Grundlagen der Mathematik (LPSI/LS-M1)

Blatt 9 WiSe 2010/11 - C. Curilla/S. Koch/S. Ziegenhagen

Präsenzaufgaben

- (P29) Seien (G,*) und (H,\cdot) Gruppen und $\phi\colon G\to H$ ein Homomorphismus. Zeigen Sie:
 - (a) Es gilt $\phi(e_G) = e_H$, wobei e_G das neutrale Element von G, e_H das neutrale Element von H sei.
 - (b) Für alle $a \in G$ ist $\phi(a^{-1}) = \phi(a)^{-1}$.
- (P30) Sei (G, \cdot) eine Gruppe und $U \subseteq G$ eine nichtleere Teilmenge von G. Zeigen Sie, dass die folgenden Aussagen äquivalent sind:
 - $\forall a, b \in U : a \cdot b^{-1} \in U$,
 - $\forall a, b \in U : a \cdot b \in U \land a^{-1} \in U$.

Wir wissen aus der Vorlesung, dass man U eine Untergruppe von G nennt, wenn das zweite Kriterium erfüllt ist. Sie erhalten somit ein weiteres Kriterium, um zu überprüfen, ob eine nichtleere Teilmenge einer Gruppe eine Untergruppe ist.

- (P31) Sei $m \in \mathbb{N}$ fest. Betrachten Sie die Abbildung $\chi: (\mathbb{Z}, +) \to (\mathbb{Z}/m\mathbb{Z}, \oplus), x \mapsto [x]$.
 - (a) Zeigen Sie, dass χ ein Homomorphismus ist.
 - (b) Für einen beliebigen Gruppenhomomorphismus $f\colon G\to H$ ist der Kern der Abbildung f definiert als die Menge

$$\ker f := \{g \in G : f(g) = e_H\} \subseteq G,$$

wobei e_H das neutrale Element von H bezeichne. Berechnen Sie den Kern von χ .

(c) Was sind die Urbilder von [1], [2], ..., [m-1] unter χ ?

Hausaufgaben

- (H34) Wir betrachten die Menge $\mathbb{Z}/5\mathbb{Z} \setminus \{[0]\}.$
 - (a) Fertigen Sie eine Verknüpfungstafel für $(\mathbb{Z}/5\mathbb{Z}\setminus\{[0]\},\odot)$ an. (1 Punkt)
 - (b) Zeigen Sie, dass $(\mathbb{Z}/5\mathbb{Z} \setminus \{[0]\}, \odot)$ eine Gruppe ist. (3 Punkte)
 - (c) Zeigen Sie, dass $(\mathbb{Z}/4\mathbb{Z}, \oplus)$ isomorph zu $(\mathbb{Z}/5\mathbb{Z} \setminus \{[0]\}, \odot)$ ist. (2 Punkte)

(d) Sei $p \in \mathbb{N}$ eine Primzahl. Beweisen Sie, dass $(\mathbb{Z}/p\mathbb{Z} \setminus \{[0]\}, \odot)$ eine Gruppe ist. Hinweis: Sie dürfen ohne Beweis benutzen, dass für alle $a \in \mathbb{Z}$ gilt:

$$ggT(p, a) = 1 \Rightarrow \exists s, t \in \mathbb{Z} \text{ mit } 1 = sp + ta.$$

(2 Bonuspunkte)

(6 Punkte)

(H35) Sei $m \in \mathbb{N}$ fest. Im Ring $\mathbb{Z}/m\mathbb{Z}$ sei $[a] \neq [0]$ kein Nullteiler, d.h. für alle $b \in \mathbb{Z}$ gelte $[a] \odot [b] = [0] \Rightarrow [b] = [0].$

Zeigen Sie:

(a) Für alle $[x], [y] \in \mathbb{Z}/m\mathbb{Z}$ gilt

$$[a] \odot [x] = [a] \odot [y] \Rightarrow [x] = [y].$$

(1 Punkt)

- (b) Die Abbildung $\tau \colon \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$, $[x] \mapsto [a] \odot [x]$ ist bijektiv. (3 Punkt)
- (c) Es gibt ein inverses Element zu [a]. Tipp: Benutzen Sie hierzu (b), auch wenn Sie (b) nicht bewiesen haben sollten. (1 Bonuspunkt)

(4 Punkte)

(H36) Seien (G, *) und (H, \cdot) zwei Gruppen, $\phi : G \to H$ ein Homomorphismus und ker ϕ der Kern dieses Homomorphismuses (vgl. (P31b)). Zeigen Sie, dass ker ϕ mit * als Verknüpfung eine Untergruppe von (G, *) ist.

(4 Punkte)

(H37) Die Ecken eines gleichseitigen Dreiecks seien gegen den Uhrzeigersinn durchnummeriert. Wir betrachten die Symmetriegruppe D_3 dieses Dreiecks:

$$D_3 = \{ id, \delta, \delta^2, s_1, s_2, s_3 \}.$$

Dabei sei δ die Drehung um 120° gegen den Uhrzeigersinn, $\delta^2 = \delta \circ \delta$, und s_1 bzw. s_2 bzw. s_3 sei die Spiegelung an der Geraden, die durch den Mittelpunkt des Dreiecks sowie die obere bzw. linke bzw. rechte Ecke verläuft. Die Verknüpfung zweier Abbildungen sei durch ihre Verkettung \circ gegeben.

(a) Stellen Sie die Verknüpfungstafel von D_3 auf.

(2 Punkte)

(b) Entscheiden Sie, ob D_3 kommutativ ist (mit Begründung).

(2 Punkte)

(c) Bestimmen Sie zwei nichttriviale Untergruppen.

(2 Punkte)

(6 Punkte)

Die Abgabe der Lösungen zu den Hausaufgaben dieses Zettels muss bis zum **Beginn** der Vorlesung am **Montag, den 10. Januar 2011** in die dafür vorgesehenen Ordner auf dem Pult erfolgen.