .

Show that 6 is a well-quasi-ordering on A if and only if every subset
B ✓ A that is closed under 6 (i.e. such that x 6 y 2 B ) x 2 B) can
be written as B = Forb6(X) with finite X.

3. Prove Proposition 12.1.1 and Corollary 12.1.2 directly, without using
Ramsey’s theorem.

4.� Show that the relation 6 between rooted trees defined in the text is
indeed a quasi-ordering.

5. Show that the finite trees are not well-quasi-ordered by the subgraph
relation.

6. The last step of the proof of Kruskal’s theorem considers a ‘topological’
embedding of Tm in Tn that maps the root of Tm to the root of Tn.
Suppose we assume inductively that the trees of Am are embedded in
the trees of An in the same way, with roots mapped to roots. We thus
seem to obtain a proof that the finite rooted trees are well-quasi-ordered
by the subgraph relation, even with roots mapped to roots. Where is
the error?

7. Extend Kruskal’s theorem to trees whose vertices are labelled from a
well-quasi-ordered set. The tree embedding is defined as before but in
addition respects the ordering of the labels.

8. Are the connected finite graphs well-quasi-ordered by contraction alone
(i.e. by taking minors without deleting edges or vertices)?

9.+ Relax the minor relation by not insisting that branch sets be connected.
Show that the finite graphs are well-quasi-ordered by this relation.

10.+ Show that the finite graphs are not well-quasi-ordered by the topological
minor relation.

11.+ Given k 2 N, is the class { G | G 6◆ P k
} well-quasi-ordered by the

subgraph relation?
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12.� Let G be a graph, T a tree, and V = (Vt)t2T a family of subsets of V (G).
Show that (T, V) is a tree-decomposition of G if and only if

(i) for every v 2 V (G) the set Tv := { t | v 2 Vt } is connected in T ;

(ii) Tu \Tv 6= ; for every edge uv of G.

13.� Consider a tree-decomposition of a graph G in which some parts contain
other parts. Modify it into a tree-decomposition whose parts are the
✓-maximal parts of the first decomposition. How does the new tree
arise from the old?

14. Let G be a graph, T a set, and (Vt)t2T a family of subsets of V (G) satis-
fying (T1) and (T2) from the definition of a tree-decomposition. Show
that there exists a tree on T that makes (T3) true if and only if there
exists an enumeration t1, . . . , tn of T such that for every k = 2, . . . , n
there is a j < k satisfying Vtk \

S
i<k

Vti ✓ Vtj .

(The new condition tends to be more convenient to check than (T3).
It can help, for example, with the construction of a tree-decomposition
into a given set of parts.)

15. Prove the following converse of Lemma 12.3.1: if (T, V) satisfies con-
dition (T1) and the statement of the lemma, then (T, V) is a tree-
decomposition of G.

16. Recall that two separations {U1, U2} and {W1, W2} of G are nested if
we can choose i, j 2 {1, 2} so that Ui ✓ Wj and U3�i ◆ W3�j .

(i) Show that the separations Se := {U1, U2} in Lemma 12.3.1 are
pairwise nested (for di↵erent choices of the edge e = t1t2 2 T ).

(ii)+ Conversely, show that given a set N of nested separations of G
there is a tree-decomposition (T, V) of G such that N = { Se |

e 2 E(T ) }.

17.+ Prove Theorem 12.3.7 for k = 3. Specifically, prove Tutte’s theorem
that every 2-connected graph has a tree-decomposition of adhesion 2
whose torsos are each either 3-connected or a cycle. Conversely, show
that every graph with such a tree-decomposition is 2-connected.

(Hint. Try the tree-decomposition defined, as in Exercise 16 (ii), by
the set of all separations of order 2 that are nested with all other such
separations.)

18. Describe the tree-decomposition of a contraction minor H of G which
a given tree-decomposition of G induces as in Lemma 12.3.3, in terms
subtrees of T (as in Exercise 12).

19.� Show that any graph with a simplicial tree-decomposition into k-
colourable parts is itself k-colourable.

20. Let H be a set of graphs, and let G be constructed recursively from
elements of H by pasting along complete subgraphs. Show that G has
a simplicial tree-decomposition into elements of H.
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21. Use the previous exercise to show that G has no K5 minor if and only
if G has a tree-decomposition in which every torso is either planar or a
copy of the Wagner graph W (Figure 7.3.1).

22.+ Call a graph irreducible if it is not separated by any complete subgraph.
Every finite graph G can be decomposed into irreducible induced sub-
graphs, as follows. If G has a separating complete subgraph S, then de-
compose G into proper induced subgraphs G0 and G00 with G = G0

[G00

and G0
\G00 = S. Then decompose G0 and G00 in the same way, and so

on, until all the graphs obtained are irreducible. By Exercise 20, G has
a simplicial tree-decomposition into these irreducible subgraphs. Show
that they are uniquely determined if the complete separators were all
chosen minimal.

23. If F is a family of sets, then the graph G on F with XY 2 E(G) ,
X \ Y 6= ; is called the intersection graph of F . Show that a graph
is chordal if and only if it is isomorphic to the intersection graph of a
family of (vertex sets of) subtrees of a tree.

24. Show that for n > 3 the graphs Kn, Cn, an arbitrary tree of order n,
and the n⇥n grid have tree-decompositions of widths n�1, 2, 1, and n,
respectively. For Kn and Cn show that these values are best possible.

25. Can the tree-width of a subdivision of a graph G be smaller than tw(G)?
Can it be larger?

26. Show that the tree-width of a finite graph is at least its minimum
degree. Is this still true for infinite graphs?

27.+ Show that if a graph has circumference k 6= 0, then its tree-width is at
most k� 1.

28.+ A graph is called outerplanar if it has a drawing in which every vertex
lies on the boundary of the outer face. Show that outerplanar graphs
can have arbitrarily large tree-width, or find the best upper bound.

A tree-decomposition whose tree is a path is a path-decomposition. The path-

width pw(G) of G is the least width of a path-decomposition of G.

29. Show that a graph has a path-decomposition into complete graphs if
and only if it is isomorphic to an interval graph. (Interval graphs are
defined in Exercise 44, Chapter 5.)

30. (continued)

Prove the following analogue of Proposition 12.4.4 for path-width:
every graph G satisfies pw(G) = min !(H)� 1, where the minimum is
taken over all interval graphs H containing G.

31.+ Do trees have unbounded path-width?

A transaction of a sequence (v1, . . . , vn) of vertices is a set of disjoint paths
from an initial segment {v1, . . . , vi} to the rest, {vi+1, . . . , vn}.
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32.+ Given k 2 N and a sequence v1, . . . , vn of vertices in a graph G, show
that G has a path-decomposition (V1, . . . , Vn) of adhesion 6 k, with
vi 2 Vi for all i, if and only if G contains no transaction P of (v1, . . . , vn)
of order |P| > k.

33. Show that the cycle Cn has connected tree-width dn/2e.

34. Show that the n⇥n grid has tree-width n.

35.� Let B be a maximum-order bramble in a graph G. Show that every
minimum-width tree-decomposition of G has a unique part covering B.

36.� Let P be a minor-closed graph property. Show that strengthening the
notion of a minor (for example, to that of topological minor) increases
the set of forbidden minors required to characterize P.

37. Deduce from the graph minor theorem that every minor-closed property
can be expressed by forbidding finitely many topological minors. Is the
same true for every property that is closed under taking topological
minors?

Call a set X ✓ V (G) of vertices k-connected in G if |X| > k and for all subsets
Y, Z ✓ X with |Y | = |Z| 6 k there are |Y | disjoint Y –Z paths in G.

38.+ Show that the tree-width of a graph G is large if and only if it contains
a large set of vertices that is k-connected in G for some large k. For ex-
ample, show that graphs of tree-width < k contain no (k+1)-connected
set of 3k vertices, and that graphs containing no (k + 1)-connected set
of 3k vertices have tree-width < 4k.

39. (continued)

(i)+ Find an N!N2 function k 7! (h, `) such that every graph with an
`-connected set of h vertices contains a bramble of order > k.

(ii)� Using the last exercise, deduce the following weakening of the
di�cult implication of Theorem 12.4.3: given k, every graph of large
enough tree-width f(k) contains a bramble of order > k.

40.� Show that if separations r, s are nested, they have orientations ~r > ~s.

41. Two cuts are nested if a side of one is contained in a side of the other.
Show that the k-cuts in a k-edge-connected graph are nested if k is odd.

42. Characterize the 2-tangles in a graph.

43. Find a 4-tangle in the 3-dimensional cube.

When ⌧ is a tangle and (A, B) 2 ⌧ , we call A the small side of {A, B} in ⌧
and B its big side.

44. Let G be a graph with a tangle ⌧ of order k.

(i) Show that every graph G0 < G also has a k-tangle.

(ii) Justify the notion of a ‘small side’ by showing that if (A, B) 2 ⌧
and {A0, B0

} is a separation of order < k with A0
✓ A or B0

◆ B,
then (A0, B0) 2 ⌧ .
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(iii) Deduce from the profile property of ⌧ that the intersection X of
the big sides of any star in ⌧ contains at least k vertices.

(iv) Deduce that, for every set X of fewer than k vertices, exactly
one of the components C of G�X is ‘big’, in the sense that
(V (G�C), X [V (C)) 2 ⌧ .

45.+ Is (iv) of the previous exercise true also in infinite graphs (with k finite)?

A decider set for a tangle ⌧ in G is a set X ✓ V (G) such that |X \A| < |X \B|

for every (A, B) 2 ⌧ .

46.+ Show that a k-tangle induced by a 2k-tangle always has a decider set.

47. Show that separations {A, B} and {C, D} cross if and only if both
A and B meet both C and D outside A\B \C \D.

48. Does every set of separations in a graph admit a consistent orientation?

49. Show that for every consistent orientation O of the set N of the separa-
tions Se := {U1, U2} in Lemma 12.3.1, one for every edge e of T , there
exists a node t of T such that O orients every separation in N towards Vt.

50.� Show that orienting the edges of a tree T = (V, E) towards some fixed
node t is consistent for the partial ordering on

!
E defined in Section 12.5.

Is this a bijection between V and the consistent orientations of E?

51. (continued)

Show that S-trees are just a formal way to display, by a concrete tree,
the ‘tree-like’ structure of nested sets of separations:

(i) Given an S-tree (T, ↵), show that ↵(
!
E(T )) ✓

!
S is nested.

(A set � ✓
!
S is nested if { s |

!s 2 � } is nested.)

(ii)+ Given a nested set S of separations, construct an S-tree (T, ↵)

with surjective ↵:
!
E(T )!

!
S .

(iii) Derive Exercise 16 (ii).

52. (continued)

Prove the assertions about trees of tangles and tree-decompositions
made in the long paragraph following the proof of Theorem 12.5.8.

53.+ Show that in any graph of order n there are at most n tangles.

54. Recall from the proof of Theorem 12.4.3 how a k-bramble orients Sk.
Is this orientation of Sk a tangle? Is it a profile?

55. Show the following implications for a graph G:

(i) G contains a k-block ) G has a bramble of order k.

(ii) G has a tangle of order k ) G has a bramble of order k.

(iii) G has a bramble of order 3k ) G has a tangle of order k.

(iv) G contains a k-block ) G has a k-tangle or |B| 6 3
2 (k� 1).

Is there a function f :N!N such that, for every k 2 N, if G has a tangle
of order at least f(k) then it contains a k-block?
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56. Show that k-blocks of size at least 3k/2 define robust profiles of Sk.
Strengthen Theorem 12.3.7 for such blocks, to find a canonical tree-
decomposition which, for variable k, e�ciently distinguishes all pairs of
k-blocks of size at least 3k/2 such that neither includes the other.

57.+ Define as the order of a bipartition {A, B} of the vertex set of a graph G
the number kA, Bk of its A–B edges. Define orientations of such bipar-
titions in the obvious way. Call an orientation of the set of all the vertex
bipartitions of order < k an edge-tangle of order k if it has no three
elements (A1, B1), (A2, B2), (A3, B3) such that A1 [A2 [A3 = V (G).
Show that the proofs of Theorems 12.5.1 and 12.5.8 yield tree-of-tangle
theorems for edge tangles, the second of them canonical.

58. Discuss the following three shortcuts in the proof of Theorem 12.5.11,
all designed to avoid shifting. Does any of them work?

(i) In the induction step, pick any separation s 2 Sk r SO of your
choice. (If you think it helps, choose it of minimum order.) Add
each of its two orientations !s ,  s to O to obtain Sk-trees that
are over T

⇤
[T

+ except at one leaf, whose label is {
 s} or {

!s },
respectively. Merge the trees at these leaves as in the text.

Does it worry you that the extensions of O are no longer closed upwards

in
�!
Sk? If so, why? Then try the following adaptations of (i):

(ii) Dispense with the requirement that O be closed upwards in
�!
Sk .

(iii) Add to O not just !s or  s , but their entire up-closure in
�!
Sk .

59. To illustrate the equivalence of Theorems 12.4.3 and 12.5.11, prove the
following assertions for all graphs G:

(i) G has tree-width < k�1 if and only if it has an Sk-tree over Fk.

(ii) G has a k-bramble if and only if it admits an Fk-tangle of Sk.

60.+ Modify the proof of Theorem 12.5.9 to obtain a proof of Theorem 12.5.11.

61. Extend Theorem 12.6.5 as follows. Let H be a connected planar
graph, let X be any set of connected graphs including H, and let
H := { IX | X 2 X }. Show that H has the Erdős-Pósa property,
witnessed by the same function f as defined in the proof of Theorem
12.6.5. Explain how it is possible that f depends on H but not on any
of the other graphs in X .

62.+ Show that, for every non-planar graph H, the class IH fails to have
the Erdős-Pósa property.

(Hint. Embed H in a surface.)

63.+ Let H be a class of connected graphs, and k > 1 an integer. Without
using any theorems from this chapter, show that H has the Erdős-Pósa
property for graphs without a k-tangle.
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64.+ Show that the four ingredients to the structure of the graphs in
Forb4(Kn) as described in Theorem 12.6.6 – tree-decomposition, an
apex set X, arbitrary surfaces S 6 - Kn, and vortices H1, . . . , Hk – are
all needed to capture all the graphs in Forb4(Kn). More precisely,
find examples of graphs in Forb4(Kn) showing that Theorem 12.6.6
becomes false if we require in addition that the tree-decomposition has
only one part, or that X is always empty, or that S is always the sphere,
or that H1, . . . , Hk are always empty. No exact proofs are required.

65.+ (continued)

Show that, unlike in Theorem 12.6.6, the surfaces used in Theorem
12.6.7 cannot be limited to those in which Kn cannot be drawn. (As
before, no exact proofs are required.)

66. Without using the graph minor theorem, show that the chromatic num-
ber of the graphs in any 4-antichain is bounded.

67. Let Sg denote the orientable surface obtained from the sphere by adding
g handles. Find a lower bound for |KP(S)| in terms of g.

(Hint. The smallest g such that a given graph can be embedded in Sg

is its orientable genus. Use the theorem that the orientable genus of a
graph is equal to the sum of the genera of its blocks.)

68. Deduce the graph minor theorem from the self-minor conjecture.

69. Prove Theorem 12.6.9, assuming that G has a normal spanning tree.

70. Let G be a locally finite graph obtained from the Z ⇥ Z grid H by
adding an infinite set of edges xy with dH(x, y) unbounded. Show that
G < K@0 . Can you do the same if the distances dH(x, y) are bounded
(but at least 3)?

71. Is the infinite Z⇥ Z grid a minor of the Z⇥ N grid? Is the latter a
minor of the N⇥N grid?

72.+ Extend Proposition 12.3.6 to infinite graphs not containing an infinite
complete subgraph.

73. Using the previous exercise, prove that if every finite subgraph of G
has tree-width less than k 2 N then so does G.

74. Show that no assumption of large finite connectivity can ensure that
a countable graph has a Kr minor when r > 5. However, using the
previous exercise show that su�ciently large finite connectivity forces
an infinite graph to contain any given planar minor.
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Notes

Robertson & Seymour have traditionally referred to the graph minor theorem
as Wagner’s conjecture. Wagner did indeed discuss this problem in the 1960s
with his then students, Halin and Mader, and it seems that Mader conjectured
a positive solution. Wagner himself always insisted that he did not – even after
the graph minor theorem had been proved.

Robertson & Seymour’s proof of the graph minor theorem is given in the
numbers IV–VII, IX–XII and XIV–XXII of their series of over 20 papers under
the common title of Graph Minors, most of which appeared in the Journal of
Combinatorial Theory, Series B, between 1983 and 2012. Of their theorems
cited in this chapter, Theorem 12.4.2 is from Graph Minors IV, Theorems
12.5.9 and 12.5.1 from Graph Minors X, Theorems 12.6.3 and 12.6.5 from
Graph Minors V, and Theorem 12.6.6 from Graph Minors XVI.

Kruskal’s theorem on the well-quasi-ordering of finite trees was first pub-
lished in J.B. Kruskal, Well-quasi ordering, the tree theorem, and Vászonyi’s
conjecture, Trans. Amer.Math. Soc. 95 (1960), 210–225. Our proof is due
to Nash-Williams, who introduced the versatile proof technique of choosing a
‘minimal bad sequence’. This technique was also used in our proof of Higman’s
Lemma 12.1.3.

Nash-Williams generalized Kruskal’s theorem to infinite graphs. This ex-
tension is much more di�cult than the finite case. Its proof introduces as a tool
the notion of better-quasi-ordering, a concept that has profoundly influenced
well-quasi-ordering theory. The graph minor theorem is false for uncount-
able graphs; this was shown by R. Thomas, A counterexample to ‘Wagner’s
conjecture’ for infinite graphs, Math. Proc. Camb. Phil. Soc. 103 (1988), 55–
57. Whether or not the countable graphs are well-quasi-ordered as minors,
and whether the finite (or the countable) graphs are better-quasi-ordered as
minors, are related questions that remain wide open. Both are related also
to the self-minor conjecture. This, too, was originally intended to include
graphs of arbitrary cardinality, but was disproved for uncountable graphs by
B. Oporowski, A counterexample to Seymour’s self-minor conjecture, J.Graph
Theory 14 (1990), 521–524.

Doubling all the edges of an cycle, and then subdividing every new edge
once, yields a graph which is incomparable under the topological minor re-
lation to any graph obtained in this way from a cycle of any other length.
This shows that the finite graphs are not well-quasi-ordered by the topological
minor relation; cf. Exercise 10. C.-H. Liu, Graph Structures and Well-Quasi-
Ordering , PhD thesis, Georgia Institute of Technology (2014), showed that
this example is essentially the only obstruction to well-quasi-ordering by the
topological minor relation: given any integer k, the finite graphs that do not
contain, as a topological minor, a graph obtained from a path P k in this way
are well-quasi-ordered as topological minors.

The notions of tree-decomposition and tree-width were first introduced
(under di↵erent names) by R. Halin, S-functions for graphs, J.Geometry 8
(1976), 171–186. Among other things, Halin showed that grids can have ar-
bitrarily large tree-width. Robertson & Seymour reintroduced the two con-
cepts, apparently unaware of Halin’s paper, with direct reference to K. Wagner,
Über eine Eigenschaft der ebenen Komplexe, Math.Ann. 114 (1937), 570–
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590. (This is the seminal paper that introduced simplicial tree-decomposi-
tions to prove Theorem 7.3.4; cf. Exercise 21.) Simplicial tree-decompositions
are treated in depth in R. Diestel, Graph Decompositions, Oxford University
Press 1990.

An instructive introductory survey on tree-width, brambles and tangles is
given by B.A. Reed in (R.A. Bailey, ed) Surveys in Combinatorics 1997 , Cam-
bridge University Press 1997, 87–162. Reed introduced the term ‘bramble’; in
Seymour & Thomas’s original paper they are called ‘screens’.

Theorem 12.3.7 is extracted from J. Carmesin, R. Diestel, F. Hundert-
mark & M. Stein, Connectivity and tree structure in finite graphs, Combina-
torica 34 (2014), 1–35, arXiv:1105.1611. Under mild additional assumptions
one can show that the tree-decompositions constructed for the proof of Theo-
rem 12.3.7 refine each other as k grows: the decomposition for k + 1 induces
tree-decompositions of the torsos of the decomposition for k and is therefore
compatible with that decomposition. Just as in Theorems 12.5.1 and 12.5.8,
one thus obtains one overall tree-decomposition whose induced separations
separate every two blocks that can be separated at all, i.e., that are not just
some k-block contained in a larger `-block (for ` < k).

The tree-width duality theorem, Theorem 12.4.3, is due to P.D. Seymour
and R. Thomas, Graph searching and a min-max theorem for tree-width,
J.Comb.Theory, Ser. B 58 (1993), 22–33. A short version of this proof was
included in earlier editions of this book and can be found in P. Bellenbaum &
R. Diestel, Two short proofs concerning tree-decompositions, Comb. Probab.
Comput. 11 (2002), 541–547 (which also o↵ers a short proof of Theorem 12.4.5).
The proof presented in the text follows an idea of F. Mazoit, personal com-
munication 2013. The simplest proof, perhaps – and the only one not using
Menger’s theorem – is via Theorem 12.5.11; see Exercises 59–60 and their hints.

Historically, tree-width duality evolved with a few quirks. As Robertson
and Seymour developed the theory of tree-decompositions, they simultaneously
looked for witnesses to large tree-width, as a way to proceed with the proof of
the graph minor theorem when the graphs in question have unbounded tree-
width. The result of this search was the notion of a tangle – with hindsight,
perhaps the deepest single innovation for graph theory stemming from this
proof. Numerically, however, the duality did not exactly fit: while large tree-
width implies the existence of a large-order tangle and vice versa, one loses
a small constant factor in the conversion. Instead of adjusting the notion of
a tangle to repair this, however (e.g., as in Theorem 12.5.11), Robertson and
Seymour simply changed the notion of a tree-decomposition to a new concept
called branch-decompositions, which are exactly dual to tangles (except for
very small k). To tie up the loose ends, Seymour and Thomas later introduced
brambles and Theorem 12.4.3 to provide exact duality for tree-width too; but
brambles, though interesting, never assumed the significance of tangles.

Theorem 12.4.5 is from R. Thomas, A Menger-like property of tree-width;
the finite case, J.Comb.Theory, Ser. B 48 (1990), 67–76. Theorem 12.4.6
is from R. Diestel & M. Müller, Connected tree-width, Combinatorica 38
(2018), 381–398, arXiv:1211.7353. This paper also includes a proof that
ctw(C) 6 ctw(G) if C is a geodesic cycle in G.

In older papers on tangles, as well as in the 5th edition of this book, the
partial ordering between oriented separations is the reverse of that defined in
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Section 12.5. Our new definition seems more natural, since 6 implies ✓ for
the sides to which the separations point: if (A, B) 6 (C, D) then B ✓ C. This
is also better compatible with the tangle theory of set bipartitions, where it
is customary to refer to an oriented partition (A, B) simply as B (since A is
determined as A = V r B); see the book reference below for more on such
tangles and their applications.

Profiles more general than tangles are studied in R. Diestel, F. Hundert-
mark & S. Lemanczyk, Profiles of separations: in graphs, matroids, and be-
yond, Combinatorica 39, 37–75. This paper gave the first canonical proof of
the tree-of-tangles theorem, Theorem 12.5.1. The tree-of-tangles theorem it
proves for profiles of so-called abstract separation systems also implies The-
orem 12.3.7 and Exercise 57, since blocks and edge-tangles induce profiles.
Indeed this is how they came by their name: as the ‘profiles’ of blocks visible
on the screen of the low-order separations of a graph, which they orient.

Our first proof of the tree-of-tangles theorem, and in particular the splin-
ter lemma on which it is based, are due to C. Elbracht, J. Kneip & M. Teegen,
Trees of tangles in abstract separation systems, J.Comb.Theory, Ser. A 180
(2021), arXiv:1909.09030. Its canonical strengthening, Theorem 12.5.8, is due
to J. Carmesin & J. Kurkofka, Entanglements, J.Comb.Theory, Ser. B 164
(2024), 17–28, arXiv:2205.11488. This paper also give examples of entangle-
ments that are not of the form D(⌧, ⌧ 0). Thus, Theorem 12.5.8 is also more
general than Theorem 12.5.1, not only stronger.

Our proof of Theorem 12.5.9 is adapted from R. Diestel & S. Oum, Tangle-
tree duality in abstract separation systems, Adv.Math. 377 (2021), 107470;
arXiv:1701.02509. In this paper, a duality theory is developed for tangles in
abstract separation systems, not necessarily of graphs. Its main result contains
Theorems 12.5.9 and 12.5.11 as special cases.

The theory of tangles in graphs, including its main two theorems, has
been extended to more general combinatorial structures such as matroids or
set partitions. In this general form it can be applied outside mathematics,
in areas as diverse as clustering in data analysis, finding mindsets in political
science or psychology, or consumer behaviour in economics. This is explored
in R. Diestel, Tangles: a structural approach to artificial intelligence in the

empirical sciences, Cambridge University Press 2024. Excerpts, an electronic
edition, and open-source tangle software are available from tangles-book.com.

The Kuratowski set for the graphs of tree-width < 4 have been deter-
mined by S. Arnborg, D.G. Corneil and A. Proskurowski, Forbidden minors
characterization of partial 3-trees, Discrete Math. 80 (1990), 1–19. They are:
K5, the octahedron K2,2,2, the 5-prism C5

⇥K2, and the Wagner graph W.
The Kuratowski set KP(S) for a given surface S has been determined explicitly
for only one surface other than the sphere, the projective plane. It consists
of 35 forbidden minors; see D. Archdeacon, A Kuratowski theorem for the
projective plane, J.Graph Theory 5 (1981), 243–246. It is not di�cult to
show that |KP(S)| grows rapidly with the genus of S (Exercise 67).

A survey of finite forbidden minor theorems is given in Chapter 6.1 of
R. Diestel, Graph Decompositions, Oxford University Press 1990. More recent
developments are surveyed in R. Thomas, Recent excluded minor theorems, in
(J.D. Lamb & D.A. Preece, eds) Surveys in Combinatorics 1999 , Cambridge
University Press 1999, 201–222. A survey of infinite forbidden minor theorems
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was given by N. Robertson, P.D. Seymour & R. Thomas, Excluding infinite
minors, Discrete Math. 95 (1991), 303–319.

The first short proof of the grid theorem, Theorem 12.6.3, was given by
R. Diestel, K.Yu. Gorbunov, T.R. Jensen & C. Thomassen, Highly connected
sets and the excluded grid theorem, J.Comb.Theory, Ser. B 75 (1999), 61–73.
This proof was included in editions 2–4 of this book. It was further simplified
by A. Leaf and P.D. Seymour, Treewidth and planar minors, J.Comb.Theory,
Ser. B 111 (2015) 38–53. The first proof with polynomial bound was obtained
by C. Chekuri and J. Chuzhoy, Polynomial bounds for the grid-minor theorem,
J.ACM 63 (2016), 1–65; arXiv:1602.02629.

As a forerunner to the grid theorem, Robertson & Seymour proved its
following analogue for path-width (Graph Minors I): excluding a graph H as
a minor bounds the path-width of a graph if and only if H is a forest. A short
proof of this result, with optimal bounds, can be found in the first edition of
this book, or in R. Diestel, Graph Minors I: a short proof of the path width
theorem, Comb. Probab. Comput. 4 (1995), 27–30. It also follows from the
abstract tangle duality theorem of Diestel and Oum cited earlier.

Theorem 12.6.6 is the earliest version of Robertson and Seymour’s struc-
ture theorem for the graphs without a Kn minor. It has become known as the
‘red herring’ version – a phrase coined by Robertson and Seymour themselves,
referring to its role in their proof of the graph minor theorem. It nonetheless
remains the most-often applied version of the structure theorem, especially
in algorithmic contexts. The strongest version so far, designed with future
applications in mind, is given in R. Diestel, K. Kawarabayashi, Th. Müller &
P. Wollan, On the excluded minor structure theorem for graphs of large tree-
width, J.Comb.Theory, Ser. B 102 (2012), 1189–1210, arXiv:0910.0946. Its
proof is based on Theorem 12.6.6. A short proof of Theorem 12.6.6 itself was
recently given by K. Kawarabayashi, R. Thomas & P. Wollan, arXiv:1207.6927
and arXiv:2010.12397.

The structure Theorem 12.6.7 for excluding topological minors is due to
M. Grohe and D. Marx, Structure theorem and isomorphism test for graphs
with excluded topological subgraphs, Proc. 44th ann. ACM symp. theory of
computing (STOC 2012), 173–192, arXiv:1111.1109.

The existence of normal spanning trees for graphs with no topological K@0

minor was proved by R. Halin, Simplicial decompositions of infinite graphs, in:
(B. Bollobás, ed.) Advances in Graph Theory, Annals of Discrete Mathemat-
ics 3, North-Holland 1978. Its strengthening, part (iii) of Theorem 12.6.9,
was observed in R. Diestel, The depth-first search tree structure of TK@0 -
free graphs, J.Comb.Theory, Ser. B 61 (1994), 260–262. Part (iii) easily
implies part (ii), which had been proved independently by N. Robertson,
P.D. Seymour & R. Thomas, Excluding infinite clique subdivisions, Trans.
Amer.Math. Soc. 332 (1992), 211–223. Theorem 12.6.8 and the infinite case of
Theorem 12.6.6 were proved in R. Diestel & R. Thomas, Excluding a countable
clique, J.Comb.Theory, Ser. B 76 (1999), 41–67. The proof of Theorem 12.6.8
builds on the main result of N. Robertson, P.D. Seymour & R. Thomas, Ex-
cluding infinite clique minors, Mem.Amer.Math. Soc. 118 (1995).

Our proof of the ‘generalized Kuratowski theorem’, Corollary 12.7.3, was
inspired by J. Geelen, B. Richter & G. Salazar, Embedding grids in surfaces,
Eur. J. Comb. 25 (2004), 785–792. An alternative proof, which bypasses Theo-
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rem 12.4.2 by proving directly that the graphs in KP(S) have bounded order, is
given by B. Mohar & C. Thomassen, Graphs on Surfaces, Johns Hopkins Uni-
versity Press 2001. Mohar (see there) also developed a set of algorithms, one
for each surface, that decide embeddability in that surface in linear time. As a
corollary, he obtains an independent and constructive proof of Corollary 12.7.3.

For every graph X, Graph Minors XIII gives an explicit algorithm that
decides in cubic time for every input graph G whether X 4 G. The constants in
the cubic polynomials bounding the running time of these algorithms depend
on X but are constructively bounded from above.

The concept of a ‘good characterization’ of a graph property was first
suggested by J. Edmonds, Minimum partition of a matroid into independent
subsets, J.Research of the National Bureau of Standards (B) 69 (1965) 67–72.
In the language of complexity theory, a characterization is good if it specifies
two assertions about a graph such that, given any graph G, the first assertion
holds for G if and only if the second fails, and such that each assertion, if true
for G, provides a certificate for its truth that can be checked in polynomial
time. Thus every good characterization has the corollary that the decision
problem corresponding to the property it characterizes lies in NP\ co-NP.




