

Grundbildung Lineare Algebra und Analytische Geometrie (LPSI/LS-M2)

Blatt 5

SoSe 2011 - C. Curilla/ B. Janssens

Präsenzaufgaben

(P9) Sei $V:=\{f:\mathbb{R}\to\mathbb{R}\}$ die Menge der Funktionen mit Definitionsbereich und Bildbereich \mathbb{R} . Analog zu dem Beispiel 2.6. wird auf V eine Addition und eine Skalarmultiplikation definiert, indem man für $f,g\in V$ und $\alpha\in\mathbb{R}$ die Funktionen f+g und $\alpha\cdot f$ durch

$$(f+g)(x) := f(x) + g(x)$$
 und $(\alpha \cdot f)(x) := \alpha f(x)$ für alle $x \in \mathbb{R}$

definiert. Hierdurch wird $(V, +, \cdot)$ zu einen \mathbb{R} -Vektorraum. Zeigen Sie, dass die Teilmenge

$$U := \{ f \in V : (\exists a_2, a_1, a_0, \forall x \in \mathbb{R} : f(x) = a_2 x^2 + a_1 x + a_0) \}$$

der Polynome vom Grad kleiner oder gleich 2 ein Untervektorraum von V ist.

- (P10) Entsprechend der Definition 2.10 bezeichnen wir mit $\tau_v \in T(\mathbb{R}^2)$ die Verschiebungen um den Vektor $v \in \mathbb{R}^2$. Sie können sich die Verschiebung τ_v veranschaulichen, indem Sie Pfeile in die Ebene \mathbb{R}^2 einzeichnen, bei denen der Anfangspunkt durch einen Punkte $P \in \mathbb{R}^2$ gegeben ist und der Endpunkt durch $\tau_v(P)$. Veranschaulichen Sie
 - (a) $v_{(1,2)}$, indem Sie Pfeile für die Punkte $P_1=(2,1), P_2=(-1,1)$ und $P_3=(-2,-3)$ einzeichnen.
 - (b) $v_{(-2,3)}$, indem Sie Pfeile für die Punkte $P_1=(2,1), P_2=(-1,1)$ und $P_3=(-2,-3)$ einzeichnen.
 - (c) $v_{(-2,3)} \circ v_{(1,2)}$, indem Sie Pfeile für die Punkte $P_1=(2,1), P_2=(-1,1)$ und $P_3=(-2,-3)$ einzeichnen.

Hausaufgaben

(H16) Es sei V der in Aufgabe (P9) definierte Vektorraum und U der in der gleichen Aufgabe definierte Untervektorraum von V. Weiter seien $p_1, p_2, p_3, p \in U$ definiert durch

$$p_1(x) = 2x^2 + x,$$
 $\forall x \in \mathbb{R}$
 $p_2(x) = x,$ $\forall x \in \mathbb{R}$
 $p_3(x) = x^2 + 3,$ $\forall x \in \mathbb{R}$
 $p(x) = x^2 - 5x + 3,$ $\forall x \in \mathbb{R}$

Bestimmen Sie ein Tripel $(\alpha, \beta, \gamma) \in \mathbb{R}^3$, sodass

$$\alpha \cdot p_1 + \beta \cdot p_2 + \gamma \cdot p_3 = p, \qquad (1)$$

hierbei ist $\alpha \cdot p_1 + \beta \cdot p_2 + \gamma \cdot p_3$ durch

$$(\alpha \cdot p_1 + \beta \cdot p_2 + \gamma \cdot p_3)(x) = \alpha p_1(x) + \beta p_2(x) + \gamma p_3(x) \qquad \forall x \in \mathbb{R}$$

definiert (es gibt einen Bonuspunkt, wenn Sie zeigen, dass es nur ein solches Tripel gibt).

(6 Punkte)

- (H17) Wir betrachten erneut Verschiebungen (vgl. Sie auch Aufgabe (P10)).
 - (a) Sei $v_{(1,3)} \in T(\mathbb{R}^2)$ die Verschiebung um (1,3) und U die Teilmenge des \mathbb{R}^2 die durch $U := \{\alpha \cdot (2,-1) : \alpha \in \mathbb{R}\}$ definiert ist. Bestimmen und skizzieren Sie $v_{(1,3)}(U)$.

(3 Punkte)

(b) Sei nun die Teilmenge $U' := \{\alpha \cdot (-3, -1) + (2, 5) : \alpha \in \mathbb{R}\} \subseteq \mathbb{R}^2$ gegeben. Bestimmen Sie $a \in \mathbb{R}$, sodass $v_{(1,a)}(U')$ ein Untervektorraum von \mathbb{R}^2 ist.

(3 Punkte)

(c) Sei nun $n \in \mathbb{N}$ und $T(\mathbb{R}^n)$ die Menge der Verschiebungen auf dem n-dimensionalen Standardraum \mathbb{R}^n . Ergänzen Sie den Beweis zu Satz 2.11 und zeigen Sie, dass $T(\mathbb{R}^n)$ bzgl. Komposition eine abelsche Gruppe ist.

(4 Punkte)

(10 Punkte)

(H18) Sei $n \in \mathbb{N}$. Führen Sie den Beweis zu Satz 2.19 und zeigen Sie, dass für alle $u, v \in \mathbb{R}^n \setminus \{0\}$ gilt:

$$u \in \mathbb{R}v \iff \mathbb{R}u = \mathbb{R}v$$
.

(4 Punkte)

Die Abgabe der Lösungen zu den Hausaufgaben dieses Zettels muss bis zum **Beginn** der Vorlesung am **Montag, den 16. Mai 2011** in die dafür vorgesehenen Ordner auf dem Pult erfolgen.