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Theorem 8.4.12 there is a set T ⊆ V (C) such that C′
C−T is not matchable

to T in C ′
T . By Corollary 8.4.9, this means that C′

C−T has a subset
C that is not matchable in C ′

T to the set T ′ ⊆ T of its neighbours,
while T ′ is matchable to C; let M ′ be such a matching. Then (S, M) <
(S ∪T ′, M ∪M ′), contradicting the maximality of (S, M).

Of the second statement, only the backward implication is non-
trivial. Our assumptions now are that C′

G−S is matchable to S in G′
S

and vice versa (by the choice of S), so Proposition 8.4.6 yields that G′
S

has a 1-factor. This defines a matching of S in G that picks one vertex
xC from every component C ∈ C′

G−S and leaves the other components
of G− S untouched. Adding to this matching a 1-factor of C − xC for
every C ∈ C′

G−S and a 1-factor of every other component of G− S, we
obtain the desired 1-factor of G. �

Infinite matching theory may seem rather mature and complete as
it stands, but there are still fascinating unsolved problems in the Erdős-
Menger spirit concerning related discrete structures, such as posets or
hypergraphs. We conclude with one about graphs.

Call an infinite graph G perfect if every induced subgraph H ⊆ G
has a complete subgraph K of order χ(H), and strongly perfect if K

strongly
perfect

can always be chosen so that it meets every colour class of some χ(H)-
colouring of H. (Exercise 5959 gives an example of a perfect graph that is
not strongly perfect.) Call G weakly perfect if the chromatic number of weakly

perfect
every induced subgraph H ⊆ G is at most the supremum of the orders
of its complete subgraphs.

Conjecture. (Aharoni & Korman 1993)
Every weakly perfect graph without infinite independent sets of vertices
is strongly perfect.

8.5 Graphs with ends: the topological viewpoint
In this section we shall develop a deeper understanding of the global
structure of infinite graphs, especially locally finite ones, that can be
attained only by studying their ends. This structure is intrinsically to-
pological, but no more than the most basic concepts of point-set topology
will be needed.

Our first goal will be to make precise the intuitive idea that the
ends of a graph are the ‘points at infinity’ to which its rays converge.
To do so, we shall define a topological space |G| associated with a graph |G|
G = (V, E, Ω) and its ends.8 By considering topological versions of V, E, Ω

8 The notation of |G| comes from topology and clashes with our notation for the
order of G. But there is little danger of confusion, so we keep both.
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paths, cycles and spanning trees in this space, we shall then be able to
extend to infinite graphs some parts of finite graph theory that would not
otherwise have infinite counterparts (see the notes for more examples).
Thus, the ends of an infinite graph turn out to be more than a curious
new phenomenon: they form an integral part of the picture, without
which it cannot be properly understood.

To build the space |G| formally, we start with the set V ∪Ω. For
every edge e = uv we add a set e̊ = (u, v) of continuum many points, mak-(u, v)

ing these sets e̊ disjoint from each other and from V ∪Ω. We then choose
for each e some fixed bijection between e̊ and the real interval (0, 1), and
extend this bijection to one between [u, v] := {u}∪ e̊∪{v} and [0, 1]. This[u, v]

bijection defines a metric on [u, v]; we call [u, v] a topological edge with
inner points x ∈ e̊. Given any F ⊆ E we write F̊ :=

⋃{ e̊ | e ∈ F }. WhenF̊

we speak of a ‘graph’ H ⊆ G, we shall often also mean its corresponding
point set V (H)∪ E̊(H).

Having thus defined the point set of |G|, let us choose a basis of open
sets to define its topology. For every edge uv, declare as open all subsets
of (u, v) that correspond, by our fixed bijection between (u, v) and (0, 1),
to an open set in (0, 1). For every vertex u and ε > 0, declare as open
the ‘open star around u of radius ε’, that is, the set of all points on edges
[u, v] at distance less than ε from u, measured individually for each edge
in its metric inherited from [0, 1]. Finally, for every end ω and every finite
set S ⊆ V , there is a unique component C(S, ω) of G−S that containsC(S, ω)

rays from ω. Let Ω(S, ω) := {ω′ ∈ Ω | C(S, ω′) = C(S, ω) }. For every
ε > 0, write E̊ε(S, ω) for the set of all inner points of S–C(S, ω) edges
at distance less than ε from their endpoint in C(S, ω). Then declare as
open all sets of the form

Ĉε(S, ω) := C(S, ω)∪Ω(S, ω)∪ E̊ε(S, ω) .Ĉε(S, ω)

This completes the definition of |G|, whose open sets are the unions of
the sets we explicitly chose as open above.

The closure of a set X ⊆ |G| will be denoted by X. For example,closure X

V = V ∪Ω (because every neighbourhood of an end contains a vertex),
and the closure of a ray is obtained by adding its end. More generally,
the closure of the set of teeth of a comb contains a unique end, the end
of its spine. Conversely, if U ⊆ V and R ∈ ω ∈ Ω∩U , there is a comb
with spine R and teeth in U (Exercise 6161). In particular, the closure of
the subgraph C(S, ω) considered above is the set C(S, ω)∪Ω(S, ω).

Given a subgraph H = (U, F ) of G, we write H := U ∪ F̊ for itsH

closure in |G|. Note that the ends in H are ends of G, not ends of H; in
particular, H may well contain ends that have no ray in H. A subspace
X of |G| of the form X = H is a standard subspace. We denote F

standard
subspace

as E(X), and call X spanned by H. When F ⊆ E is a given set of edgesE(X)
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and U is the set of their endvertices, we abbreviate (U, F ) to F , and also F

say that X is spanned by F .
By definition, |G| is always Hausdorff; indeed one can show that it

is normal. When G is connected and locally finite, then |G| is compact:9

Proposition 8.5.1. If G is connected and locally finite, then |G| is a
compact Hausdorff space.

Proof. Let O be an open cover of |G|; we show that O has a finite (8.1.2)

subcover. Pick a vertex v0 ∈ G, write Dn for the (finite) set of vertices
at distance n from v0, and put Sn := D0 ∪ . . .∪Dn−1. For every v ∈ Dn,
let C(v) denote the component of G−Sn containing v, and let Ĉ(v) be
its closure together with all inner points of C(v)–Sn edges. Then G[Sn] Ĉ(v)

and these Ĉ(v) together partition |G|.
We wish to prove that, for some n, each of the sets Ĉ(v) with v ∈ Dn

is contained in some O(v) ∈ O. For then we can take a finite subcover of
O for G[Sn] (which is compact, being a finite union of edges and vertices),
and add to it these finitely many sets O(v) to obtain the desired finite
subcover for |G|.

Suppose there is no such n. Then for each n the set Vn of vertices
v ∈ Dn such that no set from O contains Ĉ(v) is non-empty. Moreover,
for every neighbour u ∈ Dn−1 of v ∈ Vn we have C(v) ⊆ C(u) because
Sn−1 ⊆ Sn , and hence u ∈ Vn−1; let f(v) be such a vertex u. By the
infinity lemma (8.1.2) there is a ray R = v0v1 . . . with vn ∈ Vn for all n.
Let ω be its end, and let O ∈ O contain ω. Since O is open, it contains a
basic open neighbourhood of ω: there exist a finite set S ⊆ V and ε > 0
such that Ĉε(S, ω) ⊆ O. Now choose n large enough that Sn contains S
and all its neighbours. Then C(vn) lies inside a component of G−S. As
C(vn) contains the ray vnR ∈ ω, this component must be C(S, ω). Thus

Ĉ(vn) ⊆ Ĉε(S, ω) ⊆ O ∈ O ,

contradicting the fact that vn ∈ Vn. �

If G has a vertex of infinite degree then |G| cannot be compact.
(Why not?) But Ω ⊆ |G| can be compact; see Exercise 6666 for when it is.

What else can we say about the space |G| in general? For example,
is it metrizable? Using a normal spanning tree T of G, it is indeed not
difficult to define a metric on |G| that induces its topology. But not
every connected graph has a normal spanning tree, and it is not easy
to determine in graph-theoretical terms which graphs do. Surprisingly,
though, it is possible to deduce the existence of a normal spanning tree
from that of a defining metric on |G|. Thus whenever |G| is metrizable,
a metric can be made visible in a natural and structural way.

9 Topologists call |G| the Freudenthal compactification of G.
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Theorem 8.5.2. For a connected graph G, the space |G| is metrizable
if and only if G has a normal spanning tree.

The proof of Theorem 8.5.2 is indicated in Exercises 3333 and 6868.

Our next aim is to review, or newly define, some topological notions
of paths and connectedness, of cycles, and of spanning trees. By substi-
tuting these topological notions with respect to |G| for the corresponding
graph-theoretical notions with respect to G, one can extend to locally
finite graphs a number of theorems about paths, cycles and spanning
trees in finite graphs whose ordinary infinite versions are false. We shall
do this, as a case in point, for the tree-packing theorem (2.4.1) of Nash-
Williams and Tutte.

Let X be an arbitrary Hausdorff space. (Later, this will be a sub-X

space of |G|.) X is (topologically) connected if it is not a union of twoconnected

disjoint non-empty open subsets.10 Note that continuous images of con-
nected spaces are connected. For example, since the real interval [0, 1]
is connected,11 so are its continuous images in X.

A homeomorphic image of [0, 1] in X is an arc in X; it links thearc

images of 0 and 1, which are its endpoints. Every finite path in G defines
an arc in |G| in an obvious way. Similarly, every ray defines an arc linking
its starting vertex to its end, and a double ray in G forms an arc in |G|
together with the two ends of its tails if these ends are distinct.

Consider an end ω in a standard subspace X of |G|, and k ∈ N∪{∞}.
If k is the maximum number of arcs in X that have ω as their common
endpoint and are otherwise disjoint, then k is the (topological) vertex-
degree of ω in X. The (topological) edge-degree of ω in X is definedend degrees

in subspaces
analogously, using edge-disjoint arcs. Similarly to Theorem 8.2.5 one
can show that these maxima are always attained, so every end of G that
lies in X has a topological vertex- and edge-degree there. For X = |G|
and G locally finite, the (topological) end degrees in X coincide with the
combinatorial end degrees defined earlier.

Unlike ordinary paths, arcs in |G| can jump across an infinite cut
without containing an edge from it—but only if the cut is infinite:

Lemma 8.5.3. (Jumping Arc Lemma)
Let G be connected and locally finite, and let F ⊆ E(G) be a cut with
sides V1, V2.

(i) If F is finite, then V1 ∩V2 = ∅, and there is no arc in |G|� F̊ with
one endpoint in V1 and the other in V2.

(ii) If F is infinite, then V1 ∩V2 �= ∅, and there may be such an arc.

10 These subsets would be complements of each other, and hence also be closed.
Note that ‘open’ and ‘closed’ means open and closed in X: when X is a subspace of
|G| with the subspace topology, the two sets need not be open or closed in |G|.

11 This takes a few lines to prove—can you prove it?
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Proof. (i) Suppose that F is finite. Let S be the set of vertices incident (8.2.2)

with edges in F . Then S is finite and separates V1 from V2, so for every
ω ∈ Ω the connected graph C(S, ω) misses either V1 or V2. But then so
does every basic open set of the form Ĉε(S, ω). Therefore no end ω lies
in the closure of both V1 and V2.

As |G|� F̊ = G[V1]∪G[V2] and this union is disjoint, no connected
subset of |G| � F̊ can meet both V1 and V2. Since arcs are continuous
images of [0, 1] and hence connected, there is no V1–V2 arc in |G|� F̊ .

(ii) Suppose now that F is infinite. Since G is locally finite, the set U
of endvertices of F in V1 is also infinite. By the star-comb lemma (8.2.2),
there is a comb in G with teeth in U ; let ω be the end of its spine. Then
every basic open neighbourhood Ĉε(S, ω) of ω meets U ⊆ V1 infinitely
and hence also meets V2, giving ω ∈ V1 ∩V2.

To obtain a V1–V2 arc in |G|� F̊ , all we need now is an arc in G[V1]
and another in G[V2], both ending in ω. Such arcs exist, for example, if
the graphs G[Vi] are connected: we can then pick a sequence of vertices
in Vi converging to ω, and apply the star-comb lemma in G[Vi] to obtain
a comb whose spine is a ray in G[Vi] converging to ω. Concatenating
these two rays yields the desired jumping arc. �

To some extent, arcs in |G| assume the role that paths play in fi-
nite graphs. So arcs are important—but how do we find them? It
is not always possible to construct arcs as explicitly as in the proof
of Lemma 8.5.3 (ii). Figure 8.5.1, for example, shows an arc that goes
through continuum many ends; such arcs cannot be constructed greedily
by following a ray into its end and emerging from that end on another
ray, and repeating this finitely often.

There are two basic methods to obtain an arc between two given
points, say two vertices x and y. One is to use compactness to obtain
as a limit of finite x–y paths a topologial x–y path, a continuous map
π: [0, 1]→|G| sending 0 to x and 1 to y. A theorem from general topology
then tells us that this path can be made injective, i.e., that the image of
π contains an x–y arc.12 Another method is to prove that the subspace
in which we wish to find an x–y arc is topologically connected, and use
this fact to deduce that it contains the desired arc. Our next two lemmas
show how to implement this approach in practice.

Being linked by an arc is an equivalence relation on the points of
our Hausdorff space X: every x–y arc A has a first point p on any y–z
arc A′ (because A′ is closed), and the obvious segments Ap and pA′

together form an x–z arc in X. The corresponding equivalence classes
arc-

component
are the arc-components of X. If X has only one arc-component, then X
is arc-connected .

arc-
connected

12 This approach is explained in a long hint for Exercise 8989.
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Since [0, 1] is connected, arc-connectedness implies connectedness.
The converse implication is false in general, even for spaces X ⊆ |G|
with G locally finite. But it holds in an important special case:

Lemma 8.5.4. If G is locally finite, then every connected standard
subspace of |G| is arc-connected.

The proof of Lemma 8.5.4 is not that easy. A proof borrowing a lemma
from general topology is indicated in Exercise 6969.

The lemma implies that the arc-components of standard subspaces
of |G| are closed. Indeed, such an arc-component A is connected, so its
closure A is connected (and standard). Hence A is arc-connected by the
lemma, giving A = A by definition of A.

Connected standard subspaces of |G| containing two given points
are much easier to construct than an arc between two points. This has
to do with the fact that they can be described in purely graph-theoretical
terms, with reference only to G itself rather than to |G|. The description
can be viewed as a topological analogue of the fact that a subgraph H
of G is connected if and only if it contains an edge from every cut of G
that separates two of its vertices:

Lemma 8.5.5. If G is locally finite, then a standard subspace of |G| is
connected (equivalently: arc-connected) if and only if it contains an edge
from every finite cut of G of which it meets both sides.

Proof. Let X = (U, D) be a standard subspace of |G|. If X is notD

connected, we can partition it into disjoint non-empty open and closed
subsets O1 and O2. As X is standard, these Oi are closed in |G|, and
Ui := Oi ∩U �= ∅. Let P be a maximal set of edge-disjoint U1–U2 paths
in G, and put

F :=
⋃

{E(P ) | P ∈ P } .

Then D ∩ F = ∅, and no component of G− F meets both U1 and U2.
Extending {U1, U2} to a partition of V in such a way that each compo-
nent of G−F has all its vertices in one class, we obtain a cut F ′ ⊆ F of
G of which X meets both sides. As D ∩F = ∅, it thus suffices to show
that F is finite.

If F is infinite, then so is P. As G is locally finite, the vertices
of each P ∈ P are incident with only finitely many edges of G. We
can thus inductively find an infinite subset of P consisting of paths that
are not only edge-disjoint but disjoint. The endvertices in U1 of these
paths have a limit point ω in |G|, which is also a limit point of their
endvertices in U2. Since both O1 and O2 are closed in |G|, we thus have
ω ∈ O1 ∩ O2, contradicting the choice of the Oi. This completes the
backward implication of the lemma.
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For the forward implication, suppose that G has a finite cut F =
E(V1, V2) such that X meets both V1 and V2 but has no edge in F . Then

X ⊆ |G|� F̊ = G[V1]∪G[V2] ,

and this union is disjoint by Lemma 8.5.3 (i). The induced partition of X
into non-empty closed subsets of X shows that X is not connected. �

A circle in a topological space is a homeomorphic image of the unit circle

circle S1 ⊆ R2. For example, if G is the 2-way infinite ladder shown
in Figure 8.1.3, and we delete all its rungs (the vertical edges), what
remains is a disjoint union of two double rays; its closure in |G|, obtained
by adding the two ends of G, is a circle. Similarly, the double ray ‘round
the outside’ of the 1-way ladder forms a circle together with the unique
end of that ladder.

It is not hard to show that no arc in |G| can consist entirely of ends.
This implies that every circle in |G| is a standard subspace; the set of
edges spanning it will be called its circuit . circuit

A more adventurous example of a circle is shown in Figure 8.5.1.
Let G be the graph obtained from the binary tree T2 by joining for
every finite 0–1 sequence � the vertices �01 and �10 by a new edge e�.
Together with all the (uncountably many) ends of G, the double rays
D� � e� shown in the figure form an arc A in |G|, whose union with the
bottom double ray D is a circle in |G| (Exercise 7575). Note that no two
of the double rays in A are consecutive: between any two there lies a
third (cf. Exercise 7676).

01 10 1100

1

∅
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�
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e�

Fig. 8.5.1. The Wild Circle

A topological spanning tree of G is an arc-connected standard sub-
space T of |G| that contains every vertex but contains no circle. Since
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standard subspaces are closed, T also contains every end. With respect
topological
spanning
tree to the addition or deletion of edges, it is both minimally arc-connected

and maximally ‘acirclic’. As with ordinary trees, one can show that
every two points of T are joined by only one arc in T . Thus, adding
a new edge e to T creates a unique circle in T ∪ e; its edges form the
fundamental circuit Ce of e with respect to T . Similarly, for every edgefundamental

circuit
f ∈ E(T ) the space T � f̊ has exactly two arc-components; the set
of edges between these is the fundamental cut Df of T . As in finitefundamental

cut
graphs, we have e ∈ Df if and only if f ∈ Ce, for all f ∈ E(T ) and
e ∈ E � E(T ). Since the two arc-components of T � f̊ are closed but
disjoint, Lemma 8.5.3 (ii) implies that Df is finite if G is locally finite.

One might expect that the closure T of an ordinary spanning tree T
of G is always a topological spanning tree of |G|. However, this can fail
in two ways: if T has a vertex of infinite degree then T may fail to be
arc-connected (Exercise 7474), although it will be topologically connected,
because T is; if T is locally finite, then T will be arc-connected but may
contain a circle (Figure 8.5.2). On the other hand, a subgraph whose
closure is a topological spanning tree may well be disconnected: the
vertical rays in the N×N grid, for example, form a topological spanning
tree of the grid (together with its unique end).

T2T1

Fig. 8.5.2. T 1 is a topological spanning tree, but T 2 contains
three circles

In general, there seems to be no canonical way to construct to-
pological spanning trees, and it is unknown whether every connected
graph has one. Countable connected graphs, however, do have topolo-
gical spanning trees by Theorem 8.2.4:(8.2.4)

Lemma 8.5.6. The closure of any normal spanning tree is a topological
spanning tree.

Proof. Let T be a normal spanning tree of G. By Lemma 8.2.3, every(1.5.5)
(8.2.3)

end ω of G contains a normal ray R of T . Then R∪{ω} is an arc linking
ω to the root of T , so T is arc-connected.

It remains to check that T contains no circle. Suppose it does, and
let A be the u–v arc obtained from that circle by deleting the inner
points of an edge f = uv it contains. Clearly, f ∈ T . Assume that u < vf

in the tree-order of T , let Tu and Tv denote the components of T − f
containing u and v, and notice that V (Tv) is the up-closure �v� of v in T .
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Now let S := �u�. By Lemma 1.5.5 (ii), �v� is the vertex set of a com-
ponent C of G−S. Thus, V (C) = V (Tv) and V (G−C) = V (Tu), so the
set E(C, S) of edges between these sets meets E(T ) precisely in f . Thus,
C and G−C partition |G|� E̊(C, S) ⊇ A into two open sets both meet-
ing A. This contradicts the fact that A is topologically connected. �

As an application of our new concepts, let us now extend the tree-
packing theorem (2.4.1) of Nash-Williams and Tutte to locally finite
graphs. Its naive extension, with ordinary spanning trees, fails. Indeed,
for every k ∈ N one can construct a 2k-edge-connected locally finite
graph that is left disconnected by the deletion of the edges in any one
finite circuit (Exercise 1414). Such a graph will have at least k(�−1) edges
across any vertex partition into � sets, but it cannot have more than two
edge-disjoint spanning trees: adding an edge of one of these to another
creates a (finite) fundamental circuit there, whose deletion would not
disconnect any third spanning tree.

As soon as we generalize spanning trees to topological spanning
trees, however, Theorem 2.4.1 does extend:13

Theorem 8.5.7. The following statements are equivalent for all k ∈ N
and locally finite multigraphs G: G

(i) G has k edge-disjoint topological spanning trees.

(ii) For every finite partition of V (G), into � sets say, G has at least
k (�− 1) cross-edges.

We begin our proof of Theorem 8.5.7 with a compactness extension
of the finite theorem, which will give us a slightly weaker statement at
the limit.

Lemma 8.5.8. If for every finite partition of V (G), into � sets say,
G has at least k (�− 1) cross-edges, then G has k edge-disjoint spanning
subgraphs whose closures in |G| are topologically connected.

Proof. Pick an enumeration v0, v1, . . . of V (G). For every n ∈ N let Gn be (2.4.1)
(8.1.2)

the finite multigraph obtained from G by contracting every component of
G−{v0, . . . , vn} to a vertex, deleting any loops but no parallel edges that
arise in the contraction. Then G[v0, . . . , vn] is an induced submultigraph
of Gn. Let Vn denote the set of all k-tuples (H1

n , . . . , Hk
n) of edge-disjoint

connected spanning subgraphs of Gn.
Since every partition P of V (Gn) induces a partition of V (G), since

G has enough cross-edges for that partition, and since all these cross-
edges are also cross-edges of P , Theorem 2.4.1 implies that Vn �= ∅. As
every (H1

n , . . . , Hk
n) ∈ Vn induces an element (H1

n−1, . . . , H
k
n−1) of Vn−1,

13 Note that all our definitions extend naturally to multigraphs.
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the infinity lemma (8.1.2), yields a sequence (H1
n , . . . , Hk

n)n∈N
of k-

tuples, one from each Vn, with a limit (H1, . . . , Hk) defined by the nested
unions

Hi :=
⋃
n∈N

Hi
n[v0, . . . , vn] .

These Hi are edge-disjoint for distinct i (because the Hi
n are), but

they need not be connected. To show that they have connected closures,
it suffices by Lemma 8.5.5 to show that each of them has an edge in every
finite cut F of G. Given F , choose n large enough that all the edges of
F lie in G[v0, . . . , vn]. Then F is also a cut of Gn. Now consider the
k-tuple (H1

n , . . . , Hk
n) which the infinity lemma picked from Vn. Each of

these Hi
n is a connected spanning subgraph of Gn , so it contains an edge

from F . But Hi
n agrees with Hi on {v0, . . . , vn}, so Hi too contains this

edge from F . �

Lemma 8.5.9. Every connected standard subspace of |G| that contains
V (G) also contains a topological spanning tree of G.

Proof. Let X be a connected standard subspace of |G| containing V (G).
Then G too must be connected, so it is countable. Let e0, e1, . . . be an
enumeration of E(X), and consider these edges in turn. Starting with
X0 := X, define Xn+1 := Xn � e̊n if this keeps Xn+1 connected; if not,
put Xn+1 := Xn. Finally, let T :=

⋂
n∈N

Xn.
Since T is closed and contains V (G), it is still a standard subspace.

And T has an edge in every finite cut of G, because X does and its
last edge in that cut will never be deleted. So T is arc-connected, by
Lemma 8.5.5. But T contains no circle: that would contain an edge,
which should have got deleted since deleting an edge from a circle cannot
destroy connectedness. �

Proof of Theorem 8.5.7. The implication (ii)→(i) follows from our
two lemmas. For (i)→(ii), let G have edge-disjoint topological spanning
trees T1, . . . , Tk, and consider a partition P of V (G) into � sets. If there
are infinitely many cross-edges, there is nothing to show; so we assume
there are only finitely many. For each i ∈ {1, . . . , k}, let T ′

i be the
multigraph of order � which the edges of Ti induce on P .

To establish that G has at least k(�− 1) cross-edges, we show that
the graphs T ′

i are connected. If not, then some T ′
i has a vertex parti-

tion crossed by no edge of Ti. This partition induces a cut of G that
contains no edge of Ti. By our assumption that G has only finitely
many cross-edges, this cut is finite. By Lemma 8.5.5, this contradicts
the connectedness of Ti. �
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As a more comprehensive application of our new theory, we show in
the remainder of this section how the notion of cycle space from finite
graph theory extends to locally finite graphs by making use of infinite
circuits and topological spanning trees. All the applications of finite
cycle spaces covered in this book can be shown to extend to this new
infinite cycle space, while their naive extensions based on finite circuits
can be shown to fail.

Call a family (Di)i∈I of subsets of E(G) thin if no edge lies in Di thin

for infinitely many i. Let the sum
∑

i∈I Di of this family be the set sum

of all edges that lie in Di for an odd number of indices i. Now define
the (topological) cycle space C(G) of G as the subspace of its edge space topological

cycle space
E(G) consisting of all sums of (thin families of) circuits. (Note that C(G)
is closed under addition: just combine the two thin families into one.)
Clearly, this definition of C(G) agrees with that from Chapter 1.9 when
G is finite.

We say that a given set Z of circuits generates C(G) if every element generates

of C(G) is a sum of (a possibly infinite thin family of) elements of Z. For
example, the cycle space of the ladder in Figure 8.1.3 can be generated by
all its squares (the 4-element circuits), or by the infinite circuit consisting
of all horizontal edges and all squares but one. Similarly, the ‘wild circuit’
of Figure 8.5.1 is the sum of all the finite face boundaries of that graph,
which thus generate it.

The following theorem summarizes how the properties of the cycle
spaces of finite graphs, familiar from Chapter 1.9, extend to locally finite
graphs with topological cycle spaces. There are similar extensions of the
properties of the cut space, and of its duality with the cycle space; see
Exercises 9292, 8888 and the notes.

Theorem 8.5.10. (Diestel & Kühn 2004; Berger & Bruhn 2009)
Let G = (V, E, Ω) be a locally finite connected graph.

(i) The fundamental circuits of any topological spanning tree of G
generate C(G).

(ii) C(G) consists of those subsets of E that meet every finite cut in
an even number of edges.

(iii) Every element of C(G) is a disjoint sum of circuits.

(iv) A set D ⊆ E lies in C(G) if and only if the degree of every vertex
in (V, D), and the edge-degree of every end in (V, D), are even.14

14 This statement is not yet well defined: since ends in subspaces even of locally
finite graphs can have infinite degree, we have to agree first when the infinite degree
of an end is deemed to be ‘even’. Such a division of ‘infinite’ into ‘even’ and ‘odd’
has indeed been found for the proof of (iv), but it is not that simple. See the notes.



246 8. Infinite Graphs

While Theorem 8.5.10 (iv) is too difficult to prove here, (i) and (ii)
will be easy. We shall also prove (iii), which is much more interesting
now than for finite graphs.

Proof of Theorem 8.5.10 (i)–(ii). We prove both assertions simulta-
neously by showing that the following three statements are equivalent,
given any topological spanning tree T of G and edge set D ⊆ E:T, D

• D ∈ C(G);
• D meets every finite cut F of G in an even number of edges;
• D is a sum of fundamental circuits.

The third of these assertions implies the first by definition of C(G).
Let us prove the second from the first. By assumption, D is a sum of
a thin family of circuits. Only finitely many of these can meet F , so
it suffices to show that every circuit meets F evenly. This follows from
Lemma 8.5.3 (i): given a circle C in |G|, the segments of C between any
(consecutive) edges it has in F are arcs whose vertices all lie on the same
side of the cut F . These sides alternate as we follow C round. Therefore,
there is an even number of such arcs, and hence of edges that C has in F .

It remains to prove the third assertion from the second. Write Ce for
the fundamental circuit of an edge e /∈ E(T ), and Df for the fundamental
cut of an edge f ∈ E(T ). Recall that, since G is locally finite, these Df

are finite cuts, so the second statement applies to them. We show that

D =
∑

e∈D�E(T )

Ce . (∗)

(Since f ∈ Ce ⇔ e ∈ Df and fundamental cuts are finite, the Ce in this
sum form a thin family, so the sum is well defined.)

To prove (∗), we consider the edges of G separately. An edge e /∈ T
clearly lies in D if and only if it lies in the sum in (∗), since Ce is the
unique fundamental circuit containing e. Now consider an edge f ∈ T .
Since f ∈ Df and D∩Df is even by assumption, f lies in D if and only
if an odd number of edges e �= f from Df lie in D, or equivalently (since
Df ∩E(T ) = {f}), if and only if an odd number of edges e /∈ E(T ) from
D lie in Df . As e ∈ Df ⇔ f ∈ Ce for such e, this is the case if and only
if f lies in the sum in (∗). �

Recall that, in the proof of Theorem 8.5.10 (iii) for finite graphs, we
could simply construct the disjoint circuits greedily: we would ‘follow the
(remaining) edges round’ until a circuit was found, delete it, and repeat.
For infinite G, however, it is no longer straightforward to isolate a single
circuit C from a given element D of C(G). For example, without using
our knowledge that the edge set D of the wild circle in the graph G of
Figure 8.5.1 is a circuit, we can see at once that it must lie in C(G): it is
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the sum of all the finite circuits bounding a face. Our proof of (iii) must
therefore be able to decompose D into disjoint circuits. Since D itself
is the only circuit contained in D, the proof thus has to reconstruct
the complicated wild circle just from the—seemingly much weaker—
information that D ∈ C(G). And it has to do so ‘generically’, without
appealing to the special structure of this graph G.

Our proof of (iii) will run as follows. In order to collect all the edges
of some given D ∈ C(G) into a decomposition of D into circuits, we shall
have to be able to find a circuit C ⊆ D through a given edge e ∈ D. This
amounts to finding an arc A in D between the endvertices of e. Using
compactness, we shall construct a limit of arcs An between these vertices
in finite minors Gn of G. This limit will not itself be an arc, but it will
be connected. As connected standard subspaces of |G| are arc-connected
(Lemma 8.5.4), we shall then be able to find A inside this limit.

Proof of Theorem 8.5.10 (iii). Let D ∈ C(G) be given, and enumerate (1.9.1)

its edges. We inductively construct a sequence of disjoint circuits C ⊆ D
each containing the smallest edge in our enumeration of D that is not
yet contained in the circuits constructed before. Then all these circuits
will form the desired partition of D.

Suppose then that we have already constructed finitely many dis-
joint circuits all contained in D. Deleting these edges from D leaves a
set D′ of edges that is again in C(G); let e be its smallest edge, in our D′, e

enumeration of D. We shall find an arc A between the endvertices of e
in the standard subspace that D′ � {e} spans in |G|. Then A∪ e will be
the circle defining our next circuit.

Enumerate the vertices of G as v0, v1, . . ., with e = v0v1. For each e = v0v1

n ∈ N let Gn be the multigraph obtained from G by contracting every
component of G−{v0, . . . , vn} to a vertex, deleting any loops but keeping
parallel edges that arise in the contraction. Note that G[v0, . . . , vn] is Gn

an induced submultigraph of Gn, and that both V (Gn) and E(Gn) are
finite.

We may think of E(Gn) as a subset of E(G). Then the cuts of Gn

are also cuts of G. By (ii), D′ meets these evenly; in particular, every
vertex of Gn is incident with an even number of edges in D′. Hence
D′ ∩ E(Gn) ∈ C(Gn), by Proposition 1.9.1. For each n, pick a circuit
Cn ⊆ D′ ∩E(Gn) through e; note that e ∈ E(Gn) even for n = 0, since
e is incident with v0. Let An := Cn � {e}, and define

Vn := {Am ∩E(Gn) | m � n} .

Since the Am define connected subgraphs of Gm, and Gn arises from
Gm by contracting but not deleting edges (other than loops), each of the
edge sets Am ∩E(Gn) ∈ Vn defines a connected subgraph of Gn.
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We now apply the infinity lemma to the auxiliary graph with ver-
tex set

⋃
n Vn obtained by joining, for all m � n > 0, the vertex

Am∩E(Gn) ∈ Vn to the vertex Am∩E(Gn−1) ∈ Vn−1. The lemma yields
a nested sequence D0 ⊆ D1 ⊆ . . . of edge sets Dn ∈ Vn; let D′′ :=

⋃
n Dn

and X := D′′. Clearly e /∈ D′′, but X contains the endvertices of e.D′′, X

It thus suffices to show that X is arc-connected: then X ∪ e contains a
circle through e, and D′ ⊇ D′′ ∪{e} contains our desired circuit.

To show that X is arc-connected, it suffices by Lemma 8.5.5 to
show that D′′ has an edge in every finite cut F of G such that X
has vertices u, v on different sides of F . Choose n large enough that
G[v0, . . . , vn] contains u, v and all the edges from F . Then every compo-
nent of G−{v0, . . . , vn} that was contracted to a vertex of Gn has all its
vertices on the same side of F . Hence F is also a cut of Gn, with u and
v on different sides. Since Dn defines a connected subgraph in Gn that
contains u and v, we thus have ∅ �= Dn ∩F = D′′ ∩F as desired. �

Corollary 8.5.11. C(G) is generated by finite circuits, and is closed
under infinite (thin) sums.

Proof. By Theorem 8.2.4, G has a normal spanning tree, T say. By(8.2.4)

Lemma 8.5.6, its closure T in |G| is a topological spanning tree. The
fundamental circuits of T coincide with those of T , and are therefore
finite. By Theorem 8.5.10 (i), they generate C(G).

Let
∑

i∈I Di be a sum of elements of C(G). By Theorem 8.5.10 (iii),
each Di is a disjoint union of circuits. Together, these form a thin family,
whose sum equals

∑
i∈I Di and lies in C(G). �

8.6 Recursive structures
In this section we introduce another tool that is commonly used in infi-
nite graph theory: to define a class of graphs recursively, so as to be able
later to prove assertions about these graphs by (transfinite) induction.
Rather than attempting a systematic treatment of this technique we give
two examples; more can be found in the exercises.

Our first example is very simple: it describes the structure of a tree
by recursively pruning away leaves and isolated ends. Let T be any tree,
equipped with a root and the corresponding tree-order on its vertices.
We recursively label the vertices of T by ordinals, as follows. Given an
ordinal α, assume that we have decided for every β < α which of the
vertices of T to label β, and let Tα be the subgraph of T induced by
the vertices that are still unlabelled. Assign label α to every vertex t of
Tα whose up-closure �t�Tα = �t�T ∩ Tα in Tα is a chain. The recursion
terminates at the first α not used to label any vertex; for this α we put
Tα =: T ∗.
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For each α, the vertices labelled α form an up-set in Tα: if �t�Tα
is

a chain, then so is �t′�Tα for every t′ ∈ �t�Tα . Every Tα, therefore, is a
down-set in T (induction on α) and hence connected. Thus, Tα is a tree,
and the set of vertices labelled α induces in Tα a disjoint union of paths.

Let us call T recursively prunable if every vertex of T gets labelled recursively
prunable

in this way, i.e., if T ∗ = ∅. We may then be able to prove assertions
about T , or about graphs containing T as a normal spanning tree, by
dealing in turn with those chains as they get deleted. The following
proposition shows that the recursively prunable trees form a natural
class also in structural terms:

Proposition 8.6.1. A rooted tree is recursively prunable if and only if
it contains no subdivision of the infinite binary tree T2 as a subgraph.

Proof. Let T be any rooted tree. Suppose first that T is not recursively
prunable, i.e. that T ∗ �= ∅. Since no vertex of T ∗ gets labelled when the
recursion terminates, every t ∈ T ∗ has two incomparable vertices of T ∗

above it. As T ∗ is connected, it is now easy to find a subdivision of T2

in T ∗ inductively, along the levels of T2.
Conversely, suppose that T contains a subdivision T ′ of T2. We shall

see in a moment that T ′ can be chosen ‘upwards’ in T , that is, in such
a way that the tree-order which T induces on its vertices agrees with its
own tree-order as induced by T2. If this is the case, then every vertex
of T ′ has two incomparable vertices of T ′ above it (in both orders). Hence
there can be no minimal ordinal α such that a vertex of T ′ is labelled α.
Thus all of T ′ remains unlabelled, and ∅ �= T ′ ⊆ T ∗ as desired.

It remains to show that T ′ can indeed be chosen in this way. Let
T ′ be any subdivision of T2 in T , and let u be minimal in the tree-order
of T among the vertices of T ′. Induction on the levels of the tree �u�T ′

shows that �T ′ and �T agree on �u�T ′ : any upper neighbour in T ′ of
a vertex t ∈ �u�T ′ must lie above t also in T , since the unique lower
neighbour of t in T is either not in T ′ (if t = u), or by induction it is
the unique lower neighbour of t also in T ′. Pick any branch vertex v of
T ′ in �u�T ′ . Then �v�T ′ is the desired subdivision of T2 in T . �

The charm of the recursive pruning discussed above lies in the fact
that it removes the ‘messy bits’ of a given tree in an automated sort of
way: we do not have to know where they are, but if our given tree con-
tains a ‘clean’ ever-branching subtree, then the recursion will reveal it.

And there is another way of viewing it. We might think of rooted
paths (paths with a first vertex, which we take to be the root) as par-
ticularly basic objects, and call them rooted trees of rank 0. We could
then define rooted trees of higher ordinal rank inductively, taking as the
rooted trees of rank α those that do not have any rank β < α but in
which it is possible to delete a path starting at the root so as to leave
components that each have some rank < α when taken with the induced
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tree-order. Then the rooted trees of rank � α will be precisely those
that are recursively prunable with labels not exceeding α (Exercise 100100).

We now apply the same idea to graphs that are not trees. Let us
assign rank 0 to all the finite graphs. Given an ordinal α > 0, we assignrank

rank α to every graph G that does not already have a rank β < α and
which has a finite set U of vertices such that every component of G−U
has some rank < α.

When disjoint graphs Gi have ranks αi < α, their union clearly has
a rank of at most α ; if the union is finite, it has rank maxi αi. Induction
on α shows that subgraphs of graphs of rank α also have a rank of at
most α. Conversely, joining finitely many new vertices to a graph (no
matter how) will not change its rank.

Not every graph has a rank. Indeed, the ray cannot have a rank,
since deleting finitely many of its vertices always leaves a component
that is also a ray. As subgraphs of graphs with a rank also have a rank,
this means that only rayless graphs can have a rank. But all these do:

Lemma 8.6.2. A graph has a rank if and only if it is rayless.

Proof. Consider a graph G that has no rank. Then one of its components,
C0 say, has no rank; let v0 be a vertex in C0. Now C0 − v0 has a
component C1 that has no rank; let v1 be a neighbour of v0 in C1.
Continuing inductively, we find a ray v0v1 . . . in G. �

Because of Lemma 8.6.2, we call the ranking defined above the rank-
ing of rayless graphs. As an application of this ranking, we now prove
the unfriendly partition conjecture from Section 8.1 for rayless graphs.

Theorem 8.6.3. Every countable rayless graph G has an unfriendly
partition.

Proof. To help with our formal notation, we shall think of a partition
of a set V as a map π:V → {0, 1}. We apply induction on the rank
of G. When this is zero then G is finite, and an unfriendly partition can
be obtained by maximizing the number of edges across the partition.
Suppose now that G has rank α > 0, and assume the theorem as true
for graphs of smaller rank.

Let U be a finite set of vertices in G such that each of the compo-
nents C0, C1, . . . of G − U has rank < α. Partition U into the set U0

of vertices that have finite degree in G, the set U1 of vertices that have
infinitely many neighbours in some Cn, and the set U2 of vertices that
have infinite degree but only finitely many neighbours in each Cn.

For every n ∈ N let Gn := G[U ∪ V (C0) ∪ . . . ∪ V (Cn)]. This is
a graph of some rank αn < α, so by induction it has an unfriendly
partition πn. Each of these πn induces a partition of U . Let πU be a
partition of U induced by πn for infinitely many n, say for n0 < n1 < . . . .
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Choose n0 large enough that Gn0 contains all the neighbours of vertices
in U0, and the other ni large enough that every vertex in U2 has more
neighbours in Gni − Gni−1 than in Gni−1 , for all i > 0. Let π be the
partition of G defined by letting π(v) := πni

(v) for all v ∈ Gni
−Gni−1

and all i, where Gn−1 := ∅. Note that π|U = πn0 |U = πU .
Let us show that π is unfriendly. We have to check that every

vertex is happy with π, i.e., that it has at least as many neighbours
in the opposite class under π as in its own.15 To see that a vertex
v ∈ G − U is happy with π, let i be minimal such that v ∈ Gni

and
recall that v was happy with πni

. As both v and its neighbours in G
lie in U ∪V (Gni

−Gni−1), and π agrees with πni
on this set, v is happy

also with π. Vertices in U0 are happy with π, because they were happy
with πn0 , and π agrees with πn0 on U0 and all its neighbours. Vertices in
U1 are also happy. Indeed, every u ∈ U1 has infinitely many neighbours
in some Cn, and hence in some Gni

− Gni−1 ; choose i minimal. Then
u has infinitely many opposite neighbours in Gni − Gni−1 under πni .
Since πni agrees with π on both U and Gni −Gni−1 , our vertex u has
infinitely many opposite neighbours also under π. Vertices in U2, finally,
are happy with every πni

. By our choice of ni, at least one of their
opposite neighbours under πni

must lie in Gni
−Gni−1 . Since πni

agrees
with π on both U2 and Gni

−Gni−1 , this gives every u ∈ U2 at least one
opposite neighbour under π in every Gni −Gni−1 . Hence u has infinitely
many opposite neighbours under π, which clearly makes it happy. �

Exercises

1.− Show that a connected graph is countable if all its vertices have count-
able degrees.

2.− Given countably many sequences σi = si
1, s

i
2, . . . (i ∈ N) of natural

numbers, find one sequence σ = s1, s2, . . . that beats every σi eventually,
i.e. such that for every i there exists an n(i) such that sn > si

n for all
n � n(i).

3. Can a countable set have uncountably many subsets whose intersections
have finitely bounded size?

4.− Let T be an infinite rooted tree. Show that every ray in T has an
increasing tail, that is, a tail whose sequence of vertices increases in the
tree-order associated with T and its root.

5.− Let G be an infinite graph and A, B ⊆ V (G). Show that if no finite set
of vertices separates A from B in G, then G contains an infinite set of
disjoint A–B paths.

15 It is only by tradition that such partitions are called ‘unfriendly’; our vertices
love them.
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6.− In Proposition 8.1.1, the existence of a spanning tree was proved using
Zorn’s lemma ‘from below’, to find a maximal acyclic subgraph. For
finite graphs, one can also use induction ‘from above’, to find a minimal
spanning connected subgraph. What happens if we apply Zorn’s lemma
‘from above’ to find such a subgraph?

For the next two exercises it may help to consider the cycle space of the given
graph, defined as for finite graphs in Chapter 1.9.

7.− Show that if a graph has a spanning tree with infinitely many chords
then all its spanning trees have infinitely many chords.

8. Show that if a graph contains infinitely many distinct cycles then it
contains infinitely many edge-disjoint cycles.

9. Let G be a countable infinitely connected graph. Show that G has,
for every k ∈ N, an infinitely connected spanning subgraph of girth at
least k.

10. Construct, for any given k ∈ N, a planar k-connected graph. Can you
construct one whose girth is also at least k? Can you construct an
infinitely connected planar graph?

11. Theorem 8.1.3 implies that there exists an N→N function fχ such that,
for every k ∈ N, every infinite graph of chromatic number at least fχ(k)
has a finite subgraph of chromatic number at least k. (E.g., let fχ be
the identity on N.) Find similar functions fδ and fκ for the minimum
degree and connectivity, or show that no such functions exist.

12.+ Show that, given k ∈ N and an edge e in a graph G, there are only finitely
many bonds in G that consist of exactly k edges and contain e.

13.− Extend Theorem 2.4.4 to infinite graphs.

14.+ For every k ∈ N, construct a k-connected locally finite graph such that
the deletion of the edge set of any cycle disconnects that graph. Deduce
that the tree-packing theorem (2.4.1) of Nash-Williams and Tutte fails
for infinite graphs.

(Hint. Start with a k-connected finite graph G0. If G0 has a cycle
C such that deleting E(C) does not disconnect G0, graft some more
copies of G0 on to E(C) to give C that property. Continue inductively.)

15. Give a proof of Theorem 8.1.3 for countable graphs that is based on the
fact that, in this case, the topological space X defined in the third proof
of the theorem is sequentially compact. (Thus, every infinite sequence
of points in X has a convergent subsequence: there is an x ∈ X such
that every neighbourhood of x contains a tail of the subsequence.)

16. Show that the restriction to countable sets X of the compactness prin-
ciple in Appendix A is equivalent to the infinity lemma.

17. In the text, the unfriendly partition conjecture is proved for locally
finite graphs, using the infinity lemma.

(i) Give an alternative proof using the compactness principle from
Appendix A.
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(ii) The proof in the text, by the infinity lemma, required a modifica-
tion of the statement. Is this still necessary? Which step in the
proof using the compactness principle reflects the requirement
in the infinity lemma that every admissible partial solution must
induce an admissible solution on a smaller substructure? Where
is the local finiteness used?

18. (i) Prove the unfriendly partition conjecture for countable graphs with
all degrees infinite.

(ii) Can you adapt the proof to cover also those countable graphs that
have finitely many vertices of finite degree?

19. Rephrase Gallai’s partition theorem of Exercise 3939 (i), Chapter 1, in
terms of degrees, and extend the equivalent version to locally finite
graphs.

20. Prove Theorem 8.4.8 for locally finite graphs. Does your proof extend
to arbitrary countable graphs?

21. Extend the marriage theorem to locally finite graphs, but show that it
fails for countable graphs with infinite degrees.

22.+ Show that a locally finite graph G has a 1-factor if and only if, for
every finite set S ⊆ V (G), the graph G−S has at most |S| odd (finite)
components. Find a counterexample that is not locally finite.

23.+ Extend Kuratowski’s theorem to countable graphs.

24.− A vertex v ∈ G is said to dominate an end ω of G if any of the following
three assertions holds; show that they are equivalent.

(i) For some ray R ∈ ω there is an infinite v–(R− v) fan in G.

(ii) For every ray R ∈ ω there is an infinite v–(R− v) fan in G.

(iii) No finite subset of V (G− v) separates v from a ray in ω.

25. Show that a graph G contains a TKℵ0 if and only if some end of G is
dominated by infinitely many vertices.

26. Construct a countable graph with uncountably many thick ends.

27. Show that a locally finite connected vertex-transitive graph has exactly
0, 1, 2 or infinitely many ends.

28.+ Show that the automorphisms of a graph G = (V, E) act naturally on
its ends, i.e., that every automorphism σ: V →V can be extended to a
map σ: Ω(G)→Ω(G) such that σ(R) ∈ σ(ω) whenever R is a ray in an
end ω. Prove that, if G is connected, every automorphism σ of G fixes
a finite set of vertices or an end. If σ fixes no finite set of vertices, can
it fix more than one end? More than two?

29.− Show that a locally finite spanning tree of a graph G contains a ray
from every end of G.

30. A ray in a graph follows another ray if the two have infinitely many
vertices in common. Show that if T is a normal spanning tree of G
then every ray of G follows a unique normal ray of T .
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31. Show that the following assertions are equivalent for connected count-
able graphs G.

(i) G has a locally finite spanning tree.

(ii) G has a locally finite normal spanning tree.

(iii) Every normal spanning tree of G is locally finite.

(iv) For no finite separator X ⊆ V (G) does G − X have infinitely
many components.

32. Use the previous exercise to show that every (countable) planar 3-
connected graph has a locally finite spanning tree.

33. Let G be a connected graph. Call a set U ⊆ V (G) dispersed if every
ray in G can be separated from U by a finite set of vertices. (In the
topology of Section 8.5, these are precisely the closed subsets of V (G).)

(i) Prove Jung’s theorem that G has a normal spanning tree if and
only if V (G) is a countable union of dispersed sets.

(ii) Deduce that if G has a normal spanning tree then so does every
connected minor of G.

34. (i) Prove that if a given end of a graph contains k disjoint rays for every
k ∈ N then it contains infinitely many disjoint rays.

(ii) Prove that if a given end of a graph contains k edge-disjoint rays
for every k ∈ N then it contains infinitely many edge-disjoint rays.

35.+ Prove that if a graph contains k disjoint double rays for every k ∈ N
then it contains infinitely many disjoint double rays.

36. Show that, in the ubiquity conjecture, the host graphs G considered
can be assumed to be locally finite too.

37. Show that the modified comb below is not ubiquitous with respect to
the subgraph relation. Does it become ubiquitous if we delete its 3-star
on the left?

38. Imitate the proof of Theorem 8.2.6 to find a function f : N → N such
that whenever an end ω of a graph G contains f(k) disjoint rays there
is a k×N grid in G whose rays all belong to ω.

39. Show that there is no universal locally finite connected graph for the
subgraph relation.

40. Construct a universal locally finite connected graph for the minor rela-
tion. Is there one for the topological minor relation?
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41.− Show that each of the following operations performed on the Rado
graph R leaves a graph isomorphic to R:

(i) taking the complement, i.e. changing all edges into non-edges
and vice versa;

(ii) deleting finitely many vertices;

(iii) changing finitely many edges into non-edges or vice versa;

(iv) changing all the edges between a finite vertex set X ⊆ V (R) and
its complement V (R) � X into non-edges, and vice versa.

42.− Prove that the Rado graph is homogeneous.

43. Show that a homogeneous countable graph is determined uniquely, up
to isomorphism, by the class of (the isomorphism types of) its finite
subgraphs.

44. Recall that subgraphs H1, H2, . . . of a graph G are said to partition G if
their edge sets form a partition of E(G). Show that the Rado graph can
be partitioned into any given countable set of countable locally finite
graphs, as long as each of them contains at least one edge.

45.− A linear order is called dense if between any two elements there lies a
third.

(i) Find, or construct, a countable dense linear order that has nei-
ther a maximal nor a minimal element.

(ii) Show that this order is unique, i.e. that every two such orders
are order-isomorphic. (Definition?)

(iii) Show that this ordering is universal among the countable linear
orders. Is it homogeneous? (Supply appropriate definitions.)

46. Given a bijection f between N and [N]<ω, let Gf be the graph on N in
which u, v ∈ N are adjacent if u ∈ f(v) or vice versa. Prove that all
such graphs Gf are isomorphic.

47. (for set theorists) Show that, given any countable model of set theory,
the graph whose vertices are the sets and in which two sets are adjacent
if and only if one contains the other as an element, is the Rado graph.

48. Let G be a locally finite graph. Let us say that a finite set S of vertices
separates two ends ω and ω′ if C(S, ω) 
= C(S, ω′). Use Proposition
8.4.1 to show that if ω can be separated from ω′ by k ∈ N but no fewer
vertices, then G contains k disjoint double rays each with one tail in ω
and one in ω′. Is the same true for all graphs that are not locally finite?

49.+ Prove the following more structural version of Exercise 3434 (i). Let ω be
an end of a countable graph G. Show that either G contains a TKℵ0

with all its rays in ω, or there are disjoint finite sets S0, S1, S2, . . . such
that |S1| � |S2| � . . . and, with Ci := C(S0 ∪ Si , ω), we have for all
i < j that Ci ⊇ Cj and Gi := G[Si ∪Ci] contains |Si| disjoint Si–Si+1

paths.
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50.− Given sets A, B of vertices in a graph G, show that either G contains
infinitely many edge-disjoint A–B paths or there is a finite set of edges
separating A from B in G.

51. Construct an example of a small limit of large waves. Can you find a
locally finite one?

52.+ Prove Theorem 8.4.2 for trees.

53.+ Prove Pym’s theorem (8.4.7).

54. (i)− Prove the naive extension of Dilworth’s theorem to arbitrary in-
finite posets P : if P has no antichain of order k ∈ N, then P can be
partitioned into fewer than k chains. (A proof for countable P will do.)

(ii)− Find a poset that has no infinite antichain and no partition into
finitely many chains.

(iii) For posets without infinite chains, deduce from Theorem 8.4.8 the
following Erdős-Menger-type extension of Dilworth’s theorem: every
such poset has a partition C into chains such that some antichain meets
all the chains in C.

55. Let G be a countable graph in which for every partial matching there
is an augmenting path. Let M be any matching. Is there a sequence,
possibly transfinite, of augmenting paths (each for the then current
matching) that turns M into a 1-factor?

56. Find an uncountable graph in which every partial matching admits an
augmenting path but which has no 1-factor.

57. Show that every locally finite factor-critical graph is finite.

58.− Let G be a countable graph whose finite subgraphs are all perfect. Show
that G is weakly perfect but not necessarily perfect.

59.+ Let G be the incomparability graph of the binary tree. (Thus, V (G) =
V (T2), and two vertices are adjacent if and only if they are incompa-
rable in the tree-order of T2.) Show that G is perfect but not strongly
perfect.

60. Let G be a countable connected graph with vertices v0, v1, . . . . For
every n ∈ N write Sn := {v0, . . . , vn−1}. Prove the following statements:

(i) For every end ω of G there is a unique sequence C0 ⊇ C1 ⊇ . . .
of components Cn of G−Sn such that Cn = C(Sn, ω) for all n.

(ii) For every infinite sequence C0 ⊇ C1 ⊇ . . . of components Cn of
G−Sn there exists a unique end ω such that Cn = C(Sn, ω) for
all n.

61. Let G be a graph, U ⊆ V (G), and R ∈ ω ∈ Ω(G). Show that G contains
a comb with spine R and teeth in U if and only if ω ∈ U .

The end space of a graph G is the subspace Ω(G) of |G|.
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62. Above every horizontal edge of the plane graph shown in Figure 8.5.1
add infinitely many horizontal edges in the plane, so as to turn every
pair of rays whose associated 0–1 sequences define the same rational
number into a ladder. Prove or disprove that the end space of the
resulting graph is homeomorphic to [0, 1].

63. A compact metric space is a Cantor set if the singletons are its only
connected subsets and every point is an accumulation point.

(i) Characterize the trees whose end space is a Cantor set.

(ii) Show that the end space of a connected locally finite graph is a
subset of a Cantor set.

64. (i) Show that if G = IH with finite branch sets, then the end spaces of
G and H are homeomorphic.

(ii) Let Tn denote the n-ary tree, the rooted tree in which every vertex
has exactly n successors. Show that all these trees have homeomorphic
end spaces.

65. Give an independent proof of Proposition 8.5.1 using sequential com-
pactness and the infinity lemma.

66.+ Let G be a connected countable graph that is not locally finite. Show
that |G| is not compact, but that Ω(G) is compact if and only if for
every finite set S ⊆ V (G) only finitely many components of G − S
contain a ray.

67. Given graphs H ⊆ G, let η: Ω(H)→Ω(G) assign to every end of H the
unique end of G containing it as a subset (of rays). For the following
questions, assume that H is connected and V (H) = V (G).

(i) Show that η need not be injective. Must it be surjective?

(ii) Investigate how η relates the subspace Ω(H) of |H| to its image
in |G|. Is η always continuous? Is it open? Do the answers to
these questions change if η is known to be injective?

(iii) A spanning tree is called end-faithful if η is bijective, and topo-
logically end-faithful if η is a homeomorphism. Show that every
connected countable graph has a topologically end-faithful span-
ning tree.

68.+ Let G be a connected graph. Assuming that G has a normal spanning
tree, define a metric on |G| that induces its usual topology. Conversely,
use Jung’s theorem of Exercise 3333 to show that if V ∪ Ω ⊆ |G| is
metrizable then G has a normal spanning tree.

A topological space X is locally connected if for every x ∈ X and every neigh-
bourhood U of x there is an open connected neighbourhood U ′ ⊆ U of x.
A continuum is a compact, connected Hausdorff space. By a theorem of gen-
eral topology, every locally connected metric continuum is arc-connected.

69.+ Show that, for G connected and locally finite, every connected standard
subspace of |G| is locally connected. Using the theorem cited above,
deduce Lemma 8.5.4.
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70.+ (for topologists) In a locally compact, connected, and locally connected
Hausdorff space X, consider sequences U1 ⊇ U2 ⊇ . . . of open, non-
empty, connected subsets with compact frontiers such that

⋂
i∈N

Ui = ∅.
Call such a sequence equivalent to another such sequence if every set
of one sequence contains some set of the other sequence and vice versa.
Note that this is indeed an equivalence relation, and call its classes the
Freudenthal ends of X. Now add these to the space X, and define a
natural topology on the extended space X̂ that makes it homeomorphic
to |X| if X is a graph, by a homeomorphism that is the identity on X.

71. Let G be a locally finite graph, and X a standard subspace of |G|
spanned by a set of at least two edges. Show that X is a circle if and
only if, for every two distinct edges e, e′ ∈ E(X), the subspace X � e̊ is
connected but X � (̊e∪ e̊′) is disconnected.

72. Does every infinite locally finite 2-connected graph contain an infinite
circuit? Does it contain an infinite bond?

73. Show that the union of all the edges contained in an arc or circle C in
|G| is dense in C.

74. Let T be a spanning tree of a graph G. Note that T is a connected
subset of |G|. Without using Lemma 8.5.4, show that if T is locally
finite then T is arc-connected. Find an example where T is not arc-
connected.

75.+ Prove that the circle shown in Figure 8.5.1 is really a circle, by exhibit-
ing a homeomorphism with S1.

76.+ Every arc induces on its points a linear ordering inherited from [0, 1].
Call an arc in |G| wild if it induces on some subset of its vertices the
ordering of the rationals. Show that every arc containing uncountably
many ends is wild.

77. Find a graph G with a connected standard subspace of |G| that is the
closure of a disjoint union of circles.

78. Without using Theorem 8.5.10 show that, for G locally finite, a closed
standard subspace C of |G| is a circle in |G| if and only if C is connected,
every vertex in C is incident with exactly two edges in C, and every
end in C has vertex-degree 2 (equivalently: edge-degree 2) in C.

79. Let T be a locally finite tree. Construct a continuous map σ: [0, 1]→|T |
that maps 0 and 1 to the root and traverses every edge exactly twice,
once in each direction. (Formally: define σ so that every inner point of
an edge is the image of exactly two points in [0, 1].)

(Hint. Define σ as a limit of similar maps σn for finite subtrees Tn.)

80. Let G be a connected locally finite graph. Show that the following
assertions are equivalent for a spanning subgraph T of G:

(i) T is a topological spanning tree of |G|;
(ii) T is edge-maximal such that T contains no circle;

(iii) T is edge-minimal with T arc-connected.
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81. Observe that a topological spanning tree need not be homeomorphic to
a tree. Is it homeomorphic to the space |T | for a suitable tree T?

82. Show that connected graphs with only one end have topological span-
ning trees.

83. To show that Theorem 3.2.6 does not generalize to infinite graphs
with the ‘finitary’ cycle space as defined in Chapter 1.9, construct a
3-connected locally finite planar graph with a separating cycle that is
not a finite sum of non-separating induced cycles. Can you find an ex-
ample where even infinite sums of finite non-separating induced cycles
do not generate all separating cycles?

84.− In a locally finite connected graph G let F be a set of edges not con-
taining a circuit. Show that F can be extended to the edge set of a
topological spanning tree of G.

85. Extend Exercise 3737 of Chapter 1 to characterizations of the bonds, and
of the finite bonds, in a locally finite connected graph.

86.− As a converse to Theorem 8.5.10 (i), show that the fundamental cir-
cuits of an ordinary spanning tree T of a locally finite graph G do not
generate C(G) unless T is a topological spanning tree.

87.− Prove that the edge set of a countable graph G can be partitioned into
finite circuits if G has no odd cut. Where does your argument break
down if G is uncountable?

88. Explain why Theorem 8.5.10 (iii) is needed in the proof that C(G) is
closed under infinite sums (Corollary 8.5.11): can’t we just combine
the constituent sums of circuits for the Di (from our assumption that
Di ∈ C(G)) into one big family? If not, can you prove the same using
statement (i) of Theorem 8.5.10 rather than (iii)?

89.+ Let G be a locally finite graph, x, y ∈ G two vertices, and P0, P1, . . .
an infinite sequence of x–y paths in G. Show that |G| contains an x–y
arc A each of whose edges lies eventually on every path in some fixed
subsequence of the Pn.

(Hint. Exercise 7979 provides some practice in an easier setting. Remem-
ber that ends can be specified as in Exercise 6060.)

90. Apply Exercise 8989 to give a more direct proof of Theorem 8.5.10 (iii).

For the next four exercises, let G be a locally finite connected graph. Let
C = C(G), and define the cut space C∗ = C∗(G) of G as in Chapter 1.9.
Note that cuts may now be infinite. Define ‘generate’ for cuts as for circuits,
allowing sums over infinite thin families of cuts. Given a set F ⊆ E(G), write
F⊥ := {D ∈ E(G) | ∀F ∈ F : |D∩F | ∈ 2N } and Ffin := {F ∈ F : |F | < ∞}.
91. (i)− Show that C∗ is a subspace of E(G) generated by finite cuts.

(ii) Show that every cut is a disjoint union of bonds.

(iii)+ Show that the fundamental cuts of any ordinary spanning tree of
G generate C∗, but that those of a topological spanning tree need not.

(iv)+ Show that C∗ is closed under infinite (thin) sums.
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92. (i)− Find in this book a proof, or sketch of a proof, for each of the
following two statements: C = (C∗

fin)⊥ and C∗ = (Cfin)⊥.

(ii)+ Show that C∗⊥ = Cfin and, if G is 2-connected, C⊥ = C∗
fin.

93. Write D for the set of circuits in G, and B for the set of bonds.

(i)− Show that (Dfin)⊥ = (Cfin)⊥ and (Bfin)⊥ = (C∗
fin)⊥.

(ii)+ Find 2-connected graphs for which D⊥ � C⊥ and B⊥ � C∗⊥,
respectively.

94. Extending Gallai’s partition theorem of Exercise 3939 (ii), Chapter 1,
show that E(G) can be partitioned into a set C ∈ C and a set D ∈ C∗.
(This strengthens Exercise 1919.)

95.+ Let G = (V, E) be a connected locally finite graph and H an abelian
group. Let the group CH of H-circulations on |G| consist of the maps

ψ:
→
E →H that satisfy (F1) and ψ(X, Y ) = 0 for any finite cut E(X, Y )

of G. (See Chapter 6.1 for notation.) Extend Exercise 88 of Chapter 6
to CH , with EH and DH as defined there.

96.+ Let G be a locally finite graph, and X a connected standard subspace
of |G|. Call a continuous map σ: S1 → X a topological Euler tour of
X if it traverses every edge in E(X) exactly once. (Formally: every
inner point of an edge in E(X) must be the image of exactly one point
in S1.) Use compactness to show that X admits a topological Euler
tour if and only if E(X) ∈ C(G).

(Hint. Exercise 7979 provides some practice in an easier setting.)

97.+ An open Euler tour in an infinite connected graph G is a 2-way infinite
walk . . . e−1v0e0 . . . that contains every edge of G exactly once. Show
that G contains an open Euler tour if and only if G is countable, every
vertex has even or infinite degree, and any finite cut F = E(V1, V2)
with both V1 and V2 infinite is odd.

98. Show that a countable tree has uncountably many ends if and only if it
contains a subdivision of the binary tree T2. Deduce that a countable
connected graph has either countably many or continuum many ends.

99.+ Show that the vertices of any infinite connected locally finite graph can
be enumerated in such a way that every vertex is adjacent to some later
vertex.

100. Show that a tree is recursively prunable with labels � α if and only if
it has rank � α in the ‘ranking of rooted’ trees defined in the second
paragraph after the proof of Proposition 8.6.1.

101. Construct a countable tree that has rank ω in the ranking of rayless
graphs. Can you find one such tree that contains all the others? Or
one that is contained in them all?

102. A graph G = (V, E) is called bounded if for every vertex labelling
�: V → N there exists a function f : N → N that exceeds the labelling
along any ray in G eventually. (Formally: for every ray v1v2 . . . in G
there exists an n0 such that f(n) > �(vn) for every n > n0.) Prove the
following assertions:




