

Grundlagen der Mathematik (LPSI/LS-M1)

Blatt 8 WiSe 2010/11 - C. Curilla/S. Koch/S. Ziegenhagen

Präsenzaufgaben

(P27) Sei $m \in \mathbb{N}$ und $\mathbb{Z}/m\mathbb{Z} := \{[0], [1], ..., [m-1]\}$ die Menge der Äquivalenzklassen bezüglich der Modulo-Relation R_m . In der Vorlesung hatten wir die Verknüpfungen

$$[a] \oplus [b] := [a+b] \quad \text{ und } \quad [a] \odot [b] := [a \cdot b]$$

definiert. Außerdem haben wir die Bemerkung gemacht, dass diese Verknüpfungen wohldefiniert sind, also dass für $a, a', b, b' \in \mathbb{Z}$ mit [a] = [a'] und [b] = [b'] gilt:

$$[a] \oplus [b] = [a'] \oplus [b']$$
 und $[a] \odot [b] = [a'] \odot [b']$.

- (a) Machen Sie sich die Wohldefiniertheit von \oplus und \odot an Beispielen deutlich.
- (b) Beweisen Sie sie.
- (c) Wir versuchen, eine weitere Verknüpfung auf $\mathbb{Z}/m\mathbb{Z}$ durch [a] * [b] := [|a b|] zu definieren. Liefert diese Vorschrift eine wohldefinierte Verknüpfung?
- (P28) (a) Erstellen Sie die Verknüpfungstafeln für $(\mathbb{Z}/4\mathbb{Z}, \oplus, \odot)$.
 - (b) Was fällt auf, wenn Sie die Multiplikation in $\mathbb{Z}/4\mathbb{Z}$ mit der Multiplikation in \mathbb{Z} vergleichen?
 - (c) Die Addition in dem Ring $(\mathbb{Z}/m\mathbb{Z}, \oplus, \odot)$ hat immer inverse Elemente. Was ist mit der Multiplikation in $(\mathbb{Z}/4\mathbb{Z}, \oplus, \odot)$ und in $(\mathbb{Z}/3\mathbb{Z}, \oplus, \odot)$?

Hausaufgaben

- (H29) Wir betrachten den Ring $(\mathbb{Z}/15\mathbb{Z}, \oplus, \odot)$.
 - (a) Bestimmen Sie alle Elemente $[a] \in \mathbb{Z}/15\mathbb{Z}$ für die es ein Inverses bzgl. der Multiplikation \odot gibt (d.h. für die es $[b] \in \mathbb{Z}/15\mathbb{Z}$ mit $[a] \odot [b] = [1]$ gibt), und geben Sie diese an. (1 Punkt)
 - (b) Bestimmen Sie alle Elemente $[a] \in \mathbb{Z}/15\mathbb{Z}$ ($[a] \neq [0]$) für die es $[b] \in \mathbb{Z}/15\mathbb{Z}$ $([b] \neq [0])$ gibt mit $[a] \odot [b] = [0]$. Elemente dieser Art nennt man Nullteiler. Geben Sie für jedes [a] alle dazugehörigen [b] an. (1 Punkt)

(2 Punkte)

- (H30) Gegeben seien die natürlichen Zahlen a = 100025 und b = 12312.
 - (a) Bestimmen Sie den ggT(a, b) mit dem Euklidischen Algorithmus. (1 Punkt)
 - (b) Bestimmen Sie das kgV(a, b). (1 Punkt)

(2 Punkte)

- (H31) Sei $n \in \mathbb{N}$ und $S_n := \{f : \{1, 2, \dots, n\} \rightarrow \{1, 2, \dots, n\} : f \text{ ist bijektiv}\}$ die Menge aller bijektiven Abbildung von $\{1, ..., n\}$ auf sich selbst.
 - (a) Beweisen Sie, dass die Menge S_n mit der Verkettung \circ von Abbildungen als Verknüpfung eine Gruppe bildet. Ist diese Gruppe kommutativ? (3 Punkte)
 - (b) Berechnen Sie die Mächtigkeit $|S_n|$ von S_n . (1 Punkt)
 - (c) Stellen Sie sich eine quadratische Holzplatte mit Kantenlänge x cm > 0 vor, wobei jede Ecke mit einer anderen Farbe gefärbt ist. Wieviele verschiedene Möglichkeiten gibt es, diese Holzplatte auf eine vorgegebene ebene quadratische Fläche mit Flächeninhalt x^2 cm zu legen? Was hat das mit S_4 zu tun? (2 Punkte)

(6 Punkte)

(H32) Wir definieren zwei Verknüpfungen auf dem \mathbb{R}^2 durch

$$+: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2, \quad (a,b) + (c,d) := (a+c,b+d)$$

und
$$: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$$
, $(a, b) \cdot (c, d) := (ac - bd, ad + bc)$.

Beweisen Sie, dass $(\mathbb{R}^2, +, \cdot)$ ein Ring ist. Ist dieser Ring kommutativ? (4 Punkte)

(4 Punkte)

(H33) Sei $f:A\to B$ eine Abbildung. Definiere F_1 und F_2 durch

$$F_1: \operatorname{Pot}(A) \to \operatorname{Pot}(B), \quad S \mapsto f(S) \quad \text{und}$$

 $F_2: \operatorname{Pot}(B) \to \operatorname{Pot}(A), \quad T \mapsto f^{-1}(T)$.

$$F_2 \colon \operatorname{Pot}(B) \to \operatorname{Pot}(A), \quad T \mapsto f^{-1}(T)$$
.

Beweisen Sie die folgenden Äquivalenzen beziehungsweise Implikationen:

- (a) f ist injektiv $\Leftrightarrow F_1$ ist injektiv $\Leftrightarrow F_2$ ist surjektiv. (2 Punkte)
- (b) f ist surjektiv $\Leftrightarrow F_1$ ist surjektiv $\Leftrightarrow F_2$ ist injektiv. (2 Punkte)
- (c) f ist bijektiv $\Rightarrow F_1$ und F_2 sind bijektiv und es gilt $F_1^{-1} = F_2$. (2 Punkte)

(6 Punkte)

Die Abgabe der Lösungen zu den Hausaufgaben dieses Zettels muss bis zum **Beginn** der Vorlesung am **Montag, den 3. Januar 2011** in die dafür vorgesehenen Ordner auf dem Pult erfolgen.

Wir wünschen Ihnen frohe Ferien und einen guten Rutsch ins Jahr 2011!

 $[\]overline{\ \ ^{1}} Illustration\ von\ AKARAKINGDOMS, zu\ finden\ auf\ http://www.freedigitalphotos.net/images/Christmas_g54-Merry_Christmas_Set_p22838.html$