Ankündigung

Die Klausur ist bestanden, wenn Sie 25 Punkte erreicht haben.

Aufgaben

(K1) Beantworten Sie die folgenden Fragen. Pro richtiger Antwort gibt es einen Punkt, pro falscher wird ein Punkt abgezogen¹. Sie können eine Frage auch unbeantwortet lassen, wenn Sie sich mit der Antwort nicht sicher sind. (7 Punkte)

		wahr	falsch
(a)	Ist eine lineare Abbildung $f: \mathbb{R}^3 \to \mathbb{R}^3$ injektiv, so ist sie auch surjektiv.	×	
(b)	Für Matrizen $A, B \in \mathbb{R}^{2 \times 2}$ gilt immer $(AB)^2 = A^2B^2$.		×
(c)	Jede Drehung $\mathbb{R}^2 \to \mathbb{R}^2$ besitzt eine Umkehrabbildung.	X	
(d)	$\{(x,y)\in\mathbb{R}^2 x^2+y^2=1\}$ ist ein \mathbb{R} -Vektorraum.		X
(e)	Jedes homogene lineare Gleichungssystem ist eindeutig lösbar.		
(f)	Für eine komplexe Zahl $z \in \mathbb{C}$ ist $\frac{z+\overline{z}}{2}$ der Realteil von z .	×	
(g)	Die Abbildung $h: \mathbb{R} \to \mathbb{R}; \ x \mapsto x^2$ ist linear.		X

 $^{^1\}mathrm{Sie}$ können aber nicht weniger als 0 Punkte für die Aufgabe bekommen.

- (K2) Es sei die Ebene $E: x_1 x_2 + 3x_3 = 0$ gegeben.
 - (a) Geben Sie an, für welche(n) der Vektoren

$$v_1 := \begin{pmatrix} 4 \\ -2 \\ -2 \end{pmatrix}, \quad v_2 := \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}, \quad v_3 := \begin{pmatrix} 3 \\ 3 \\ 2 \end{pmatrix}$$

 $v_i \in E$ gilt.

(3 Punkte)

(b) Zeigen Sie, dass die Gerade

$$g = \mathbb{R} \left(\begin{array}{c} 1 \\ 1 \\ 0 \end{array} \right)$$

in E enthalten ist.

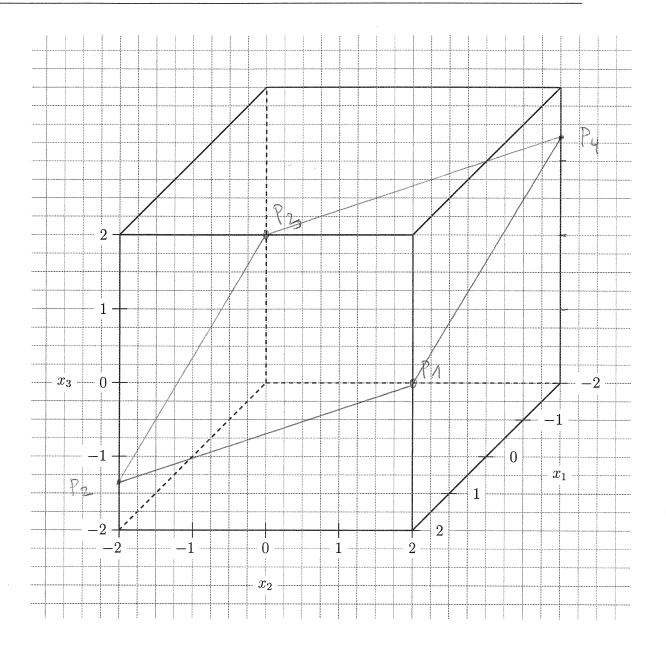
(2 Punkte)

(c) Geben Sie eine kurze Begründung (nicht länger als ein Satz), warum E ein Untervektorraum ist.

(1 Punkte)

(d) [BONUS] Skizzieren Sie E in dem Würfel auf der Rückseite.

(2 Bonuspunkte)



Hinweis: Die vertikalen Kanten des Würfels liegen auf den Geraden:

$$g_{2,2} = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix} + \mathbb{R} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, g_{-2,2} = \begin{pmatrix} -2 \\ 2 \\ 0 \end{pmatrix} + \mathbb{R} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix},$$

$$g_{-2,-2} = \begin{pmatrix} -2 \\ -2 \\ 0 \end{pmatrix} + \mathbb{R} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, g_{2,-2} = \begin{pmatrix} 2 \\ -2 \\ 0 \end{pmatrix} + \mathbb{R} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
(6 Punkte)

- a) $4-(-2)+3\cdot(-2)=6-6=0$ $1-0+3(-2)=-5\neq0$ $3-3+3\cdot2=6\neq0$
 - => VIEE, VIEE, VIEE
- b) Sei Peg beliebig Danngilt

 P= (d, x,0) mit einen LCR.

 Wegn x-d+3:0=0 Solgt PEE.

 Weil p beliebig war tolgt gEE.
 - C) Weil E die Lösingsmenge eines homogenen LGS Tit.
 - d) Die Schnittpunkte von E mit dem Würstel sind:

$$P_1 = (2,2,0)$$
, $P_3 = (-2,-2,0)$

$$P_{2}=(2_{1}-2_{1}-\frac{4}{3}), P_{4}=(-2_{1}2_{1}\frac{4}{3})$$

(K3) (a) Bringen Sie die folgenden Ausdrücke in die Form a+ib mit $a,b\in\mathbb{R}$:

(i)
$$(3-4i) + \overline{(-1+i)}$$
 (ii) $\frac{i}{i-3}$

(6 Punkte)

(b) Geben Sie die komplexe Zahl z := -3 - 3i in Polarkoordinaten an.

(3 Punkte)

Hinweis: Als Hilfe sind die wichtigsten Sinus- und Kosinuswerte angegeben. Zur Erinnerung sei darauf hingewiesen, dass 90° dem Bogenmaß $\frac{\pi}{2}$ entspricht.

Winkel~(Grad)	0°	30°	45°	60°	90°
Sinus	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
Kosinus	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

(9 Punkte)

(a) i)
$$(3-4i)+(-1+i) = 3-4i - 1-i$$

$$= 2-5i = 2-i5$$

$$= 2+i(-5)$$

$$= \frac{i}{1-3} = \frac{i}{(i-3)} \frac{(i+3)}{(i+3)} = \frac{-1+3i}{-1-9} = \frac{1-3i}{10}$$

$$= \frac{1}{10} + i(-\frac{3}{10})$$

$$V = |z| = \sqrt{(-3)^2 + (-3)^2} = \sqrt{2 \cdot 3^2}$$

= $\sqrt{2 \cdot 3}$

weiter gilt
$$\cos \theta = \frac{-3}{\sqrt{2} \cdot 3} = -\frac{1}{\sqrt{2}}$$

$$\text{Ind} \quad \text{Sinf} = \frac{-3}{\sqrt{2}.3} = -\frac{1}{\sqrt{2}}$$

Die Polar koordinaten Sind (3/2, 57) (K4) Sei A die Matrix

$$\left(\begin{array}{ccc} 1 & 0 & 2 \\ 2 & 1 & -3 \\ 2 & 2 & a \end{array}\right).$$

(a) Lösen Sie das lineare Gleichungssystem Ax = b für

$$a = -9$$
 und $b = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$.

(6 Punkte)

(b) Bestimmen Sie, für welche(s) a gilt, dass dim Bild A=2 ist. Berechnen Sie in diesem Fall auch Kern A.

(4 Punkte)

(10 Punkte)

(a)
$$\begin{pmatrix} 1 & 0 & 2 & | & 1 \\ 2 & 1 & -3 & | & 1 \\ 2 & 2 & -9 & | & 0 \end{pmatrix} \prod$$

$$\begin{pmatrix} 1 & 0 & 2 & | & 1 \\ 2 & 2 & -9 & | & 0 \end{pmatrix} \prod = \prod -2 \prod$$

$$\begin{pmatrix} 1 & 0 & 2 & | & 1 \\ 0 & 1 & -7 & | & -1 \\ 0 & 0 & 1 & | & 0 \end{pmatrix} \prod = \prod -2 \prod$$

$$\begin{array}{ll}
\text{II } \Rightarrow \chi_3 = 0 \\
\text{in I' einsetzen} : \chi_2 = -1 + 7.0 = -1 \\
\text{in I einsetzen} : \chi_1 = 1 - 2.0 = 1 \\
= \sum_{i=1}^{n} L(A_i b_i) = \sum_{i=1}^{n} (A_i - A_i - A_i) = 1
\end{array}$$

$$\begin{pmatrix} 102 & 0 \\ 01-7 & 0 \\ 02(a-4) & 0 \end{pmatrix} \begin{array}{c} I' = II-2\cdot I \\ I'' = III-2\cdot I \end{array}$$

$$\begin{pmatrix}
1 & 0 & 2 & | 0 & | I \\
0 & 1 - 7 & | 0 & | I' \\
0 & 0 & (a+10) & 0 & | II' = II' - 2 \cdot II'
\end{pmatrix}$$

$$\begin{pmatrix}
102 & 0 \\
01-7 & 0
\end{pmatrix}$$

$$\boxed{1}$$

$$\boxed{0}$$

$$\boxed{1}$$

$$\boxed{0}$$

$$\boxed{1}$$

"Dimensions formel"

mittels Rudwarts einsetzen:

X3=2 mit Parameter XER.

$$I \Rightarrow x_1 = -2\alpha$$

Es Solgt Kern A= R(-2,7,1) und dim Kern A=1; wegen der Dimensions Sormel dim Bild+dim Kern A=dum R³ gilt dann dim Bild A=2. (K5) Es seien die Vektoren

$$v_1 := \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \ v_2 := \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix}, \ v_3 := \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \ v_4 := \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \text{ und } v_5 := \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix}$$

des \mathbb{R}^3 gegeben.

Wählen Sie aus der Menge $\{v_1,\ldots,v_5\}$ Vektoren aus (ohne Begründung), sodass

(a) diese linear unabhängig sind und ihre lineare Hülle ein echter Untervektorraum vom \mathbb{R}^3 ist.

(3 Punkte)

(b) diese linear abhängig sind und ihre lineare Hülle der \mathbb{R}^3 ist.

(3 Punkte)

(c) diese eine Basis vom \mathbb{R}^3 bilden.

(3 Punkte)

(9 Punkte)

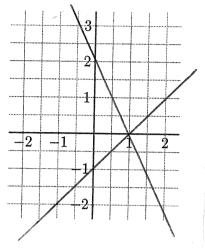
- a) zwei oder meniger Vehteren
- b) Mindestens vier Vehtoren; Vy myss dabei sein.
- c) genan drei Vehtoren i vy muss dabei sein.

(K6) Gegeben sind die Geraden g := -2x + 2y = -2 und $f = \begin{pmatrix} 2 \\ -2 \end{pmatrix} + \mathbb{R} \begin{pmatrix} 2 \\ -4 \end{pmatrix}$.

(a) Berechnen Sie den Schnittpunkt $g \cap f$.

(3 Punkte)

(b) Skizzieren Sie die beiden Geraden.



(4 Punkte)

(c) Geben Sie eine Koordinatendarstellung von f an.

(2 Punkte)

(9 Punkte)

$$P = (2, -2) + \lambda(2, -4)$$

Wir setzen Pin g ein, um 2 zubestimmen

$$-2(2+\lambda 2)+2(-2+\lambda(-4))=-2$$

$$(=)$$
 $-4-41 - 4-81 = -2$

$$\langle = \rangle$$
 $-12 \rangle = 6$

$$\lambda = -\frac{1}{2}$$

$$P = (2,-2) + (-\frac{1}{2})(2,-4)$$

$$= (2,-2) - (1,-2) = (1,0)$$

$$5: 2x + y = 2$$