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Introduction

History: One of the main concerns of number theory is the study of integral solutions of polyno-
mial equations with integral coefficients. The Fermat curve plays a prominent role in this context.
It is fascinating the people because of two properties which seem to be contrary to each other from
a naive viewpoint. First, it is given by the very simple equation

Xn + Y n = Zn ,

where n is a natural number, and second it is a very hard problem to prove the unsolvability by
non-trivial integer solutions for n > 2. In fact, this problem, which is also known as “Fermat’s
Last Theorem”, has challenged mathematics for more that three hundred years and has finally
been proved by Wiles in 1993-1995. Even if this big problem is solved, the Fermat curve is still
an interesting object because of its exemplary character.

In order to analyze the arithmetic properties of an algebraic curve X, which is defined over a
number field E, one can try to construct a (minimal) arithmetic surface f : X → SpecOE which
has X as generic fiber i.e. construct a (minimal) regular model X of this curve; here OE denotes
the ring of integers of E. Since X is a projective model of X the E-rational points X(E) correspond
bijectively to the set of sections X (OE). With the importance of the classical intersection theory
of algebraic surfaces over algebraically closed fields in mind, one can ask how to construct a good
intersection theory for arithmetic surfaces. This is not an easy problem since just adapting the
classical definitions would give an intersection theory which is not well defined for divisor classes.
Arakelov solved in his famous article [Ara] this problem by adding some analytic data in order to
“compactify” the base scheme and to “complete” the arithmetic surface. He defined an intersection
theory for arithmetic divisors1 and he reformulated everything in the language of hermitian line
bundles. Many other mathematicians as for example Deligne, Gillet and Soulé, et al. have made
an advancement of this theory by extending it to other types of arithmetic divisors (hermitian line
bundles resp.) and by generalizing it to higher dimensional arithmetic varieties.

The property that the Arakelov intersection theory is well defined for arithmetic divisor classes
makes theoretically possible to compute arithmetic self-intersection numbers of all types of arith-
metic divisors. Especially the arithmetic self-intersection number of the hermitian line bundle
ω2
X ,Ar, where ωX ,Ar is the line bundle ωX/ Spec Z = ωX/ SpecOE ⊗OX f∗ωSpecOE/ Spec Z equipped

with the Arakelov metric, is a number of great importance (cf. [Sz],[Ul] and [Zh]). Unfortunately,
its computation is a very difficult problem if the genus of the curve X is bigger or equal to two
and therefore there is not much known about these numbers (cf. [BMMB], [AU] plus [MU] or [AU]
plus [JK1]). Parshin showed that an upper bound for ω2

XP ,Ar for certain families of morphisms of
arithmetic surfaces {XP → Y}P∈Y (E) would imply bounds for the height of rational points of the
curve Y , hence it would yield an effective version of Mordell’s conjecture (cf. [Vo], [Pa]). However,
except for certain kinds of modular curves there are only a few results on such upper bounds. In
[Kü1] Kühn extends the Arakelov intersection theory in order to obtain an intersection theory that
works for hermitian line bundles equipped with metrics which have logarithmic singularities at a
finite set of points. Provided that one can compute regular models that fulfill certain conditions,
this generalized arithmetic intersection theory can be used in order to compute upper bounds for

1In the literature often called Arakelov divisors.
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ω2
Ar in case of modular curves and Fermat curves (cf. [Kü2]).

The main results: The main result of this thesis is the construction of (minimal) regular models
FN of Fermat curves of squarefree exponent and the computation of upper bounds for ω2

FN ,Ar

using Kühn’s results in [Kü1] and [Kü2]. Furthermore, we compute upper bounds for the regular
model of the Fermat curves of prime exponent that was constructed by McCallum [Mc] and for
certain types of regular models that appear often as models of modular curves.

Previous works: There are several works which deal with the construction of regular and minimal
regular models Fp of the Fermat curve Fp of prime exponent. The most prominent one is given by
William G. McCallum which describes the minimal regular model over Zp[ζp] (Z[ζp] resp.), where
ζp is a primitive p-th root of unity (see [Mc]). Inspired by this work Haichau Chang [Cha] and
Nguen Kkhak V’et [V′] constructed independently the minimal regular model over Zp (Z resp.).
In order to do this Chang started with the model which is given by the Fermat-equation and
then - following the construction of McCallum - made a straight forward computation. Nguen
Kkhak V’et considered the quotient scheme, which is given by McCallum’s scheme and the group
Gal(Qp(ζp)/Qp), and resolved the singularities. The stable model of the Fermat curve of prime
exponent was constructed by Hironobu Maeda [Mae1],[Mae2] and by Jeroen J. van Beele [vB].

In [Kü2] Kühn used McCallum’s model and an “approximated” version of one of his formulae
for upper bounds in order to compute an upper bound for ω2

Fp,Ar. In [CK] Kühn and the author
made an improvement of this result using the original version of that formula.

Description of the contents: In Chapter 1 we review some of the necessary background material
in order to work with arithmetic surfaces. We start summarizing methods which are needed for the
construction of the arithmetic surface as for example blowing-ups and regularity criteria of schemes.
Most of this material is not restricted to surfaces. Then we introduce the intersection theory for
arithmetic surfaces which gives us an important tool for the study of these schemes. Finally we
define the canonical sheaf (canonical divisor resp.). This invariant displays its significance in the
adjunction formula (Theorem 1.4.9) which we will frequently use in later chapters. To illustrate
the introduced results we already start in Proposition 1.1.13 and Proposition 1.4.11 applying them
to the Fermat curve. The reader who is familiar with the basic concepts of arithmetic geometry
may just take a look at these propositions which are related to the Fermat curve and skip the rest
of this chapter.

Whereas the first chapter gives us the required tools, Chapter 2 explains the strategy to con-
struct (minimal) regular models. In this context we present the resolution of surface-singularities
like it was done by Lipman and the construction of minimal models done by Lichtenbaum. At
the end we introduce a few facts about descent theory which explain that our constructions can
be done fiber by fiber. Again, the reader who is familiar with these topics may skip the whole
chapter.

In Chapter 3 we explain Arakelov’s idea to extend the intersection theory of arithmetic surfaces
by considering some analytic data in order to obtain an arithmetic intersection theory which is
defined for divisor classes. In fact, we present the arithmetic intersection theory developed by
Gillet and Soulé which is an advancement of Arakelov’s theory. We show two approaches to this
theory: The arithmetic intersection theory of hermitian line bundles and the one of arithmetic
divisors. Since it is sometimes useful to switch between these languages we explain how results
can be translated. The second section of Chapter 3 is devoted to a result of Kühn (Theorem 3.2.2)
which gives us an upper bound for the arithmetic self-intersection number of the dualizing sheaf
ω2
X ,Ar of an arithmetic surface X which fulfills certain conditions. This result is the starting point

of our work. It enables us to compute ω2
X ,Ar just by some algebraic data which can be extracted

from the arithmetic surface X . Subsequent to this we describe how to approximate the numbers
that can be computed with the algebraic data and we show that the Fermat curves (and certain
modular curves) fulfill the conditions which are necessary in order to apply Kühn’s result. The
reader who is well versed in Arakelov theory may skip the first section of this chapter but should
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nevertheless read the second section since it is of fundamental importance for the rest of the work.
In Chapter 4 we start to apply Kühn’s result we reviewed in the previous section. We explain

the construction of a regular model Fp of the Fermat curve of prime exponent Fp which was given
by McCallum. This model is the first example of an arithmetic surface that fulfills the conditions of
Kühn’s theorem. Using the explicit description of the model, we compute certain vertical divisors
which are necessary to calculate the upper bound of the arithmetic self-intersection number of the
dualizing sheaf. In fact, we even compute a little bit more than that, namely a canonical divisor
and a divisor which is associated with a pullback of the tautological sheaf. After that we calculate
the upper bound (Theorem 4.2.6). McCallum describes the minimal regular model Fminp of Fp as
well. Unfortunately, we cannot apply Kühn’s result directly to that model since it does not satisfy
the conditions needed. However, in Section 4.2.1 we use the result for McCallum’s (non-minimal)
model and obtain a relative result for the dualizing sheaf of the minimal regular model (Theorem
4.2.8).
After that we consider a different type of curves: The modular curves. Kühn used in [Kü2]
his formula to compute upper bounds in case of the modular curve X0(N). He also used an
“approximated” version of his formula to compute an upper bound for X(N). In Chapter 5 we
consider a situation which covers many cases of this kind of curves. Even if we have the modular
curve situation in mind, we describe everything in an abstract setting which can be understood
without any knowledge about the modular curves. Later we show that we can apply our results
to specific cases of the curves X0(N) and X(N), where we achieve the same results as Kühn in
the first case and the better (“non-approximated”) upper bound in the second case.

Chapter 6 is the main part of this thesis. It is divided into two sections. In the first section
we construct the minimal regular model FminN of the Fermat curve of squarefree odd exponent N
over the ring of integers of the number field Q(ζN ); here ζN is a primitive N -th root of unity. In
order to do this we start with an analyzation of the polynomial

ψ(Xm, Y m) =
(XN + Y N − ZN )− (Xm + Y m − Zm)p

p
,

where p is a prime with p|N and N = pm. This is important for the study of the special fiber
over the primes that lie above p. Then we construct a regular model of this curve and prove that
this is in fact the minimal regular model. For the later applications it is important that we have
made this construction over a number field that contains the primitive N -th roots of unity. In
the second section we compute - similar to the prime exponent case in Chapter 4 - a canonical
divisor and a divisor which is associated with the pullback of the tautological sheaf. We use this
and apply Kühn’s formula in order to compute an upper bound for ω2

FminN ,Ar
.

In each of the Chapters 4, 5 and 6 we do not only compute upper bounds for ω2
Ar but also give

asymptotic formulae of these numbers and analyze which data in the bound - the analytic data
or the algebraic data - is the dominating one. The asymptotic formulae intend to illustrate the
significant part of the growth of the upper bounds for ω2

Ar as the curves in question vary within a
certain family of curves. However, the way the formulae are chosen is not uniform and differs for
the families of curves.

In Chapter 7 we give a small discussion about subsequent work and open problems. Here we
consider the case of the Fermat curve of squarefree even exponent. Furthermore, we describe a
different approach to the results in Section 6.1 which was posed by Franz Király and which uses
the theory of quotient singularities. At the end we illustrate the difficulties that appear in the
case of Fermat curves of non-squarefree exponent.

Acknowledgement: I would like to thank the international research training group “Arithmetic
and Geometry” at the Humboldt University of Berlin - and here especially professor Jürg Kramer
and professor Ulf Kühn - for the opportunity of a temporary participation. This time has enhanced
my mathematical background in Arithmetic Geometry. I would also like to thank the University
of Hamburg for providing a good research-environment. During my work on this thesis there
were many mathematicians who helped me by offering suggestions, encouragement and inspiring
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discussions. I would like to thank all of them and especially mention Fritz Hörmann and Franz
Király. Furthermore I would like to thank Vincenz Busch for the reading of Section 6.1 and
Inmaculada Pizán Molina for a careful reading regarding linguistic matters. Special thanks go
to professor Stefan Wewers for his help with questions concerning the construction of models.
Finally, and most importantly, I would like to thank professor Ulf Kühn for his encouragement
and his motivating mentoring.



Terminology and Conventions

We assume that the reader is familiar with basic concepts of algebraic geometry. Even if we use
most of the time standard terminology, as it is use for example in [Liu] or [Ha], we review at this
point terminology and conventions which will be used frequently in this work.

We use the term ring to denote a commutative ring with a unit. A ring homomorphism is
always assumed to take the unit element of one ring to the unit element of the other ring. If we
have a ring A and an element f ∈ A, we will denote by A/f the factor ring A/(f).
Given a polynomial ring A[X1, . . . , Xr], we denote by A[X1, . . . , X̂i, . . . , Xr] the same ring but
after removing Xi. In other words, we have

A[X1, . . . , X̂i, . . . , Xr] = A[X1, . . . , Xi−1, Xi+1, . . . , Xr] .

If S is a multiplicative subset of A, we denote by AS the localization of A with respect to S. For
a prime ideal p of A we write Ap for the localization AS of A with S = A \ p. Given an integral
ring A we denote its field of fractions by Frac(A) i.e. the localization of A with respect to the
multiplicative subset A∗.

For an affine scheme SpecA and an ideal I ⊂ A we denote by V (I) the subset of SpecA which
consists of the prime ideals of A that contain I. Similarly, we proceed with projective schemes
ProjB =

⊕
d≥0Bd; here B is a graded ring. We denote by V+(I) the set of homogenous prime

ideals p ∈ ProjB that contain the homogenous ideal I ⊂ B. If there is no danger of confusion,
we will use the same symbol p to denote a prime ideal considered as an ideal of the ring p ⊂ A
(p ⊂ B resp.) on the one hand and as an element of the scheme p ∈ SpecA (p ∈ ProjB resp.) on
the other hand.

For a smooth projective curve C we denote by g(C) the (geometric) genus of the curve. If
there is no danger of confusion to which curve we are referring, we write g. We will denote the
arithmetic genus of a curve by pa. If the arithmetic genus and the geometric genus of a curve C
coincide, we will just say genus and write g(C) or g.
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Chapter 1

Geometry of arithmetic surfaces

In this chapter we review some results of arithmetic geometry which are needed in order to work
with arithmetic surfaces.

1.1 Regularity

Our aim is to define regularity for a scheme, to develop a couple of tools that help to show that
a scheme or a ring is regular (or to show that it is non-regular), and to explain the geometric
viewpoint of regularity.

Let A be a Noetherian local ring with maximal ideal m and residue class field k(m) = A/m.
We denote by dimA the Krull dimension which is defined to be the number of strict inclusions in
a maximal chain of prime ideals. Since we just consider Noetherian rings, this dimension is finite.
It can be shown that the Krull dimension of A is less or equal to the dimension of the k(m)-vector
space m/m2 (see e.g. [Mat1], p.78). We are interested in rings where equality holds.

Definition 1.1.1. Let A be a Noetherian local ring with maximal ideal m and residue class field
k(m). We say that A is regular if dimA = dimk(m) m/m2.

Given any system of generators of m, the number of generators is obviously bigger or equal to
dimk(m) m/m2. On the other hand there exists a system with exactly dimk(m) m/m2 generators.
To see this we just have to consider any basis of m/m2 and then choose for each element in this
basis a preimage. Now, Nakayama’s lemma tells us that these preimages already generate m as an
A-module (see e.g. [Ei], p.124: Corollary 4.8 (b)). This gives us another description of regularity:

Proposition 1.1.2. Let A be a Noetherian local ring with maximal ideal m and residue class field
k(m). A is regular if and only if m can be generated by dimA elements.

Definition 1.1.3. Let A be a Noetherian ring and p ⊂ A a prime ideal. We say that A is regular
at p if Ap is a regular local ring. We say that A is regular if it is regular at each prime ideal.

Corollary 1.1.4. Let A be a Noetherian ring and p ⊂ A a prime ideal. Then A is regular at p if
and only if pAp is generated by ht(p) elements.

Proof: With Proposition 1.1.2 we have that A is regular at p if and only if pAp is generated
by dimAp elements. Since ht(p) = dimAp (see e.g. [Liu], p.69: Proposition 5.8. (b)) the claim
follows. �

Proposition 1.1.5. Let A be a regular Noetherian ring and S a muliplicative subset of A. Then
AS is regular.

1
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Proof: Let P be a prime ideal of AS . This ideal is of the form pAS with a prime ideal p of
A disjoint from S (see e.g. [Mat2], p.22: Theorem 4.1. (ii)). We have (AS)pAS = Ap (see e.g.
[Mat2], p.24: Corollary 4.), hence the regularity of AS at P follows from the regularity of A at p.
�

Proposition 1.1.6. Let A be a Noetherian ring. Then A is regular if and only if it is regular at
its maximal ideals.

Proof: Follows with [Mat2], p.24: Corollary 4. �

In the following chapters we often have the situation that we have to check the regularity of
a factor ring A/f , where A is a regular ring and f is an element of A. This ring comes with the
canonical surjection can : A→ A/f . Now, the preimage of a prime ideal of A/f gives us a prime
ideal of A. We can use the following fact to check regularity:

Proposition 1.1.7. Let A/f be a factor ring, where A is a regular ring and f is an element of
A. Furthermore, let P be a prime ideal of A/f and p = can−1P. Then A/f is regular at P if and
only if f 6∈ (pAp)2.

Proof: The proposition follows directly with [Liu], p.129: Corollary 2.12. and [Mat2], p.23:
Theorem 4.2. �

Definition 1.1.8. Let X be a locally Noetherian scheme and x ∈ X a point. We say that X is
regular at x if the stalk OX,x at x of the structure sheaf OX is a regular local ring. We say that
X is regular if it is regular at all of its points. If x is a point of X which is not regular we call it
a singular point of X. A scheme that is not regular is said to be singular .

In case our scheme comes together with a flat morphism we can use the following useful result:

Proposition 1.1.9. Let X and Y be locally Noetherian schemes and g : X → Y a flat morphism.
If Y is regular at y ∈ g(X), and Xy = X ×Y Spec k(y) is regular at a point x, then X is regular
at x.

Proof: See e.g. [Gr1], p.143: Corollaire 6.5.2. �

The proposition above is helpful if the studying of the points of Y and Xy is easy. Anyway, in
the situations we consider later the scheme Y is already regular and we only need to take care of
the scheme Xy. This scheme is a variety over the field k(y). To analyze the points of this variety
we can use the Jacobian criterion:

Theorem 1.1.10 (Jacobian criterion). Let k be a field, X = V (I) a closed subvariety of Ank =
Spec k[T1, . . . , Tn], and F1, . . . , Fr a system of generators of I. For a rational point x ∈ X(k) we
consider the r × n matrix

Jx =
(
∂Fi
∂Tj

(x)
)

1≤i≤r,1≤j≤n
.

Then X is regular at x if and only if rank Jx = n− dimOX,x.

Proof: See e.g. [Liu], p.130: Theorem 2.19. �

Remark 1.1.11. Let us assume the morphism g in Proposition 1.1.9 is faithfully flat , i.e. flat
and surjective (see e.g. [Mi], p10: Proposition 2.7.). If Y and Xy are regular for all y ∈ Y then
X is regular. If X is regular then Y is regular (see e.g. [Gr1], p.143: Corollaire 6.5.2.). If Y is
regular at y and Xy is singular at some x it may nevertheless happen that X is regular at x.
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Definition 1.1.12. Let N ∈ N be a natural number with N ≥ 2 and ζN a primitive N -th root of
unity. We call the scheme

X = Spec Z[ζN ][X,Y ]/(XN + Y N − 1) . (1.1.1)

the (affine) Fermat scheme of exponent N .

Proposition 1.1.13. Let X be the Fermat scheme of exponent N (cf. Definition 1.1.12). Then
X is regular at a prime ideal p ∈ X , if N /∈ p.

Proof: We have a morphism g : X → Y = Spec Z[ζN ] which corresponds to the ring homomor-
phism

g] : Z[ζN ]→ Z[ζN ][X,Y ]/(XN + Y N − 1)

where g] is the composition of the inclusion Z[ζN ] → Z[ζN ][X,Y ] and the canonical surjection
Z[ζN ][X,Y ]→ Z[ζN ][X,Y ]/(XN+Y N−1). The scheme X is integral, Y is a Dedekind scheme, and
g is non-constant, hence the morphism g is flat (see e.g. [Liu], p.137: Corollary 3.10.). We want to
show that X is regular at a prime ideal p ∈ X ifN 6∈ p. To see this we start with a prime ideal p with
g(p) = 0. Then this prime ideal is the image of an element of XQ(ζN ) = Spec Q(ζN )[X,Y ]/(XN +
Y N − 1) with respect to the obvious morphism XQ(ζN ) → X . Since this morphism is flat and
XQ(ζN ) is regular it follows that X is regular at p (see e.g. [Gr1], p.143: Corollaire 6.5.2.). Next,
let p be a prime ideal with g(p) = q, where q is a prime in Z[ζN ]. Since Y is regular, we only have to
concentrate on the fiber Xq = Spec k(q)[X,Y ]/(XN +Y N − 1), where k(q) is the residue field of q
(Proposition 1.1.9). We use the Jacobian criterion to analyze the scheme Xq. For simplicity we may
change to the geometric special fiber X q = Xq×Spec k(q)Spec k(q) = Spec k(q)[X,Y ]/(XN+Y N−1).
Since the inclusion morphism k(q) ↪→ k(q) is faithfully flat, the projection morphism p2 : X q → Xq

is faithfully flat as well. Hence, if X q is regular, then Xq is regular. Now, let us assume that N /∈ q.
Then the rank of the Jacobian matrix J = (NXN−1, NY N−1) is 1 for all points of X q and so X q

is regular (Theorem 1.1.10 and [Liu], p.130: Corollary 2.17.), hence X is regular in p (Proposition
1.1.9). If N ∈ q then the Jacobian matrix is zero and it follows that X q is singular at all points.
In this situation Proposition 1.1.9 does not tell us, if X is regular at p. �

Example 1.1.14. In Proposition 1.1.13 we saw that X given by (1.1.1) is regular at a prime ideal
p, if N /∈ p. Contrary to this, if N ∈ p and g(p) = q, then the whole fiber above q (considered as a
k(q)-variety) is singular, and we do not know anything about X at p. However, it may happen -
like we mentioned before - that p is a regular point of X . We may illustrate this with the similar
scheme

X = Spec Z[X,Y ]/(X3 + Y 3 − 1) .

Consider the maximal ideal m = (X − 2, Y − 2, 3) ∈ X . We can interpret this “closed point” as
an element of X(3). This is a singular point of X(3) according to the Jacobian criterion. On the
other hand we have

X3 + Y 3 − 1 = (X + Y − 4)3 + 3G(X,Y )

with G(X,Y ) = 21 − x2y + 4x2 − xy2 + 8xy − 16x + 4y2 − 16y. If G(X,Y ) ∈ m we have 1 ∈ m,
a contradiction. It follows that G(X,Y ) becomes a unit in

(
Z[X,Y ]/(X3 + Y 3 − 1)

)
m

. Now the
claim follows with Corollary 1.1.4 because m

(
Z[X,Y ]/(X3 + Y 3 − 1)

)
m

= (X − 2, Y − 2).

In Remark 1.1.11 we just mentioned that if we have a surjective flat morphism g : X → Y with
a regular scheme X, then Y is necessarily regular, too. It would be desirable to have a statement
in the opposite direction. In other words, to have a certain kind of morphism with the property
that if Y is regular then it follows that X is regular.

Definition 1.1.15. Let g : X → Y be a morphism that is locally of finite type. We say that g is
unramified at x ∈ X if OX,x/myOX,x is a finite separable field extension of k(y), where g(x) = y
and my is the maximal ideal of OY,y. We say that g is unramified if it is unramified at all x ∈ X.
The morphism g is called étale if it is flat and unramified.
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Proposition 1.1.16. Let g : X → Y be an étale morphism. The following properties are true.

1. dimOX,x = dimOY,g(y) for all x ∈ X.

2. If Y is normal, then X is normal.

3. If Y is regular, then X is regular.

Proof: See e.g. [Mi], p.27: Proposition 3.17. �

Now we are going to describe how we can use regularity to show normality.

Proposition 1.1.17. Let R be a regular integral Noetherian ring and f ∈ R \ R∗. If R/f is
regular in codimension 1 then R/f is normal.

Proof: Since R is a regular ring it is a Cohen-Macaulay ring (see [Liu], p.337 for a definition and
this statement). We want to show that R/f is a Cohen-Macaulay ring, too: Let m ∈ Max (R/f)
and M ∈ Max (R) be the preimage of m. The ideal M is indeed a maximal ideal because the
canonical map R → R/f is a surjection. Since localization commutes with passing to quotients
by ideals, we have

(R/f)m = RM/fRM .

Now f is a regular element of RM and so RM/fRM is a Cohen-Macaulay ring (see [Liu], p.337:
Proposition 2.15. (a)). Since our computation is valid for all maximal ideal of R/f the ring R/f
is Cohen-Macaulay (cf. [Ei], p.452: Proposition 18.8.). The statement follows now with Serre’s
criterion (see [Liu], p.339: Theorem 2.23.). �

1.2 Blowing-ups

In the study of birational morphisms blowing-ups play an important role. In this section we
will summarize the main facts we need about blowing-ups. Most of the material we introduce is
standard and the proofs may be found in [Liu], [EH] and [Ha]. Later we will prove a result which
deals with the concrete situation that will appear in the following chapters frequently. Apart from
this we follow most of the time the book [Liu].

To start with, let A be a Noetherian ring and I an ideal of A. We denote by Ã the graded
A-algebra

Ã =
⊕
d≥0

Id, where I0 := A .

Definition 1.2.1. Let X = SpecA be an affine Noetherian scheme, I an ideal of A, and X̃ =
Proj Ã. The scheme X̃ together with the canonical morphism X̃ → X is called the blowing-up of
X along V (I).

The blowing-up has the following properties.

Lemma 1.2.2. Let A be a Noetherian ring, and let I be an ideal of A.

1. The ring Ã is integral if and only if A is integral.

2. Let B be a flat A-algebra, and let B̃ be the graded B-algebra associated to the ideal IB. Then
we have a canonical isomorphism B̃ ∼= B ⊗A Ã.
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Proof: See e.g. [Liu], p. 318: Lemma 1.2. (c) and (d). �

Now let I = (a1, . . . , ar). We denote by ti ∈ I = Ã1 the element ai considered as a homogeneous
element of degree 1. We have a surjective homomorphism of graded A-algebras

φ : A[X1, . . . , Xr]→ Ã

defined by φ(Xi) = ti. It follows that Ã is isomorphic to a factor ring A[X1, . . . , Xr]/J ; here
J denotes an ideal of A[X1, . . . , Xr]. It may be desirable for certain applications to express the
blowing-up in such a way. Unfortunately it is not always easy to describe the ideal J explicitly.
However if the ideal I is generated by a regular sequence we have a nice description of J .

Lemma 1.2.3. Let I ⊂ A be an ideal which is generated by a regular sequence a1, . . . , ar. Then
Ã ∼= A[X1, . . . , Xr]/J where the ideal J is generated by the elements of the form Xiaj −Xjai for
1 ≤ i, j ≤ r.

Proof: See e.g. [EH], p.172: Proposition IV-25. and p. 173: Exercise IV-26. �

Later on, we will often work with integral rings. Here we have the following situation:

Lemma 1.2.4. Let A be a Noetherian integral ring and I = (a1, . . . , ar) an ideal of A, with ai 6= 0
for all i. The blowing-up X̃ → X = SpecA along V (I) is the union of the affine open subschemes
SpecAi, 1 ≤ i ≤ r, where Ai is the sub-A-algebra

A[
a1

ai
, . . . ,

ar
ai

]

of the field Frac(A) generated by the aj
ai
∈ Frac(A), 1 ≤ j ≤ r.

Proof: See e.g. [Liu], p. 320: Lemma 1.4. �

Lemma 1.2.5. Let A be an integral Noetherian ring, a1, . . . , ar a regular sequence, and I =
(a1, . . . , ar). We have:

1. The ring
R = A[X1, . . . , X̂i, . . . , Xr]/J ,

where J is generated by the elements aj −Xjai with 1 ≤ j ≤ r and j 6= i, is integral.

2. For an element f ∈ A let f denote its image in R. We have

f ∈ Id ⇔ f ∈ (ai)d .

Proof: Since A is integral Ã is integral, too (Lemma 1.2.2 (1)). We know that

Ã ∼= A[X1, . . . , Xr]/J

where J is generated by the elements Xiaj − Xjai for 1 ≤ i, j,≤ r (Lemma 1.2.3). But then,
SpecR is an affine open subset of Proj Ã and therefore integral. This proves the first statement.
For simplicity we assume i = 1. Let f ∈ Id. Then there exists a homogeneous polynomial
F (X) = F (X1, . . . , Xr) ∈ A[X1, . . . , Xr] of degree d with f = F (a) = F (a1, . . . , ar). If we set

f0 =
F (a1, X2a1, . . . , Xra1)

ad1
= F (1, X2, . . . , Xr)

we obviously have f = f0a1
d and therefore f ∈ (a1)d.

Now let f ∈ (a1)d. Furthermore, let n be the biggest integer with f ∈ In. Let us suppose
n < d. Again, we have a homogeneous polynomial F (X) of degree n with F (a) = f . If follows
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that not all coefficients of F (X) are in I because otherwise we would have f ∈ In+1. Now f0 =
F (a1,X2a1,...,Xra1)

an1
is a polynomial in X2, . . . , Xr where not all coefficients of f0 are in I. Again, we

have f = f0a1
n but, since R is integral, the element a1 must divide f0. Then f0 = a1G(X)+H(X)

with ploynomials G(X) ∈ A[X2, . . . , Xr] and H(X) ∈ J . It follows that all coefficients of f0 are
in I, a contradiction. In other words, we have d ≤ n and therefore f ∈ Id. �

So far we have seen, the most comfortable situations arise if we work with an integral scheme
that we blow up along a subscheme associated to an ideal generated by a regular sequence. Un-
fortunately, sometimes we do not have these pleasant circumstances. However, in the situations
that have to be considered later the following theorem will help us to overcome this problem.

Theorem 1.2.6. Let A be an integral Noetherian ring, a1, . . . , ar a regular sequence, and I =
(a1, . . . , ar) a prime ideal. Furthermore, let f ∈ I and n be the biggest integer with f ∈ In. Then

A[X1, . . . , X̂i, . . . , Xr]/J0
∼= A/f [

a1

ai
, . . . ,

ar
ai

]

where J0 is the ideal generated by the aj − Xjai (with 1 ≤ j ≤ r and j 6= i) and a polynomial
f0 with f ≡ f0a

n
i mod J ; here aj denotes the residue class of aj in A/f and J is the ideal from

Lemma 1.2.5.

Proof: For simplicity we assume i = 1. The canonical surjection

ϕ : A[X2, . . . , Xr] −→A/f [
a2

a1
, . . . ,

ar
a1

]

F (X2, . . . , Xr) 7−→F (
a2

a1
, . . . ,

ar
a1

)

(here the bold F indicates that we reduce the coefficients of the polynomial modulo f) induces,
since ai −Xia1 ∈ kerϕ, a surjection

φ : A[X2, . . . , Xr]/J −→A/f [
a2

a1
, . . . ,

ar
a1

]

F (X2, . . . Xr) 7−→F (
a2

a1
, . . . ,

ar
a1

)

where J is the ideal from Lemma 1.2.5. We get the following commutative diagram

A[X2, . . . , Xr]/J
φ // // A/f [a2

a1
, . . . , ar

a1
]

A

OO

can // A/f
� ?

OO
(1.2.1)

Next we want to investigate the kernel of the map φ. Let x = F (X2, . . . Xr) with a polynomial
F (X2, . . . , Xr) of degree m and φ(x) = 0. We have am1 F (X2, . . . , Xr) ≡ µ mod J with an element
µ ∈ A. Since diagram (1.2.1) is commutative and the right arrow in this diagram is injective we
have can(µ) = 0. It follows that µ = λf with a λ ∈ A. Now let n (nλ resp.) be the biggest integer
with f ∈ In (λ ∈ Inλ resp.) and f0 ∈ A[X2, . . . , Xr] (λ0 ∈ A[X2, . . . , Xr] resp.) with a1

nf0 = f
(a1

nλλ0 = λ resp.). We have
a1
mx = fλ = a1

nf0a1
nλλ0 (1.2.2)

in A[X2, . . . , Xr]/J . If we assume that m ≤ n+nλ we can cancel a1
m in equation (1.2.2) (Lemma

1.2.5 (1)) and it follows that x is in the ideal (f0). So if we can show that m > n+nλ is impossible
we have finished our proof. According to (1.2.2) we have λf ∈ Im (Lemma 1.2.5 (2)). Now,
m > n+nλ would implie that the associated graded algebra grI(A) is not integral. But a1, . . . , ar
is a regular sequence and so we have an A/I-algebra isomorphism

Sym(I/I2) ∼= grI(A)

(see [Hu]) with Sym(I/I2) integral since I is a prime ideal. This gives us the contradiction. �
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Remark 1.2.7. The schemes we have to consider later are of the form SpecA/f (at least locally)
with a ring A and a prime element f ∈ A. An ideal of A/f is of the form I/f with an ideal
I = (a1, . . . , ar) ⊂ A. The blowing-up of A/f along V (I/f) will be covered by the spectrum of
the affine rings

A/f [
a1

ai
, . . . ,

ar
ai

] ,

where aj is the residue class of aj in A/f (Lemma 1.2.4). According to Theorem 1.2.6 we can
express these rings explicitly as factor rings. To do this, the only thing we need to know is
the biggest integer n with f ∈ In and polynomials f0,i with f ≡ f0,ia

n
i mod J . There is a

strategy how one can find these quantities: One just needs to find a homogenous polynomial
F (X) ∈ A[X1, . . . , Xr] where not all coefficients are in I and with F (a) = f . Obviously f ∈ In
where n is the degree of F (X). Because a1, . . . , ar is a regular sequence it is a quasi-regular
sequence as well (see [Mat2], p.125: Theorem 16.2.). It follows that if f ∈ In+1 then all coefficients
are in I, a contradiction. So n is the biggest integer with f ∈ In. The f0,i we get now in the same
way like in the proof of Lemma 1.2.5. More explicit, we have

f0,i = f(X1, . . . , Xi−1, 1, Xi+1, . . . , Xr) .

It is possible to extend the construction of blowing-up affine scheme to arbitrary schemes. In
this situation we need to use a coherent sheaf of ideals to construct the blowing-up.

Definition 1.2.8. Let X be a Noetherian scheme, and I be a coherent sheaf of ideals on X.
Consider the sheaf of graded algebras

⊕
d≥0 Id, where Id is the d-th power of the ideal I, and

we set I0 = OX . Then X̃ = Proj
⊕

d≥0 Id is the blowing-up of X with respect to the coherent
sheaf of ideals I. If Y is the closed subscheme of X corresponding to I, then we also call X̃ the
blowing-up of X along Y .

Proposition 1.2.9. Let X be a locally Noetherian scheme, and let I be a coherent sheaf of ideals
on X. Let π : X̃ → X be the blowing-up of X along Y = V (I). Then the following properties are
true:

1. The morphism π is proper.

2. Let Z → X be a flat morphism with Z locally Noetherian. Let Z̃ → Z be the blowing-up of
Z along IOZ ; then Z̃ ∼= X̃ ×X Z.

3. The morphism π induces an isomorphism π−1(X \ V (I))→ X \ V (I). If X is integral, and
if I 6= 0 , then X̃ is integral, and π is a birational morphism.

Proof: See e.g. [Liu], p.322: Proposition 1.12. �

Now let us assume, that X is a locally Noetherian scheme that comes together with a closed
immersion f : X → Z to a locally Noetherian scheme Z. Let J be a quasi-coherent sheaf of ideals
on Z with the property that f(X) is not contained in the center V (J ). Then the blowing-up X̃

of X along I, where I = (f−1J )OX , is a closed immersion of the blowing-up Z̃ of Z along J
(see e.g. [Liu], p.324: Corollary 1.16.). The closed subscheme X̃ ⊆ Z̃ is called the strict transform
of X. Later, the situation just described will appear very often. In our case the scheme X will
be a singular scheme which is a subscheme of a regular scheme Z. We will use a sequence of
blowing-ups of X to get a desingularization of this scheme1. Each of these blowing-ups comes
from a blowing-up of the scheme Z. The blowing-ups of Z will be regular again:

Theorem 1.2.10. Let Z be a regular locally Noetherian scheme, and π : Z̃ → Z be the blowing-up
of Z along a regular closed subscheme Y = V (J ). Then the scheme Z̃ is regular.

Proof: See e.g. [Liu], p.325: Theorem 1.19. �

1We will describe later that a desingularization of an arithmetic surface always exists. To get it, one has to
perform a finite sequence of modifications, where a modification is the normalization of the blowing-up of the
singular locus. However, in the following chapters, whenever we construct regular models of the Fermat curve of
squarefree exponent, we just need to work with blowing-ups and never need to normalize explicitly.
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1.3 Intersection theory for arithmetic surfaces

Definition 1.3.1. An arithmetic surface X is a regular integral scheme of dimension 2 together
with a projective flat morphism f : X → SpecOE , where OE is the ring of integers of a number
field E or a localization of such a ring. Moreover we assume that the generic fiber

XE = X ×SpecOE SpecE

of f is geometrically irreducible2. For each s ∈ SpecOE we define the fiber above s as Xs :=
X ×SpecOE Spec k(s). We have X(0) = XE . Any point s 6= (0) will be called a closed point and
the corresponding fiber Xs a special fiber .

Definition 1.3.2. Let C be a smooth projective geometrically irreducible curve over a number
field E, and f : X → SpecOE an arithmetic surface. We say that X is a regular model of C, if
there is an E-isomorphism between the curves C and XE .

Assumption 1.3.3. For the rest of this subsection we make the assumption that f : X → SpecOE
is an arithmetic surface in the sense of Definition 1.3.1.

Remark 1.3.4. Due to the fact that SpecOE is Noetherian and that f is of finite type it follows
that X is Noetherian as well.

Definition 1.3.5. We denote by Z1(X ) the group of Weil divisors of X , by Cl(X ) the divisor
class group of X i.e. the group of Weil divisors divided by the subgroup of principal divisors
R1(X ), and by Pic(X ) the Picard group of X . Instead of saying “a Weil divisor” we will just say
“a divisor”.3

Remark 1.3.6. Since X is a regular Noetherian integral scheme, the divisor class group Cl(X ) of
X is isomorphic to the Picard group Pic(X ) (see [Liu], p.257: Corollary 1.19 and p.271: Proposition
2.16). Let us denote by f the canonical surjection f : Z1(X )→ Cl(X ) and by g the isomorphism
g : Cl(X ) → Pic(X ). For any divisor D ∈ Z1(X ) we denote the corresponding invertible sheaf
(g ◦ f)(D) by OX (D).

Remark 1.3.7. Since X is a regular Noetherian integral scheme, the group of Weil divisors Z1(X )
of X is isomorphic to its group of Cartier divisors Div(X ) (see e.g. [Liu], p. 271: Proposition
2.16.). A Cartier divisor can by represented by a system {(Ui, fi)i}, where the Ui are open
subsets of X that form a covering of X , fi is the quotient of two regular elements of OX (Ui), and
fi|Ui∩Uj ∈ fj |Ui∩UjOX (Ui ∩ Uj)∗ for every i, j.

Definition 1.3.8. Let D be a divisor and {(Ui, fi)i} its corresponding Cartier divisor (Remark
1.3.7). We say that fi is a local equation of D in Ui. Let x ∈ X be a closed point and Ui one of
the open sets with x ∈ Ui. We denote the image of fi in K(X ) - which is induced by the map
OX (Ui)→ OX ,x - by fx and call it a local equation of D in x.

Remark 1.3.9. A local equation fx of a divisor D in a closed point x is not unique, since it
depends on the system {(Ui, fi)i}, which represents the Cartier divisor. However, if {(Vj , gj)j} is
a different system that represents the same divisor, then on Ui ∩ Vj the elements fi and gj differ
by an element of OX (Ui ∩ Vj)∗, hence gx differs from fx just by a unit of OX ,x.

Remark 1.3.10. If D is effective, then fi ∈ OX (Ui) for all i (see e.g. [Ue], p. 45: PROBLEM
13.), hence fx ∈ OX ,x for all x ∈ X .

2That XE is geometrically irreducible is equivalent to the property that E is algebraically closed in the function
field K(XE) (see e.g. [Liu], p.91: Corollary 2.14. (d)).

3The names and symbols for these groups differ in the literatur. For example the group of Weil divisors is
sometimes denoted by Div(X ) (see e.g. [Ha]) or the divisor class group is called Chow group (see e.g. [La]).
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Definition 1.3.11. Let D, E be effective divisors without common component, x ∈ X a closed
point and fx, gx local equations of D, E in the local ring OX ,x. Then we define the intersection
number ix(D, E) in x as the length ofOX ,x/(fx, gx) as anOX ,x-module. We say that D intersects E
if SuppD∩Supp E 6= ∅. This is equivalent to the existence of closed points x ∈ X with ix(D, E) 6= 0.
We say that the intersection of D and E is transverse in x if ix(D, E) = 1. The symbol ix(D, E)
is bilinear and so we may extend the intersection number to all pairs of divisors of X (just write
D as D+ −D− with D+ and D− effective and then define ix(D, E) := ix(D+, E)− ix(D−, E)) that
have no common components. Now let s ∈ SpecOE be a closed point. The intersection number
of D and E above s is then defined as

is(D, E) :=
∑

x∈X (1)
s

ix(D, E)[k(x) : k(s)] ,

where X (1)
s denotes the set of closed points of Xs and k(x) (k(s) resp.) denotes the residue class

field of x (s resp.). If one of the divisors has support in a special fiber Xs then is′(D, E) = 0 for
all s′ 6= s. If it is clear which s is considered we just write D · E (instead of is(D, E)).

Definition 1.3.12. Let s ∈ SpecOE be a closed point and E a vertical divisor contained in the
special fiber Xs. According to the moving lemma (see e.g. [Liu], p.379: Corollary 1.10) there exists
a principal divisor (f) so that D := E + (f) and E have no common component. Since (f) · E = 0
(see. e.g. [La], p.58: Theorem 3.1.) we may define the self-intersection of E as

E2 := D · E .

Remark 1.3.13. Another possible way to define E2 can be done by Serre’s Tor-formula via
cohomological methods (see e.g. [De] or [SABK], p.11.).

Definition 1.3.14. We set Cl(X )Q = Cl(X ) ⊗Z Q. Obviously Cl(X )Q is a group again. The
difference is that we are now allowed to work with divisors with rational coefficients. We will use
Z1(X )Q and Pic(X )Q for the analog construction for the group of Weil divisors and the Picard
group. The morphisms f, g of Remark 1.3.6 extend to morphisms fQ := f ⊗ idQ, gQ := g ⊗ idQ of
the groups Z1(X )Q,Cl(X )Q and Pic(X )Q. Again, for D ∈ Z1(X )Q we will denote by OX (D) its
image with respect to gQ ◦ fQ in Pic(X )Q.

Remark 1.3.15. We extend the intersection numbers of Definition 1.3.11 to elements of Z1(X )Q.
We will illustrate this with divisors r

sD,
r′

s′ E ∈ Z
1(X )Q, where D and E are pairwise different prime

divisors of X . In this case we set

ix(
r

s
D, r

′

s′
E) :=

r

s

r′

s′
ix(D, E) .

Now, the intersection of arbitrary elements of Z1(X )Q will be defined by using the bilinearity of
the intersection products of Definition 1.3.11.

Lemma 1.3.16. Let f : X → SpecOE be an arithmetic surface and s ∈ SpecOE a closed point.
Then

Xs =
1
m

div(h)

in Z1(X )Q, where Xs = f∗s, h ∈ K(X ) and m ∈ Z.

Proof: We know that the divisor class group Cl(SpecOE) is finite and so we can find a positive
integer m and a rational function g ∈ E = K(SpecOE) with the property that m · s = div(g).
Since X is regular it follows that f∗s = Xs (see [Liu], p.351: Lemma 3.9) and so f∗(m · s) =
m · Xs = div(h) for a h ∈ K(X ). Now, in Z1(X )Q we may divide this equation by m and the
lemma is proven. �
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1.4 Canonical divisors on an arithmetic surface

Let f : X → Y be a quasi-projective local complete intersection of Noetherian schemes. Since f
is quasi-projective there exists a scheme Z together with a regular immersion g : X → Z and a
smooth morphism h : Z → Y so that f = h ◦ g. Since h is smooth and Y is Noetherian Ω1

Z/Y is
locally free (see [Liu], p.222: Proposition 2.5.); here Ω1

Z/Y denotes the sheaf of relative differentials
of degree 1. Now, because g is an immersion it decomposes into a closed immersion ι : X → V
and an open immersion V → Z, where V is an open subscheme of Z. Let J be the ideal sheaf
of V that is associated to the morphism ι. The sheaf CX/Z := ι∗(J /J 2) is called the conormal
sheaf of X in Z. It is a locally free sheaf of X (see e.g. [Liu], p.229: Corollary 3.8.) which is
independent of V .

Definition 1.4.1. We use the notation from above. The invertible sheaf

ωX/Y := det(CX/Z)∨ ⊗OX h∗(det Ω1
Z/Y )

is called the canonical sheaf of X → Y ; here det denotes the top exterior product ∧top and
det(CX/Z)∨ := HomOX (det(CX/Z),OX). It is independent of the decomposition X → Z → Y
(see e.g. [Liu], p.238: Lemma 4.5.).

Remark 1.4.2. Let f : X → SpecOE be an arithmetic surface in the sense of Definition 1.3.1.
Then f is a quasi-projective local complete intersection (see [Liu], p.232: Example 3.18.).

Remark 1.4.3. Since the scheme SpecOE is a locally Noetherian scheme and f is a flat projective
local complete intersection of relative dimension 1, the canonical sheaf is isomorphic to the 1-
dualizing sheaf (see [Liu], p.247: Theorem 4.32.).

Definition 1.4.4. Let f : X → SpecOE be an arithmetic surface in the sense of Definition 1.3.1.
We have ωX/ Spec Z = ωX/ SpecOE ⊗OX f∗ωSpecOE/ Spec Z (see [Liu], p.239: Theorem 4.9. (a)). For
simplicity we just write ωX for ωX/ Spec Z (here we follow the notation of [MB], p.75).

Definition 1.4.5. We call any divisor K of X with OX (K) ∼= ωX/ SpecOE a canonical divisor.
This divisor exists because of Remark 1.3.6.

Remark 1.4.6. By abuse of language we call a divisor K ∈ Z1(X )Q with OX (K) = ωX/ SpecOE in
Pic(X )Q a canonical divisor as well. Given another canonical divisor K′ it follows that K −K′ =
1
s div(f) with a s ∈ Z, and f ∈ K(X ) an element of the field of functions4.

Definition 1.4.7. Let f : X → Y be a morphism of Noetherian schemes and f∗ the induced
group homomorphism f∗ : Pic(Y) → Pic(X ). For F ∈ Pic(Y) we denote by F|X the pullback
f∗F ∈ Pic(X ) and call it the restriction of F to X . Let us now assume in addition that X and Y are
regular and integral, and that f is flat or dominant. In this case we have a group homomorphism
f∗ : Z1(Y) → Z1(X ) (see [Liu], p.261: Lemma 1.33.). Again, for a divisor D ∈ Z1(Y) we denote
by D|X its pullback f∗D ∈ Z1(X ) and call it the restriction of D to X . Notice that we have
OX (D|X ) ∼= OY(D)|X (see [Liu], p. 262: Remark 1.35.). The morphism f∗ induces a morphism
f∗Q : Pic(Y)Q → Pic(X )Q (f∗Q : Z1(Y)Q → Z1(X )Q resp.). We set F|X := f∗QF (D|X := f∗QD resp.)
for a line bundle F ∈ Pic(Y)Q (a divisor D ∈ Z1(Y)Q resp.).

Remark 1.4.8. Let s ∈ SpecOE (we do not postulate that s is a closed point). For each fiber
Xs → Spec k(s) we get a canonical sheaf ωXs/ Spec k(s), and we have the relation ωXs/ Spec k(s)

∼=
ωX/ SpecOE |Xs (see [Liu], p.350: Corollary 3.6. (d)). If s is the generic point we define a canonical
divisor K ∈ Z1(X)Q of X := X ×SpecOE SpecE in the same way we did with the arithmetic
surface i.e. K is a divisor that fulfills OX(K) ∼= ωX/ SpecE . For a canonical divisor K of X it
follows that K|X is a canonical divisor of X, hence K|X and K represent the same class in Cl(X)Q.

4Notice that Cl(X )Q is canonically isomorphic to Z1(X )Q/(R
1(X )⊗Z Q) since Q is flat over Z.
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Now let E ∈ Z1(X ) be a vertical divisor contained in a special fiber Xs and K a canonical
divisor on X . Since any other canonical divisor is rationally equivalent to K the intersection
number K · E depends uniquely on ωX/OSpecE and not on the choice of a representative K. We
have the following important theorem:

Theorem 1.4.9 (Adjunction formula). Let f : X → SpecOE be an arithmetic surface, s ∈
SpecOE a closed point and E ∈ Z1(X ) a vertical divisor contained in the special fiber Xs. Then
we have

2pa(E)− 2 = E2 +K · E , (1.4.1)

where pa(E) is the arithmetic genus of E.

Proof: See [Li] Theorem 3.2. in case K ∈ Z1(X ). If K ∈ Z1(X )Q then there exists a canonical
divisor K′ ∈ Z1(X ) with K −K′ = 1

s div(f) (cf. Remark 1.4.6), hence K fulfills (1.4.1). �

Definition 1.4.10. Let S be a Dedekind scheme of dimension 1. We say that X is a fibered
surface, if X is an integral scheme of dimension 2 together with a projective flat morphism f :
X → S. If X is normal we say that it is a normal fibered surface. For a closed point s ∈ S
let Xs := X ×S Spec k(s). Furthermore, let C be an irreducible component of Xs and ξ ∈ Xs
the generic point of C. Then we define the multiplicity of C in Xs to be the length of OXs,ξ as
OXs,ξ-module.

Proposition 1.4.11. Let N be a squarefree natural number with N ≥ 2 and X the Fermat
scheme (1.1.1) of exponent N . Each fiber above a prime ideal of Z[ζN ] has just one component. If
p ⊂ Z[ζN ] is a prime ideal with N ∈ p, then this component has multiplicity p, where p ∩ Z = (p).
Else, it has multiplicity one.

Proof: If q is a prime ideal of Z[ζN ] with N /∈ q, then

Xq = Spec k(q)[X,Y ]/(XN + Y N − 1) ,

where (XN + Y N − 1) is irreducible in k(q)[X,Y ] (Eisenstein criterion). It is obvious, that
Xq has just one component, namely C = V (XN + Y N − 1). Let us set R = k(q)[X,Y ] and
I = (XN + Y N − 1). Let ξ be the generic point of Xq. Then we have

OXq,ξ = (R/I)(0) = RI/IRI .

It follows
lengthRI/IRI RI/IRI = lengthRI RI/IRI = 1 ,

hence the multiplicity of C is one. If p is a prime ideal of Z[ζN ] with N ∈ p, then

Xp = Spec k(p)[X,Y ]/(XN/p + Y N/p − 1)p ,

where (XN/p + Y N/p − 1) is irreducible in k(p)[X,Y ] and p ∩ Z = (p). Similar to the previous
case, we see, that C = V (XN/p + Y N/p − 1) is the only component of Xp. We set R = k(p)[X,Y ]
and I = (XN/p + Y N/p − 1). In this situation ξ = (XN/p + Y N/p − 1) is the generic point of Xq.
Here we have

OXq,ξ = (R/Ip)I = RI/I
pRI = RI/(IRI)p .

It follows
lengthRI/(IRI)p RI/(IRI)

p = lengthRI RI/(IRI)
p = p ,

hence the multiplicity of C is p.
�
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Definition 1.4.12. Let X be a normal scheme and C a prime divisor i.e. an irreducible subscheme
of codimension 1. The ring OX ,ξ, where ξ is the generic point of C, is a discrete valuation ring.
We denote the valuation by νC and an uniformizing parameter by tC , i.e. an element tC ∈ OX ,ξ
with νC(tC) = 1.

Remark 1.4.13. Let X be a normal fibered surface in the sence of Definition 1.4.10. Another
way of computing the multiplicity of C in Xs is the following: Let ξ be the generic point of C in X .
Then the multiplicity of C is νC(ts) where ts is a uniformizing parameter of OSpecOE ,s (cf. [LL],
p.63).

Remark 1.4.14. Let f : X → SpecOE and s ∈ SpecOE be as in Theorem 1.4.9. Let C1, . . . , Cr
be the irreducible components of Xs, with respective multiplicities d1, . . . , dr. Then we have the
following equality of Weil divisors in X :

Xs =
∑

1≤i≤r

diCi ,

where Xs = f∗s (see. [Liu], p.351: Lemma 3.9. (a)). Furthermore, since the generic fiber XE is
geometrically irreducible it is geometrically connected. Hence, Xs is geometrically connected (see
e.g. [Liu], p.350: Corollary 3.6. (b).

Proposition 1.4.15. Let f : X → SpecOE be an arithmetic surface, s ∈ SpecOE a closed point
and C1, . . . , Cr the irreducible components of Xs, with respective multiplicities d1, . . . , dr. Then the
following properties are true:

1. For all Ci we have Xs · Ci = 0.

2. For all Ci we have

C2
i = − 1

di

∑
j 6=i

djCj · Ci .

3. Furthermore, let K be a canonical divisor of X . We have 2pa(XE)− 2 = K · Xs, where XE

is the generic fiber of X .

Proof: See [Liu], p.384: Proposition 1.21. and p.389: Proposition 1.35. Statement 3. is true for
K ∈ Z1(X )Q as well. This follows by the same arguments as in Theorem 1.4.9. �

Later on it will be important to construct the canonical divisor explicitly. The following
proposition will help us with that.

Proposition 1.4.16. Let f : X → SpecOE be an arithmetic surface and K ∈ Z1(X )Q a divisor
on X which satisfies the adjunction formula (1.4.1) and whose restriction to the generic fiber X
is a canonical divisor of X. Then K is a canonical divisor on X .

Proof: Let K̃ be a canonical divisor on X (we already know that it exists). We want to show
that K̃ ∼ K and so that K is a canonical divisor as well. We denote the horizontal part of the
divisors by K̃h and Kh. Since the restriction to the generic fiber of both divisors is a canonical
divisor of X we have K̃|X = K̃h|X ∼ Kh|X = K|X and so there exists a rational element g ∈ K(X)
and a s ∈ Z with K̃|X − 1

s div(g) = K|X . Because we have K(X) ∼= K(X ), we can interpret g as
an element of K(X ) and so obtain a principal divisor whose restriction to X is div(g). We denote
this principal divisor by div(g) as well. If we now set K′ := K+ 1

s div(g) we get a divisor with the
properties K′ ∼ K and K′h = K̃h. Since we are just interested in K up to rational equivalence we
may assume from now on that the horizontal part of K is the same as the one of K̃.
Let s ∈ SpecOE be a closed point with s ∈ f(Supp K̃v ∪ SuppKv) and Xs the fiber above it; here
K̃v (Kv resp.) denotes the vertical part of K̃ (K resp.). Let K̃s (Ks resp.) be the part of K̃ (K
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resp.) which has support in Xs. Since K̃ and K fulfill the adjunction formula and have the same
horizontal part we have

0 = (K̃s −Ks) · (K̃ − K) = (K̃s −Ks) · (K̃s −Ks) .

and so K̃s − Ks = qXs, where q is a rational number (see [La], p.61: Proposition 3.5.). Now,
according to Lemma 1.3.16, we find m ∈ Z and h ∈ K(X ) so that K̃s −Ks = qXs = q

m div(h) and
so we have K̃s = Ks in Cl(X )Q. If we set K′ := K + q

m div(h) we have just changed the part of K
with support in Xs. Again, we have K′ ∼ K and now K̃h+ K̃s = K′h+K′s. Continuing successively
with the other (finitely many) closed points of f(Supp K̃v ∪ SuppKv) we arrive at a divisor K′′

with K′′ = K̃ and K′′ ∼ K as we claimed at the beginning. �

Remark 1.4.17. The Proposition 1.4.16 uses the fact that in Z1(X )Q the special fibers are
divisors coming from functions (see Lemma 1.3.16). In other words, the canonical divisor in the
sense of Remark 1.4.6 is only defined up to rational multiples of principal divisors and therefore
in particular defined only up to special fibers (in Z1(X )Q).





Chapter 2

Regular and minimal regular
models of curves

Assumption 2.0.18. Unless otherwise specified, we denote by C a smooth projective geometri-
cally irreducible curve over a number field E. Furthermore, we denote by OE the ring of integers
of E.

In this chapter we explain how we can construct a (minimal) regular model for C. Explicitly,
we can use the results of the subsequent sections in the following way: Since C is projective there
exists a natural number n and a closed embedding C ↪→ PnE . Let X be the normalization of the
closure of C in PnOE with respect to the morphism

C ↪→ PnE → PnOE .

Then X is a normal scheme over SpecOE and its generic fiber is E-isomorphic to C. Now, in
Section 2.1 we describe how we can desingularize X . Then, in Section 2.2 we show that we can
construct a minimal regular model out of the regular model we obtained in the previous section
in case the genus of the curve is greater than 0. Finally, in Section 2.3 we demonstrate that all
this work can be done fiber by fiber.

2.1 Resolution of singularities for surfaces

Let C be as in Assumption 2.0.18. Regarding the nice properties of arithmetic surfaces it is
desirable to find a regular model of this curve. We have seen before that it is easy to construct a
normal fibered surface over SpecOE that has a generic fiber isomorphic to C. Next, we could ask
ourselves if we can use this normal fibered surface as a starting point of a construction that yields
us a regular model of this curve. Lipman gave in [Lip1],[Lip2] a positive answer to this question1.
In this section we will review shortly the basic ideas of his proof. We follow the presentation given
by Artin in [Ar1].

Definition 2.1.1. Let X be a normal fibered surface. We call a proper birational morphism
f : X ′ → X with X ′ regular a desingularization (or a resolution of singularities) of X .

Remark 2.1.2. The scheme X is excellent (see e.g. [Liu], p.343: Theorem 2.39. (c) and Corollary
2.40. (c)). This, together with the fact that X is normal, yield that the singular locus Sing(X ),
i.e. the set of points x ∈ X at which X is singular, is a closed subset of codimension 2 (see [Gr1],
(7.8.6) (iii)).

1In fact, the idea of his proof can be applied to arbitrary excellent two-dimensional schemes.

15
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Theorem 2.1.3. Let X be a normal fibered surface. We construct a sequence of surfaces and
proper birational morphisms

. . .→ Xn+1 → Xn → . . .→ X1 → X0 = X , (2.1.1)

where Xi+1 is the normalization of the blowing-up of Xi along Sing(Xi). Then the sequence (2.1.1)
is finite, hence a desingularization of X exists.

Proof: See [Lip1],[Lip2] of alternatively [Ar1]. �

Remark 2.1.4. The proof of the Theorem 2.1.3 (as it is described in [Ar1]) can be done in three
steps: In the first it is shown that we can reduce everything to the situation that X just has
rational singularities. A point x ∈ X is called a rational singularity , if for every proper birational
morphism f : X ′ → X the stalk R1f∗OX ′ at x is zero2: here R1f∗ denotes the first right derived
functor of f∗ and OX ′ the structure sheaf of X ′. In the second step it is shown that everything
can be reduced to the situation of a surface with rational singularities of multiplicity 2, so called
rational double points. The multiplicity of a rational singularity x is defined as the multiplicity
of the local ring OX ,x (cf. [ZS], p. 294). The third step deals with the desingularization of these
singularities.

2.2 The minimal regular model

Again, let C be as in Assumption 2.0.18. Furthermore, let us set S = SpecOE . We have seen in
Section 2.1 that there exists a regular model X → S of C, i.e. X is an arithmetic surface over S and
its generic fiber XE is isomorphic to C. For another arithmetic surface X ′ which is S-birational
equivalent to X its generic fiber is isomorphic to C as well, hence it is a regular model too. In
this section we discuss under which conditions there exists a minimal regular model in a birational
equivalence class. Before we do this we must define what we mean by a minimal regular model.
First of all we make the following observation: If we have a (S-) birational morphism f : X → X ′
of regular models, then f is surjective (it is closed, since it is proper, and it is dominant, since it
is a birational map of integral schemes). Hence, it would make sense to postulate, that, if there
exists a minimal regular model, then any birational morphism to any other regular model should
be an isomorphism. On the other hand, a minimal regular model should be unique. However,
there could be several non-isomorphic models that have the above property, hence we have to
postulate a little bit more.

Definition 2.2.1. We call a regular model X of the curve C a relatively minimal model if every
S-birational morphism f : X → X ′ to another regular model X ′ is necessarily an isomorphism. If
all relatively minimal models in the birational equivalence class of X are isomorphic, we say that
X is a minimal (regular) model of C.

Now, we want to analyze S-birational morphisms of regular models in more detail. It turns
out, that a specific kind of blowing-up-morphisms play an important role in the study of these
morphisms:

Definition 2.2.2. Let X be an arithmetic surface. We call the blowing-up π : X̃ → X of X along
a closed point x a monoidal transformation.

As a blowing-up a monoidal transformation is a birational morphism. It induces an isomor-
phism X̃ \π−1(x) ∼= X \ {x} (Proposition 1.2.9 (3.)), and the preimage of x is isomorphic to P1

k(x)

(see e.g. [Liu], p.325: Theorem 1.19. (b)). Now, the Factorization Theorem states that we can
express any birational morphism of regular models in terms of monoidal transformations:

2Normally one defines a rational singularity x as a point x ∈ X where for each desingularization f : V ′ →
SpecOX ,x we have R1f∗OV ′ = 0 (cf. [La], p. 125). However, since this definition needs the existence of a desingu-
larization Lipman uses the term pseudo-rational singularity in his proof. Once it is shown that the desingularization
exists it turns out that every rational sigularity is a pseudo-rational singularity and vice versa (cf. [Lip2], p. 157:
Remark).
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Theorem 2.2.3 (Factorization Theorem). Let f : X → X ′ be a S-birational morphism of regular
models. Then X is isomorphic to a scheme obtained from X ′ by a finite number of successive
monoidal transformations.

Proof: See e.g. [Chi], p.311: Theorem 2.1 or [Li], p.392: Theorem 1.15. resp. �

Definition 2.2.4. Let X be a regular model. A prime divisor E on X is called an exceptional
divisor if there exists a regular model X ′ and a S-birational morphism f : X → X ′ such that f(E)
is reduced to a point, and that f : X \ E → X ′ \ f(E) is an isomorphism.

Given a regular model X of C the Factorization Theorem tells us that X is a relatively minimal
model if and only if it does not contain any exceptional divisors. It is obvious now that it is very
useful to identify the exceptional divisors of the given model. Even if our model X is not relatively
minimal, the knowledge of the exceptional divisors describes to us the appearance of a relatively
minimal model that is in the same birational equivalence class. Another famous theorem helps us
to identify the exceptional divisors.

Theorem 2.2.5 (Castelnuovo’s criterion). Let X → S be a regular model of C. Let E ⊂ X be
a vertical prime divisor in the fiber above s ∈ S, and k′ = H0(E ,OE). Then E is an exceptional
divisor if and only if E ∼= P1

k′ and E2 = −|k′ : k(s)|.
Proof: See e.g. [Chi], p.315: Theorem 3.1 or [Li], p.399: Theorem 3.9. resp. �

Now we are ready to prove that there exists a relatively minimal model.

Lemma 2.2.6. Let X → S be a regular model of C. Then there exists a relatively minimal model
X rel and a S-birational morphism f : X → X rel.
Proof: This proof is a composition of proofs in [Ar1] and [Liu]. Since an irreducible fiber has
self-intersection 0 (Proposition 1.4.15 (1.)), the exceptional divisors lie in reducible fibers. The
set of points s ∈ S where the fiber of X over s is irreducible is a dense open subset of S because
the generic fiber is geometrically irreducible (see e.g. [Gr2], Proposition (9.7.8)). Since OE is a
Dedekind ring, every closed set of S is finite, hence there are only finitely many reducible fibers.
Let us denote by δ(X ) the number of irreducible components which lie in reducible fibers of X .
According to our previous observations δ(X ) is finite. If we now blow down an exceptional divisor E
of X , the resulting model X ′ will have less irreducible components that lie in reducible fiber, hence
δ(X ′) < δ(X ). We continue this process of blowing down exceptional divisors and obtain a chain
X → X ′ → X ′′ → X ′′′ → . . . of regular models. We have δ(X ) < δ(X ′) < δ(X ′′) < δ(X ′′′) < . . .,
and since δ(X ) was finite the chain of regular models must stop after finitely many steps with a
regular model X rel that has not exceptional divisors. According to the Factorization Theorem
this must be a relatively minimal model. �

Theorem 2.2.7 (Minimal Models Theorem). Let E be a number field, OE its ring of integers,
and S = SpecOE. Furthermore, let C be a smooth projective geometrically irreducible curve over
E with g(C) ≥ 1 and X → S a regular model of C. Then there exists a minimal regular model
Xmin and a S-birational morphism f : X → Xmin.

Proof: See e.g. [Chi], p.313 or [Liu], p.422: Theorem 3.21. �

Remark 2.2.8. In the Minimal Model Theorem the property that g(C) ≥ 1 is used to show that
any two different exceptional divisors of X are disjoint (cf. [Chi], p.324: Lemma 7.2). This and the
Minimal Model Theorem itself is false without the g(C) ≥ 1 hypothesis (see [Liu], p.422: Remark
3.23.)

Corollary 2.2.9. If in the situation of Theorem 2.2.7 the scheme X does not contain any excep-
tional divisor, then it is a minimal regular model of C.

Proof: Since X does not have any exceptional divisor it is a relative minimal model. According
to Theorem 2.2.7 this is already a minimal regular model. �
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2.3 Descent

In this section we sketch some aspects of descent theory which will be useful in our context. For
more background material and details the reader may take a look at [BLR], [Mur][Mi] and [FGI+].
The application of the theory we have in mind is the glueing of schemes. Especially the situation
of glueing schemes along subsets which are not open with respect to the Zariski-topology will be
of interest. At this point the author would like to thank professor Stefan Wewers for the useful
discussions regarding the content of this section.

We consider the following problem: given a morphism of schemes p : S′ → S and a S′-
scheme X ′. Under which conditions does X ′ “descent” to a S-scheme X i.e. is of the form
X ′ = p∗X = X ×S S′ ? It turns out that there are a few necessary conditions that have to
be fulfilled. Let S′′ = S′ ×S S′ and S′′′ = S′ ×S S′ ×S S′. Furthermore let p1 and p2 be the
first and second projection of S′′ onto S′ and pi,j the projections pi,j : S′′′ → S′′ onto the factor
with indices i and j for i, j ∈ {1, 2, 3} with i < j. A covering datum of X ′ is a S′′-isomorphism
ϕ : p∗1X

′ → p∗2X
′. We say that this covering datum is a descent datum if the cocycle condition

p∗1,3 ϕ = p∗2,3 ϕ ◦ p∗1,2 ϕ

is fulfilled. Given a S-scheme X it can be easily verified that we get a canonical decent datum
ψ : p∗1XS′ → p∗2XS′ on the scheme XS′ := X×SS′. Now, a decent datum ϕ for X ′ is called effective
if it is isomorphic to such a canonical one i.e. there exist a S-scheme X and an isomorphism
f : X ′ → XS′ , so that the diagram

p∗1X
′ ϕ //

p∗1f

��

p∗2X
′

p∗2f

��
p∗1XS′

ψ // p∗2XS′

is commutative. In order to solve the problem from the beginning it seems to be obvious that we
have to find a descent datum and a criterion that helps us to decide whether this descent datum is
effective. Before we explain how one can do this we will take a look at our setting from a different
viewpoint.

Since we are working with objects which are (at least locally) affine, we want to explain what
the formalism above means if we interpret it in the language of rings and modules3. So, let
p : R→ R′ be a morphism of rings and M ′ an R′-module. A covering datum for M ′ corresponds
to a R′ ⊗R R′-isomorphism

ϕ : M ′ ⊗R R′ → R′ ⊗RM ′ .
This covering datum fulfills the cocycle condition if the R′ ⊗R R′ ⊗R R′-isomorphisms

ϕ1 : R′ ⊗RM ′ ⊗R R′ → R′ ⊗R R′ ⊗RM ′ ,
ϕ2 : M ′ ⊗R R′ ⊗R R′ → R′ ⊗R R′ ⊗RM ′ ,
ϕ3 : M ′ ⊗R R′ ⊗R R′ → R′ ⊗RM ′ ⊗R R′ ,

fulfill ϕ2 = ϕ1ϕ3; here ϕ1,ϕ2 and ϕ3 are obtained by tensoring ϕ with idR′ in the first, second and
third position. In this situation ϕ is a descent datum, and it is effective if there exists a R-module
M and an isomorphism f : M ′ →M ⊗R R′ so that the diagram

M ′ ⊗R R′
ϕ //

f⊗idR′

��

R′ ⊗RM ′

idR′ ⊗f
��

(M ⊗R R′)⊗R R′
ψ // R′ ⊗R (M ⊗R R′)

3In fact, since we have the glueing of schemes in mind it would be sufficient to work just with rings. However,
descent theory can be used to glue quasi-coherent modules as well and therefore we consider the more general (but
not much more difficult) situation with modules.
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commutes; here the R′ ⊗R R′-isomorphism ψ is given by (m ⊗ r) ⊗ r′ 7→ r ⊗ (m ⊗ r′). In this
situation one can show the following result.

Proposition 2.3.1. Let p : R→ R′ be a faithfully flat ring-homomorphism, M ′ a R′-module and
ϕ a descent datum for M ′. Then ϕ is an effective descent datum.

Proof: See [Mur], p.124: Proposition 7.1.1. �

Let us return now to the situation of the beginning of the S′-scheme X ′ and the morphism
p : S′ → S. To postulate that p is faithfully flat and that the base-schemes are affine is not enough
in order to obtain a similar result to the proposition above (cf. [BLR], Section 6.7.). Hence, in
this situation a descent datum ϕ for X ′ is not necessarily an effective descent datum. However,
if X ′ can be covered by affine open subschemes U ′ which are stable under ϕ (an open subscheme
U ′ is stable under ϕ if ϕ restricts to an isomorphism p∗1U

′ → p∗2U
′) we have the following.

Theorem 2.3.2. Let p : S′ → S be a faithfully flat and quasi-compact morphism of affine schemes.
A descent datum ϕ on an S′-scheme X ′ is effective if and only if X ′ can be covered by affine open
subschemes which are stable under ϕ.

Proof: See [BLR] p.135-136: Theorem 6. (b). �

We consider the situation described in Assumption 2.0.18. We explain now how we can use the
descent theory in order to glue schemes. In fact we are especially interested in the situation which
is relevant for the construction of regular models of C over OE . For this reason, let us assume we
have constructed regular models over a finite number of localizations of OE with respect to prime
ideals. Furthermore we assume that we have constructed a regular model over the open subset
which is given by the complement of the finite set of prime ideals. We want to glue these models
to a regular model over OE . In order to use Theorem 2.3.2 we need to explain how our situation
fits into the setting of the theorem. It seems to be clear that S will be the spectrum of the ring
of integers of E. Next, we need to discover the role of its localizations and the open subset.

Remark 2.3.3. Let E be a number field and R = OE its ring of integers. For an element f ∈ R
we let R0 = OE [f−1] be the localization of R with respect to the set {1, f, f2, . . .}. Let p1, . . . , ps
be the prime ideals of R with f ∈ pi. We denote by Ri the localization of R with respect to the
prime ideal pi for 1 ≤ i ≤ s. Then the ring

R′ = R0 × . . .×Rs

is faithfully flat over the ring R with respect to the obvious morphism a 7→ (a, . . . , a). In fact the
affine scheme S′ = SpecR′ is the disjoint union of the schemes Si = SpecRi, and the scheme-
morphism p : S′ → S = SpecR is faithfully flat and quasi-compact.

Theorem 2.3.4. In the situation of Remark 2.3.3 let C be a SpecE-scheme and for each i let
Yi = SpecAi be an affine Si-scheme, where Yi×Si SpecE is SpecE-isomorphic to C. Then there
exists a S-scheme Y with Y ×S Si ∼= Yi for 0 ≤ i ≤ s.

Proof: Let Y ′ =
∐s
i=0 Yi be the disjoint union of the Yi, hence Y ′ = Spec(A0× . . .×As). Since

Y ′ is affine and the morphism p : S′ → S is faithfully flat and quasi-compact (Remark 2.3.3) a
descent datum ϕ for Y ′ is effective (Theorem 2.3.2). We will construct this descent datum. By
assumption the rings Ai ⊗Ri E are pairwise E-isomorphic to each other. Let us denote by φi,i+1

the isomorphism from Ai⊗RiE to Ai+1⊗Ri+1E for 0 ≤ i ≤ s−1 and by φi,i the identity morphism
of the corresponding ring Ai⊗RiE for 0 ≤ i ≤ s. Then we define for arbitrary i 6= j with |i−j| > 1
morphisms φi,j = φj−1,j ◦φj−2,j−1 ◦ . . .◦φi,i+1 if i < j and φi,j = (φi−1,i ◦φi−2,i−1 ◦ . . .◦φj,j+1)−1

if i > j. Hence, we have defined E-isomorphisms

φi,j : Ai ⊗Ri E → Aj ⊗Rj E
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for all 0 ≤ i, j ≤ s with
φj,k ◦ φi,j = φi,k . (2.3.1)

Next, we are going to construct a covering datum. Such a covering datum corresponds to a family
of Ri ⊗R Rj-isomorphisms

ϕi,j : Ai ⊗R Rj → Ri ⊗R Aj .
If i = j we can define ϕi,i by a⊗ r 7→ r ⊗ a. More interesting is the case i 6= j. Before we define
these isomorphisms we need to make more preparative work. We define ring homomorphisms

ιi,j : Ri ⊗R Rj → E

by ri⊗rj 7→ ri ·rj . Notice, for i 6= j this homomorphism is actually an isomorphism. Furthermore
we define E-isomorphisms φ̃i,j := tj ◦ φi,j , where

tj : Aj ⊗Rj E → E ⊗Rj Aj

is given by a⊗l 7→ l⊗a. Now, for i 6= j we obtain an Ri⊗RRj-isomorphism from Ai⊗Ri (Ri⊗RRj)
to (Ri ⊗R Rj)⊗Rj Aj by the composition

(ι−1
i,j ⊗ idAj ) ◦ φ̃i,j ◦ (idAi ⊗ιi,j) . (2.3.2)

Since Ai⊗Ri (Ri⊗RRj) is Ri⊗RRj-isomorphic to Ai⊗RRj and (Ri⊗RRj)⊗Rj Aj is Ri⊗RRj-
isomorphic to Ri ⊗R Aj we obtain the remaining ϕi,j by composing the morphism (2.3.2) with
these isomorphisms, and therefore obtain a covering datum. In order to show that this covering
datum is a descent datum we have to prove that it fulfills the cocycle condition. To be more
precise, we have to show that for any i, j, k the morphism

Φ(1)
i,j,k ◦ Φ(3)

i,j,k : Ai ⊗R Rj ⊗R Rk → Ri ⊗R Rj ⊗R Ak

coincides with the morphism Φ(2)
i,j,k, where Φ(1)

i,j,k = (idRi ⊗ϕj,k), Φ(3)
i,j,k = (ϕi,j ⊗ idRk) and Φ(2)

i,j,k

is obtained by tensoring ϕi,k with idRj in the second position. Let us show the equality

Φ(2)
i,j,k = Φ(1)

i,j,k ◦ Φ(3)
i,j,k (2.3.3)

for pairwise different i, j, k. Since Φ(l)
i,j,k (l = {1, 2, 3}) is a Ri ⊗R Rj ⊗R Rk-isomorphism it is

enough to show the equality for

ai ⊗ 1⊗ 1 ∈ Ai ⊗R Rj ⊗R Rk ,

where ai ∈ Ai is an arbitrary element. Now, let φi,j(ai ⊗ 1) = aj ⊗ b and φj,k(aj ⊗ 1) = ak ⊗ c,
hence φi,k(ai⊗1) = ak⊗bc according to (2.3.1). Furthermore let ι−1

i,j (b) = ri⊗rj , ι−1
j,k(c) = r′j⊗r′k,

ι−1
i,k (b) = r′′i ⊗ r′′k and ι−1

i,k (c) = r′′′i ⊗ r′′′k . Then we have

Φ(3)
i,j,k(ai ⊗ 1⊗ 1) = ri ⊗ rjaj ⊗ 1

and
Φ(1)
i,j,k(1⊗ aj ⊗ 1) = 1⊗ r′j ⊗ r′kak ,

hence
Φ(1)
i,j,k ◦ Φ(3)

i,j,k(ai ⊗ 1⊗ 1) = ri ⊗ rjr′j ⊗ r′kak .
On the other hand

Φ(2)
i,j,k(ai ⊗ 1⊗ 1) = r′′i r

′′′
i ⊗ 1⊗ r′′kr′′′k ak .

Now, since ri · rj = r′′i · r′′k and r′j · r′k = r′′′i · r′′′k we have ri ⊗ rjr′j ⊗ r′k = r′′i r
′′′
i ⊗ 1 ⊗ r′′kr′′′k and

therefore the equality (2.3.3). The remaining cases follow similar (but even easier). One has just
to remember the basic properties of the tensor as for example ri ⊗ ai = 1 ⊗ riai for an element
ri ⊗ ai ∈ Ri ⊗R Ai and the basic properties of the morphisms involved as for example φ−1

i,j = φj,i.
We leave the remaining verifications to the reader. �
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Corollary 2.3.5. In the situation of Remark 2.3.3 let C be a curve which is defined over the
number field E and for each i let Xi be a regular model of C over the scheme Si = SpecRi. Then
there exists a regular model X over R with X ×S Si ∼= Xi for 0 ≤ i ≤ s.
Sketch of the proof: It is enough to show that there exist affine open coverings

n⋃
j=1

Cj = C , (2.3.4)

and for each Xi
n⋃
j=1

Ui,j = Xi (2.3.5)

so that Ui,j restricts to Cj on the generic fiber i.e. Ui,j ×Si SpecE ∼= Cj . Indeed, if we have
such coverings then we can follow the proof of Theorem 2.3.4 and construct for each j an effective
descent datum ϕj of

U ′j :=
s∐
i=0

Ui,j .

This descent data give us a descent datum ϕ for

X ′ :=
s∐
i=0

Xi ,

and moreover the U ′j form an affine open cover of X ′ which is stable under ϕ. Therefore 2.3.2 will
yield the claim.

Let us construct the Cj and the Ui,j . We choose for each Xi a finite affine open covering
mi⋃
k=1

U
(k)
i = Xi . (2.3.6)

This covering induces by restriction an affine open covering ∪mik=1C
(k)
i of C. Now we set

Cj := C
(j)
0 for 1 ≤ j ≤ m0 ,

Cm0+j := C
(j)
1 for 1 ≤ j ≤ m1 ,

Cm0+m1+j := C
(j)
2 for 1 ≤ j ≤ m2 ,

etc.

In this way we obtain n = m0 + . . .+ms affine open subsets C1, . . . , Cn. Obviously ∪nj=1Cj = C,
hence (2.3.4) is fulfilled. Next, we want to define the Ui,j . Let Xi be one of the arithmetic surfaces
and Cj one of the affine open subsets in the covering of C. If j is of the form

j = m0 + . . .+mi−1 + k (2.3.7)

with 1 ≤ k ≤ mi (in case i = 0 equation (2.3.7) has to be replaced by j = k) then we just set
Ui,j := U

(k)
i , where U (k)

i is the affine open subset in the covering (2.3.6). If this is not the case, it
is not automatically clear that there exists an affine open subset of Xi whose restriction equals Cj .
We know that Cj is just the curve C after removing finitely many points P1, . . . , Pl. Let P1, . . . ,Pl
be the Zariski-closure of P1, . . . , Pl in Xi. If we remove P1, . . . ,Pl from Xi the resulting scheme
will be open. Unfortunately it will not be affine in general. However, one can show that if we
remove in addition the (finitely many) vertical components of Xi which do not intersect any of the
P1, . . . ,Pl then we obtain a scheme Uj ⊂ Xi which is affine and whose restriction to C will be Cj .
In this case we set Ui,j := Uj . Obviously the Ui,j chosen in this way fulfill (2.3.5) since each U

(k)
i

in (2.3.6) is one of the Ui,j . Finally, because of the construction we have Ui,j ×Si SpecE ∼= Cj .
�





Chapter 3

Arakelov Intersection Theory

In Section 1.3 we have introduced a local intersection theory for arithmetic surfaces. Unfortunately,
the theory does not extend to a global intersection theory which is well defined for divisor classes.
To see this, let us consider for example an arithmetic surface X over Spec Z. Then every special
fiber is a principal divisor but the intersection of a horizontal prime divisor with the fiber is
strictly positive (see [Liu], p.388: Proposition 1.30.). The problem is that the scheme X is not
“complete”. This means that it is possible to move an intersection point of two divisors “out to
infinity” (where it then disappears) by choosing other divisors in the divisor classes1. Arakelov
overcame this problem by adding some analytic data which “compactify” the base scheme and
which “complete” the arithmetic surface.

3.1 Arithmetic intersection numbers for
hermitian line bundles

Let E be a number field, OE its ring of integers and f : X → SpecOE an arithmetic surface in the
sense of Definition 1.3.1. We denote the complex valued points X (C) by X∞; this is a compact,
1-dimensional, complex manifold, which may have several connected components. Actually we
have the decomposition

X∞ =
∐

σ:E↪→C
Xσ(C) ,

where Xσ(C) denotes the set of complex valued points of the curve Xσ = X×SpecE,σSpec C coming
from the embedding σ : E ↪→ C.

Definition 3.1.1. A hermitian line bundle L = (L, h) is a line bundle L on X together with a
smooth, hermitian metric h on the induced holomorphic line bundle L∞ = L ⊗Z C on X∞. We
denote the norm associated with h by ||·||. Two hermitian line bundles L,M on X are isomorphic,
if

L ⊗M
−1 ∼= (OX , | · |) ,

where | · | denotes the usual absolute value. The arithmetic Picard group P̂ic(X ) is the group of
isomorphy classes of hermitian line bundles L on X , the group structure being given by the tensor
product (cf. e.g. [BG], p.58: 2.7.3.).

1Let X = ProjB, with a graded ring B = ⊕d≥0Bd. Furthermore let D1 = V+(p1) and D2 = V+(p2) be divisors,
where p1 and p2 are homogenous prime ideals of B. An intersection point P corresponds to a maximal ideal m
with pi ⊂ m (i = 1, 2). It may be possible to find a divisor D3 = V+(p3) which is linear equivalent to D2 and where
the maximal ideal m′ with pi ⊂ m′ (i = 1, 3) fulfills ⊕d>0Bd ⊂ m′. This means the intersection point has moved to
infinity (cf. [Si], p.340: Example 7.1.).
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Definition 3.1.2. Let L be a line bundle on X that has a non-trivial global section l. By definition
there exists an open covering

⋃
Ui = X and OX -isomorphism

ϕi : L|Ui → OX |Ui .

Furthermore, let x ∈ X and Ui an open subset with x ∈ Ui. We denote the image of ϕi(l) in OX ,x
(with respect to the map OX (Ui)→ OX ,x) by lx and call it a local equation of l in x.

Remark 3.1.3. We use the notation from Definition 3.1.2. According to Remark 1.3.6 we can
associate a divisor class to the line bundle L. The property, that L has a non-trivial global section
l is equivalent to the assertion that there exists an effective divisor in this class (see e.g. [Ue], p.
48: Lemma 7.43.). In fact, the system {(Ui, ϕi(l))i} defines such an effective Cartier divisor (Weil
divisor). We denote this divisor by div(l). It follows, that a local equation lx for l in x is nothing
but a local equation of div(l) in x in the sense of Definition 1.3.8.

Definition 3.1.4. Let L, M be two hermitian line bundles on X and l,m non-trivial, global
sections, whose induced divisors div(l) and div(m) on X have no common components. Then we
define the intersection number at the finite places (l.m)fin of l and m by the formula

(l.m)fin :=
∑

x∈X (2)

log ] (OX ,x/(lx,mx)) =
∑

x∈X (2)

ix(div(l),div(m)) log |k(x)|

=
∑

s∈SpecOE

 ∑
x∈X (1)

s

ix(div(l),div(m))[k(x) : k(s)]

 log |k(s)| ,

where lx and mx are local equations of l and m at the point x ∈ X ; here X (2) denotes the set of
closed points of X (X (1)

s denotes the set of closed points of Xs respectively). The sections l and
m induce global sections on L∞ and M∞, which we denote by abuse of notation again by l and
m. We assume that the associated divisors div(l) and div(m) on X∞ have no points in common.
Writing div(l) =

∑
α pαPα with pα ∈ Z and Pα ∈ X∞, we set

(log ||m||)[div(l)] :=
∑
α

pα log ||m(Pα)|| , (3.1.1)

where || · || is the norm which is associated to the metric of M∞. The intersection number at the
infinite places (l.m)∞ of l and m is now given by the formula

(l.m)∞ := −(log ||m||)[div(l)]−
∫
X∞

log ||l|| · c1(M) , (3.1.2)

where the first Chern form c1(M) ∈ H1,1(X∞,R) ofM is given, away from the divisor div(m) on
X∞, by

c1(M) = ddc(− log ||m(·)||2) ;

the integral in (3.1.2) has to be understood as integrating with respect to the extension of c1(M)
to all of X∞. We define the arithmetic intersection number L.M of L and M by

L.M := (l.m)fin + (l.m)∞ . (3.1.3)

For general L and M we can choose line bundles Li and Mj (i, j = 1, 2) for which non-trivial
global sections exist, such that Li has disjoint global sections with Mj for i, j = 1, 2 and

L ∼= L1 ⊗ L⊗−1
2 ,M∼=M1 ⊗M⊗−1

2 . (3.1.4)

We provide Li∞ and Mj∞ with metrics in such a way that the by (3.1.4) induced equivalences
are isometries. Then we define L.M by linearity. The arithmetic self-intersection number of L is
given by L.L.

Theorem 3.1.5 (Arakelov, Deligne et al.). Formula (3.1.3) induces a bilinear, symmetric pairing

P̂ic(X )× P̂ic(X )→ R .



25

Proof: See for example [So]. �

Remark 3.1.6. Theorem 3.1.5 is a generalisation, essentially due to Deligne, of the arithmetic
intersection pairing, invented by Arakelov, where only hermitian line bundles, whose Chern forms
are multiples of a fixed volume form, were considered.

Definition 3.1.7. We have X∞ =
∐
σ:E↪→C Xσ(C). By abuse of notation we call a (1,1)-form ν

on X∞ such that ν =
∏
σ:E↪→C νσ, where each νσ is a volume form, i.e. a positive, normalized, real

(1,1)-form, on Xσ(C), also a volume form on X∞. A hermitian line bundel L is called ν-admissible,
if c1(L) = deg(L)ν. If the genus of X is greater than one, then for each σ we have on Xσ(C) the
canonical volume form

νσcan(z) =
i

2g

∑
j

|fσj |2dz ∧ dz,

where fσ1 (z)dz, . . . , fσg (z)dz is an orthonormal basis of H0(Xσ(C),Ω1) equipped with the natural
scalar product. We write νcan for the induced volume form on X∞.

Definition 3.1.8. Let D be an effective divisor on X . Furthermore let O(D) be the associated
invertible line bundle (Remark 1.3.6). We can endow O(D)∞ with the unique νcan-admissible
metric || · || such that ∫

X∞
log ||1D||νcan = 0

where 1D is the canonical section of O(D)∞. We denote by O(D) the line bundle O(D) together
with this metric.

Remark 3.1.9. Due to Arakelov is the observation that there is a unique metric ‖ ·‖Ar on ωX (cf.
Definition 1.4.4) such that for all sections P of f : X → SpecOE (i.e. P comes from an E-rational
point of the geometric fiber) it holds the adjunction formula

ωX ,Ar.O(P) +O(P)2 = log |∆E|Q|, (3.1.5)

where ωX ,Ar = (ωX , ‖ · ‖Ar). Moreover ωX ,Ar is a νcan-admissible line bundle (see [La] or [Ara], §
4. ).

Remark 3.1.10. In Remark 1.4.17 we saw that a canonical divisor is in particular only defined
up to rational multiples of the special fibers. Because of formula (3.1.5) this indeterminacy will
be deleted by the norm of the section.

We may reformulate the intersection pairing of Theorem 3.1.5, which was defined for elements
of the arithmetic Picard group, as an intersection pairing of elements of the so called arithmetic
Chow group of codimension 1. This is useful because it enables us to switch between these both
points of view and allows us to choose the one which is more adequate in the given situation. In
order to explain this in more detail we start by defining Green’s functions.

Definition 3.1.11. Let D be a divisor of X∞. By a Green’s function for D we mean a function

g : X∞ \ Supp(D)→ R

which satisfies the following condition: If D is represented by a rational function f on an open set
U , then there exists a smooth function α on U such that for P /∈ Supp(D),

g(P ) = − log |f(P )|2 + α(P ) .

Now, let D be a divisor on X . By a Green’s function for D we mean a Greens’s function for D|X∞ .
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Remark 3.1.12. Observe, as a current a green function for D satisfies

ddc gD + δD = ν (3.1.6)

for some smooth volume form ν; here D = D|X∞ . In the original setup of Arakelov only Green’s
functions gAr which satisfy (3.1.6) for a fixed volume form νAr had been considered. Also in
addition gD,Ar = gAr(D, ·) had to be normalized by∫

X∞
gAr(D, z)νAr(z) = 0 .

Definition 3.1.13. An arithmetic divisor D̂ = (D, g) is a divisor D ∈ Z1(X ) together with a
Green’s function g for D. The set of arithmetic divisors forms a group with respect to the obvious
addition

(D, g) + (D′, g′) = (D +D′, g + g′) ,

called the group of arithmetic divisors Ẑ1(X ). For a rational function f ∈ K(X ) we denote its
restriction to K(X∞) by f∞. The function

− log |f∞|2 ,

where | · | is the usual absolute value, is a Green’s function for the principal divisor div(f). The
subgroup of Ẑ1(X ) which consists of the arithmetic divisors d̂iv(f) = (div(f),− log |f∞|2) will
be denoted by R̂1(X ). Finally, the arithmetic Chow group of codimension 1 is defined to be the
quotient

ĈH
1
(X ) = Ẑ1(X )/R̂1(X ) .

For D̂ ∈ D ∈ Z1(X ) we denote the corresponding element in ĈH
1
(X ) by [D̂].

Remark 3.1.14. An arithmetic divisor D+αX∞ (with αX∞ =
∑
σ ασXσ) in the sense of Arakelov

corresponds in the setup of Definition 3.1.13 to the arithmetic divisor (D, gD,Ar +
∑
σ ασ); this

correspondence is compatible with rational equivalence and the product structure described below
in Definition 3.1.15.

Definition 3.1.15. Let Z =
∑
x∈X (2) nx x be a 2-cycle2 on X with integral coefficients i.e. the x

are closed points of X and the nx belong to Z, where only finitely many nx are different from 0.
We define its Arakelov degree by

d̂egZ :=
∑

x∈X (2)

nx log |k(x)| .

Given two Weil divisorsD1,D2 of X which have no common components we define their intersection
2-cycle (which we denote by abuse of notation by D1 · D2) as

D1 · D2 :=
∑

x∈X (2)

ix(D1,D2)x ,

where ix(D1,D2) is the intersection of D1 and D2 in x (cf. Definition 1.3.11). Now, let D̂1 =
(D1, g1) and D̂2 = (D2, g2) be arithmetic divisors, where D1 and D2 have no common components.
On X∞ \ Supp(D1|X∞) we have the (1,1)-form ddc gi. We can extend this to a form of X∞, and
we will denote this extension by ωi. The arithmetic intersection number of D̂1 and D̂2 is defined
as

D̂1 · D̂2 := d̂eg (D1 · D2) +
1
2

(∫
X∞

g2ω1 +
∑
α

pαg1(Pα)

)
, (3.1.7)

2Here we follow the definition of [SABK] which defines a 2-cycle as an element of the free abelian group generated
by the points of codimension 2 (cf. [SABK], p.11). The are several books where they define cycles not by codimension
but by dimension. In these books this element would be called a 0-cycle (cf. e.g. [La], p.52).
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where D2|X∞ =
∑
α pαPα (cf. e.g. [Bo], p.274: (5.8) or [GS], p. 152: (v)). Now, for any elements

z1, z2 ∈ ĈH
1
(X ) we can find D̂1 and D̂2 with z1 = [D̂1] and z2 = [D̂2] so that D1 and D2 have no

common components. We obtain therefore the following result:

Theorem 3.1.16 (Gillet, Soule et al.). The formula 3.1.7 induces a bilinear, symmetric pairing

ĈH
1
(X )× ĈH

1
(X )→ R .

Proof: See for example [GS] or [SABK]. �

Proposition 3.1.17. There is an isomorphism

ĉ1 : P̂ic(X )→ ĈH
1
(X )

mapping the class of L to the class of (div(s),− log ||s||2), for any rational section s of L; here
|| · || is the norm associated with the hermitian metric of L∞. The isomorphism is compatible with
the intersection pairings (3.1.3) and (3.1.7).

Proof: For the first statement see e.g. [SABK], p. 67: Proposition 1. The second statement
follows directly by the definitions. �

Convention 3.1.18. Analog to Section 1.3 and Section 1.4 we will allow rational coefficients
for the groups P̂ic(X ) and ĈH

1
(X ). The corresponding groups will be denoted by P̂ic(X )Q and

ĈH
1
(X )Q. Furthermore, we will extend the arithmetic intersection numbers to these groups.

Unless otherwise specified, we will always assume in the following to work with these groups i.e.
assume to work with rational coefficients.

3.2 Kühn’s formula for ω2
Ar

3.2.1 The formula

Assumption 3.2.1. Let E be a number field and OE its ring of integers. Furthermore, let
Y → SpecOE be an arithmetic surface and write Y for its generic fiber. We fix ∞, P1, ..., Pr ∈
Y (E) such that Y \ {∞, P1, ..., Pr} is hyperbolic. Then we consider an arithmetic surface X →
SpecOE equipped with a dominant morphism of arithmetic SpecOE-surfaces β : X → Y such
that the induced morphism β : X → Y of algebraic curves defined over E is unramified above
Y (E) \ {∞, P1, ..., Pr}3. Let g ≥ 2 be the genus of X and d = deg(β). We write β∗∞ =

∑
bjSj

and the points Sj will be called labeled . Set bmax = maxj{bj}. Divisors on X with support in the
labeled points are called labeled . Finally, a prime p is said to be bad if the fiber of X above p is
reducible4.

Theorem 3.2.2. Let β : X → Y be a morphism of arithmetic surfaces as in Assumption 3.2.1.
Assume that all labeled points are E-rational points and that all labeled divisors of degree zero
are torsion, then the arithmetic self-intersection number of the dualizing sheaf ωX ,Ar (cf. Remark
3.1.9) on X satisfies the inequality

ω2
X ,Ar ≤ (2g − 2)

log |∆E|Q|2 + [E : Q] (κ1 log bmax + κ2) +
∑

p bad

ap log Nm(p)

 , (3.2.1)

3That the morphism β is dominant means that the generic point of X will be mapped to the generic point of Y.
This assures that the induced morphism of the generic fibers gives us a non-constant morphism of algebraic curves.
Since β is projective (see e.g. [Liu], p.108: Corollary 3.32. (e)), the morphism β is closed. In this situation the
property “dominant” is equivalent to “surjective”.

4Notice, that a prime of bad reduction does not need to be a bad prime.
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where κ1, κ2 ∈ R∗+ are positive constants that depend only on Y and the points ∞, P1, ..., Pr.
The coefficients ap ∈ Q are determined by certain local intersection numbers (see formula (3.2.4)
below).

Proof: See [Kü2] Theorem I. �

Remark 3.2.3. The proof of Theorem 3.2.2 uses classical Arakelov theory, as well as generalized
arithmetic intersection theory (see [Kü1]), which allows to use results of Jorgenson and Kramer
[JK2]. The generalized arithmetic intersection theory is an extension of the intersection theory
for hermitian line bundles we introduced in Section 3.1. The difference is that we are now allowed
to work with hermitian, logarithmically singular line bundles i.e. pairs (L, h), where L is a line
bundle on X and h is a hermitian logarithmically singular metric on L∞ with respect to a finite
subset S ⊂ X∞ (cf. [Kü1] Definition 3.1). The isomorphism classes of these line bundles form
the generalized arithmetic Picard group P̂ic(X ,S), and we have a canonical inclusion of P̂ic(X )
in P̂ic(X ,S). It is shown in [Kü1] how to extend the intersection at the infinite places (3.1.2) in
order to work for the hermitian, logarithmically singular line bundles. This induces a bilinear,
symmetric pairing

P̂ic(X ,S)× P̂ic(X ,S)→ R

extending the pairing of Arakelov. In fact, if S = ∅ then the definitions coincide with the definitions
of Section 3.1.

Definition 3.2.4. To keep the notation simple, we write Sj for the Zariski closure in X of a
labeled point Sj . Let K be a canonical divisor of X , then for each labeled point Sj we can find a
divisor Fj such that (

Sj + Fj −
1

2g − 2
K
)
· C = 0 (3.2.2)

for all vertical irreducible components C of X . Similarly we find for each labeled point Sj a divisor
Gj such that also for all C as before(

Sj + Gj −
1
d
β∗∞

)
· C = 0 . (3.2.3)

Notice that we can choose Fj and Gj to have support in the fiber above the bad primes (Lemma
1.3.16). The rational numbers ap in Theorem 3.2.2 are determined by the following arithmetic
intersection numbers of trivially metrised hermitian line bundles∑

p bad

ap log Nm(p) = −2g
d

∑
j

bj O(Gj)2 +
2g − 2
d

∑
j

bj O(Fj)2. (3.2.4)

The number
∑

p bad ap log Nm(p) is called the geometric contribution. The number

[E : Q] (κ1 log bmax + κ2)

the analytic contribution (cf. [Kü2]).

Remark 3.2.5. Notice that pullbacks of divisors are always defined in our situation, since the
morphism is dominant (see e.g. [Liu], p.261: Lemma 1.33.).

Remark 3.2.6. Here we briefly explain why the divisors Fj and Gj exist and how one can
construct them. We illustrate everything with the divisors Gj . If we assume for the moment that
we know already that the divisor Gj as defined in (3.2.3) exists, it is obvious that it can even be
chosen to have support in the fibers above the bad primes, hence in this situation we get

Gj =
∑

p bad

Gj,p ,
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where Gj,p is a vertical divisor with support in the fiber above p. Then(
Sj + Gj,p −

1
d
β∗∞

)
· C = 0 (3.2.5)

for all vertical components C in the fiber above p. On the other hand, if we can choose for each
bad prime p a vertical divisor Gj,p with support in the fiber above p which satisfies (3.2.5) for
all vertical components in the fiber above p, then

∑
p bad Gj,p fulfills (3.2.3). If follows that the

existence of Gj is equivalent to the existence of the Gj,p, and that the computation of Gj can be
done fiber by fiber once we have shown the existence. Now let

Xp = X ×SpecOE Spec k(p) =
rp∑
j=1

djCj

be the special fiber above p. The rank of the intersection matrix Cp = (diCi · djCj)1≤i,j≤rp is
rp − 1 (see. [La], p. 60: Proposition 3.3. and p. 61: Lemma 3.4.). We define the vector
Bp := (B1, . . . , Brp)t, where

Bi :=
(
Sj −

1
d
β∗∞

)
· Ci .

It follows easily that Gj,p as defined in (3.2.5) exists if and only if Bp = Cpx is solvable, where
x ∈ Qrp is a column vector. Now since

(
Sj − d−1β∗∞

)
· Xp = 0 and Ci · Xp = 0 for all i we can

eliminate one row in the augmented matrix (Cp|Bp) by elementary row operations. We will denote
the resulting matrix by (Cp|Bp)′. We have rp − 1 = rankCp ≤ rank(Cp|Bp) = rank(Cp|Bp)′ ≤
rp − 1, hence rankCp = rank(Cp|Bp) which shows that Bp = Cpx is solvable. In a completely
analog way we can show that the divisors Fj exists and that we can make our computation fiber
by fiber i.e. that we can compute the Fj,p in order to get Fj , where Fj,p is the part of Fj which
has support in the fiber above p.

Remark 3.2.7. Since the divisors Gj and Fj are vertical the hermitian line bundles O(Gj) and
O(Fj) have a trivial metric5. Hence, the intersection number at the infinite places of O(Gj)2 and
O(Fj)2 is zero, and so the computation of (3.2.4) becomes a pure algebraic problem.

Remark 3.2.8. With equation (3.2.3) we have to be careful. In general we do not have β∗∞ =
β∗∞. However, we can show the following: Let P ∈ Y be a E-rational point and P the horizontal
divisor obtained by taking the Zariski-closure of P in Y. Since P |Y = P we have (β∗P )|X = β∗P

(see e.g. [Gr3] (21.4.4)) and therefore β∗P − β∗P is a vertical divisor.

3.2.2 A first analysis of the geometric contribution

In [Kü2] a general bound for the quantity (3.2.4) is given. We will give a short review of the facts
related to this bound and discuss whether or not this is a good bound in a given situation.

Let p be a bad prime and

X ×SpecOE Spec k(p) =
rp∑
j=1

djCj

be the decomposition into irreducible components. We set

up = max
i,j
|Ci · Cj |, lp = min

Ci·Cj 6=0
|Ci · Cj | .

Since X ×SpecOE Spec Fp is connected (Remark 1.4.14), there is a minimal number of intersection
points needed to connect any two irreducible components of Xs; we denote this number by cp. We
set

bp =

 cp∑
k=1

(
k∑
l=1

(
up

lp

)l−1
)2

+ (rp − cp − 1)

(
cp∑
l=1

(
up

lp

)l−1
)2
 up

l2p
.

5Some authors write O(Gj) and O(Fj) instead of O(Gj) and O(Fj) to indicate this circumstance.
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Proposition 3.2.9. Let Gj be as in (3.2.3) and Gj,p be the part of Gj which lies in the special
fiber above p, where p is a bad prime. Then we have

− (Gj,p)2 ≤ bp .

In order to discuss the quality of the bound given in Proposition 3.2.9 we need to review in
short the proof of the proposition:

Sketch of the proof: After possibly renumbering the irreducible components and adding
rational multiples of full fibers, we may assume 0 6= Gj,p =

∑rp

k=2 nkCk with all nk ≥ 0 and n1 = 0.
Now, let

W = { Cj} (3.2.6)

be the set of all irreducible components of the fiber above p and set

U0 = {Cj ∈W |nj = 0 }
V0 = W \ U0.

Then we define recursively

Uk+1 = {Cj ∈ Vk | ∃ Ci ∈ Uk with Cj · Ci > 0 }
Vk+1 = Vk \ Uk+1.

Since the fiber above p is connected, the subsets Uk ⊂ W determine a disjoint decomposition of
W . In fact this decomposition has at most cp + 1 disjoint sets. It can be shown that for each
coefficient nj with component Cj ∈ Uk there exists the upper bound

nj ≤
1
lp

k∑
l=1

(
up

lp

)l−1

(3.2.7)

(see proof of Proposition 6.1. in [Kü2]). These bounds can be used to obtain

− (Gj,p)2 = −
rp∑

j,k=2

njnk(Cj · Ck) (3.2.8)

≤ −
rp∑
j=2

n2
j (Cj · Cj) ≤

rp∑
j=2

n2
jup (3.2.9)

≤
∑
Uk⊂W
Uk 6=U0

#Uk ·

(
k∑
l=1

(
up

lp

)l−1
)2

up

l2p
(3.2.10)

≤

cp−1∑
k=1

(
k∑
l=1

(
up

lp

)l−1
)2

+ (rp − cp)

(
cp∑
l=1

(
up

lp

)l−1
)2
 up

l2p
. (3.2.11)

Hence, the proposition is proved. �

In case that Y = P1 and β : X → P1 is a Galois cover6, i.e. the extension of the function fields
K(Y)→ K(X ) is Galois with group G and Y is isomorphic to X/G, then we have

G2
j = F2

j ,

6Since β is surjective it is always a cover (cf. [LL], p.63).
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where Fj is the vertical divisor in (3.2.2) (see [Kü2], p.22: Proposition 6.2.). Hence, in this
situation we have ∑

p bad

ap log Nm(p) = −2
d

∑
j

bj O(Gj)2 ,

and we can use the bp to get a bound for the ap. In general the situation is not that easy. However,
since F2

j ≤ 0, we can find at least a “rough” bound for the ap. We summarize this in the following
theorem:

Theorem 3.2.10. With the notation from above we have

ap ≤ 2gbp .

If in addition Y = P1 and β : X → P1 is a Galois cover, then we have the stronger inequality

ap ≤ 2bp .

Proof: See [Kü2], p.25: Theorem 6.3. �

Remark 3.2.11. If we want to discuss whether or not this is a good bound for (3.2.4) we need to
analyze which input the computation of the bound needs, and we have to compare this with the
necessary input one would need to compute the exact quantity. The given numbers are rp, up, lp
and cp.
We start with an analyzation of Proposition 3.2.9. According to equation (3.2.8) the exact com-
putation of the (Gj,p)2 would imply the knowledge of the coefficients ni and the knowledge of the
intersection matrix of the special fiber. Even if it is likely that we know the intersection matrix
(otherwise it would have been difficult to compute up and ip) the proposition does not use this
information. Hence the intersection numbers −Ci · Cj for i 6= j will be approximated by zero and
the intersection numbers −Ci · Ci by up. This gives the step from (3.2.8) to (3.2.9). Now, the
approximation of the ni will be done dependent on a specific choice of a disjoint decomposition of
the set W (3.2.6). In general we cannot expect that this approximation gives us the correct values
of the ni since neither the intersection matrix nor the intersection of the horizontal divisor Sj (cf.
(3.2.3)) with the special fiber are used (cf. [Kü2], proof of Proposition 6.1.). However, if we could
include the knowledge of the dual graph and the identification of the ni which are zero we could
improve the proposition since we would know the “best decomposition”. In this case we would take
(3.2.10) as the bound of the −(Gj,p)2. Without this we have to assume the “worst decomposition”,
and so we end up with (3.2.11). In order to get the “worst decomposition” we have to assume
that ni 6= 0 for i 6= 1. Furthermore, it is important to assume that the configuration of the special
fiber looks like a chain of length cp that starts with component C1 and ends with a component,
say Ccp , where all the remaining rp− cp components intersect just the component Ccp of the chain.
Notice that just the configuration of the special fiber does not give us the “worst decomposition”
but the position of the component C1 in it. It follows that the quality of the approximation done
in the step from (3.2.10) to (3.2.11) depends basically on three things: the difference between the
real configuration and the configuration described above, the number of the ni which are zero,
and the position of the corresponding components in the special fiber.
Finally, let us discuss the bound of the ap given in Theorem 3.2.10. For sure the quality of
the theorem has to be considered relative to Proposition 3.2.9. However, if we assume that the
proposition gave us a good approximation of the numbers −(Gj,p)2 the significance of the theo-
rem depends strongly on the morphism β : X → Y. If the morphism is a Galois cover, we have
(relative to Proposition 3.2.9) the best approximation. If it is not a Galois cover, it is difficult to
say something about the significance of the results because we do not know the numbers F2

j,p. In
this case the theorem would just give a good result if the numbers F2

j,p are small in comparison
to the numbers G2

j,p.
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3.2.3 Application to Fermat curves and modular curves

In Subsection 3.1 we saw how the Arakelov Intersection Theory extends the regular arithmetic
intersection theory which was introduced in Subsection 1.3, and we explained how to equip the
canonical sheaf with a unique metric in order to fulfill an adjunction formula in this new setting.
The hermitian line bundle we obtained in this way was denoted by ωAr. Considering all the aspects
which are involved in the computation of the self-intersection number of ωAr it seems to be clear
that this cannot be a simple problem. In [Kü2] Kühn computed upper bounds for the number
ω2

Ar where he used his extension of the intersection theory. Theorem 3.2.2 was taken from this
article and is the starting point of our work. The advantage of Theorem 3.2.2 is that it reduces
the computation of the upper bound for ω2

Ar to a pure algebraic problem i.e. the analytic data
of the intersection is already contained in the analytic contribution [E : Q] (κ1 log bmax + κ2) in
(3.2.1).
Now, in order to apply the Theorem we proceed as follows: We have to consider curves X,Y that
are defined over a number field E (where we know how to compute ∆E/Q and |E : Q|), and a
morphism β : X → Y which fulfills the conditions of the theorem, hence all labeled points are
E-rational and all labeled divisors of degree zero are torsion. Then we use the theory developed
in Chapter 1 and 2 in order to construct regular models X , Y and a morphism β : X → Y that
extends the morphism of the curves. Once we have done this we determine the vertical divisors
as defined in (3.2.2) and (3.2.3). Finally, we compute the geometric contribution (3.2.4).

In this work we will consider two types of curves, where we can show that there exists a
morphism to P1 which fulfills the conditions of the theorem: the Fermat curves and the modular
curves. We start with the first type. Let N be a squarefree integer. We consider the Fermat curve

FN : XN + Y N = ZN ,

together with the natural morphism

β : FN → P1 (3.2.12)

given by (x : y : z) 7→ (xN : yN ). Since the morphism β is defined over Q, it is defined over
any number field. It is a Galois covering of degree N2 and, since there are only the three branch
points 0, 1,∞, it is a Belyi morphism. All the ramification orders equal N . In [MR] Murty and
Ramakrishnan give the associated Belyi uniformisation FN (C) \ β−1{0, 1,∞} ∼= ΓN \ H. The
subgroup ΓN of Γ(2) is given by ΓN = kerψ where ψ : Γ(2)→ Z/NZ×Z/NZ maps the generators
of Γ(2) to the elements (1, 0) and (0, 1).

Definition 3.2.12. Let f : X → Y be a morphism of curves. A ramified point, i.e. an element
S ∈ X that maps to one of the branch points of Y , will be called a cusp. Divisors with support
in the cusps having degree zero are called cuspidal divisor .

Convention 3.2.13. Let us consider the situation of Assumption 3.2.1. The cusps are contained
in the preimage of the set {∞, P1, . . . , Pr}. We make for the rest of this work the convention that
the point ∞ has been chosen so that the labeled points are contained in the cusps.

Theorem 3.2.14 (Rohrlich). Let FN be the Fermat curve of exponent N and β : FN → P1 the
morphism in (3.2.12). Then the group of cuspidal divisors modulo the group of principal cuspidal
divisors is a torsion subgroup of Cl(FN ).

Proof: The statement follows from [Ro], p. 101: Theorem 1. �

Corollary 3.2.15. Let FN be the Fermat curve of exponent N and β : FN → P1 the morphism
in (3.2.12). Furthermore, let S ∈ FN be a cusp. Then (2g − 2)S is a canonical divisor.
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Proof: By the Hurwitz formula there exists a canonical divisor with support in the cusps. Then
by Theorem 3.2.14 the claim follows. �

If we now construct a regular model of FN over the ring of integers of a cyclotomic field we
can find a canonical divisor of the following form:

Lemma 3.2.16. Let N be a squarefree odd integer, ζN a primitive N -th root of unity and FN the
Fermat curve of exponent N . Furthermore let F be a regular model of FN over Spec Z[ζN ]. Then
there exists a canonical divisor K ∈ Z1(F)Q = Z1(F)⊗Z Q on F of the form

K = (2g − 2)S + V ,

where S is a horizontal divisor coming from an arbitrary cusp, g = g(FN ) is the genus of FN and
V denotes a vertical divisor having support in the special fibers, that lie above the bad prime ideals.

Proof: It follows from Corollary 3.2.15 that

(2g − 2)S

is a canonical divisor in Cl(FN )Q, where S is any cusp. If we now set

K0 := (2g − 2)S + V0 ,

where S is the Zariski closure of S and V0 is a sum of divisors, having support in the closed fibers,
so that K0 fulfills the adjunction formula, then K0 is a canonical divisor of F (see Proposition
1.4.16). Note that similar arguments, as in the proof of Proposition 1.4.16, assure that V0 exists.
For all primes q ∈ SpecOE not dividing N - in fact these are the good primes - the special fiber
F ×SpecOE Spec k(q) is smooth and so it consists of a single irreducible component. Since the
self-intersection of this fiber is zero (see [La]: p.61: Proposition 3.5.) we can add any multiple
of it to K0 and the resulting divisor still fulfills the adjunction formula. Using this fact we can
transform K0 into a divisor K = (2g− 2)S +V, where V is a vertical divisor having support in the
special fibers above the bad primes. Again, by Proposition 1.4.16, this is a canonical divisor. �

Next, we want to analyze the situation in case of the modular curves. A modular curve Y (Γ) is
a curve constructed as the quotient of the complex upper half-plane by the action of a congruence
subgroup Γ of SL2(Z). The compactification of Y (Γ) is a (compact) modular curve denoted by
X(Γ). For an introduction to the subject of modular curves the reader may take a look at the
books [DS], [Sh] or [Si] CHAPTER 1. For a modular curve X(Γ) there exists a natural morphism
X(Γ)→ X(1) ∼= P1, where the cusps of this morphism are exactly the cusps of the modular curve,
i.e. the points X(Γ) \ Y (Γ). We have the following important theorem.

Theorem 3.2.17 (Manin-Drinfeld). Let Γ be a congruent subgroup of SL2(Z) and X(Γ) the
corresponding modular curve. Then the divisors of X(Γ) of degree 0 and with support in the cusps
are torsion divisors.

Proof: See [El], p. 59: Théorème. �

Remark 3.2.18. We have seen in Theorem 3.2.14 and Theorem 3.2.17 that the Fermat curve
FN together with the morphism β : FN → P1 (3.2.12) and the modular curves X(Γ) with their
natural morphisms X(Γ) → P1 fulfill the condition that the cuspidal divisors (labeled divisor of
degree zero resp.) are torsion. Since the Fermat curve and the morphism β are defined over Q
they are defined over any number field. The cusps of β are Q(ζN )-rational, hence the regular
models and the morphism between them, which extend the curves and their morphism, must be
SpecOE-schemes and a SpecOE-morphism, where OE is the ring of integer of a number field E
with Q(ζN ) ⊆ E. In that case the cusps will be E-rational and the conditions of Theorem 3.2.2 will
be fulfilled. In case of the modular curve we will find number fields as well. Since these number
fields depend on the specific type of modular curve we will not discuss the several situations by
now but we will do this for each case separately the first time they appear.
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In Chapter 4 and Chapter 6 we will work with Fermat curves over cyclotomic fields. In several
situations it will be important to distinguish between the cusps.

Notation 3.2.19. Let N be an odd squarefree integer and FN the Fermat curve of exponent N .
Furthermore we assume that we have fixed a primitive N -th root of unity ζN . Then we denote by
Sxi (Syi , Szi resp.) the cusp (0 : ζiN : 1) ((ζiN : 0 : 1), (ζiN : −1 : 0) resp.). If the properties of the
cusp, which are relevant for our consideration, do not depend on the exponent i we will drop the
subscript and just write Sx (Sy, Sz resp.). For a normal model of the Fermat curve the Zariski-
closure of a cusp gives us a horizontal prime divisor. If there is no danger of confusion which
normal model we consider we will denote by Sxi ,Sx,Syi , etc. the Zariski-closure of Sxi , Sx, Syi ,
etc.



Chapter 4

Fermat curves of prime exponent

In this chapter we apply Theorem 3.2.2 to the regular model whose construction was given by
McCallum. The results of this chapter build the basis for the preprint [CK].

4.1 Regular and minimal regular models of the Fermat curve
of prime exponent

Let p be an odd prime number. In this section we are going to sketch the construction done
by McCallum [Mc] of a regular model and the minimal model of the curve Fp : Xp + Y p = Zp

over S = SpecR, where R is the localization of Z[ζp] with respect to the prime ideal (π); here
π = 1 − ζp, where ζp is a primitive p-th root of unity. The prime ideal (π) lies above p; in fact
since p is totally ramified in Q(ζp) we have p = uπp−1 with an element u ∈ Z[ζp]∗. Let us start
with the model which is given by the normalization of the projective completion of the curve

Xp + Y p = 1 (4.1.1)

in A2
S . Reduction modulo π gives us (X + Y − 1)p = 0, hence the special fiber is non-regular and

consists of one line which has multiplicity p. Moving this line to the X-axis1, equation (4.1.1)
becomes

−uπp−1φ(X,−Y − 1) + uπp−1φ(Y ) + Y p = 0 ,

where

φ(X,Y ) :=
(X + Y )p −Xp − Y p

p

and φ(X) := φ(X, 1). Now, by blowing up the line π = Y = 0, one obtains a model which is
covered by two affine open sets U1 and U2 which will be described in the following. We introduce
new variables W and Z. Setting Z = Y

π , we have

U1 = Spec (R[X,Y, Z]/(Zπ − Y, f1(X,Y ))) (4.1.2)

where
f1(X,Y ) = −uφ(X,−Y − 1) + uφ(Y ) + πZp ;

setting W = π
Y the second affine open set is U2 = Spec (R[X,Y,W ]/(WY − π, f2(X,Y ))) where

f2(X,Y ) = −uW p−1φ(X,−Y − 1) + uW p−1φ(Y ) + Y .

The geometric special fiber U1×SSpec k(π)∪U2×SSpec k(π) of this model consists of a component
L (which is located just in U2 and associated to the ideal of R[X,Y,W ]/(WY −π, f2(X,Y )) which

1To be more precise, we make the coordinate change given by X′ = X and Y ′ = Y + X − 1. After that we
redefine X := X′ and Y := Y ′.

35
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is generated by the images of Y and W with respect to the canonical surjection) and components
Lx, Ly, Lα1 , . . . , Lαr , Lβ1 , . . . , Lβs which intersect L and correspond to the different roots of the
polynomial

φ(X,−1) = −X(X − 1)
r∏
i=1

(X − αi)2
s∏
j=1

(X − βj) ;

we have α ∈ k(π), α 6= 0, 1 and β /∈ k(π). The Lαi appear with multiplicity 2 whereas all other
components with multiplicity 1. There is also a line Lz crossing the point at infinity on L, which
we cannot see in this affine model. There are just singularities left on the double lines Lαi . Blowing
up these singularities we achieve new components Lαi,j crossing Lαi . All components have genus
0. For later applications we define the index set

I := {x, y, z, βj , αi, αi,j , . . .} . (4.1.3)

Let us denote the model we achived by Fp. The scheme Fp is a regular model and its geometric
special fiber Fp ×SpecR Spec k(π) corresponding to (π) has the configuration as in Figure 4.1;
the pair (n,m) indicates the multiplicity n and the self-intersection m of the component ([Mc],
Theorem 3.).

LZ Lβ1 . . . Lβs

. . . L

Lα1,j
Lαr,j

.

.

.

.

.

.

.

.

.

.

.

.

(1,−2) (1,−2)

(1,−2)

(1,−2)

(1,−2)

(1,−2)

(1,−p)

(p,−1)

. . .

. . .
(1,−p)(2,−p)

Lα1 Lαr. . .LX LY

Figure 4.1: The configuration of the geometric special fiber Fp×SpecRSpec k(π).
All components have genus 0. The only component with self-intersection num-
ber -1 is L.

Remark 4.1.1. If we now blow down the curve L (which is the only one with self-intersection
−1), we get the minimal regular model Fminp (cf. Section 2.2).

Remark 4.1.2. A regular model over Z[ζp] can be obtained by glueing the model Fp over S and
the smooth model of Fp over Spec Z[ζp] \ {(π)}. We will denote this model as well by Fp (cf.
Section 2.3).

Remark 4.1.3. The morphism β : Fp → P1 in (3.2.12) induces a morphism β : F0
p → P1

Z[ζp] of
surfaces: here F0

p is the surface over Spec Z[ζp] that is given by the same equation as Fp. Since Fp
was obtained as a sequence of blowing-ups of F0

p the morphism (3.2.12) extends to a morphism of
arithmetic surfaces

β : Fp → P1
Z[ζp] . (4.1.4)

4.2 Explicit geometric contributions to Kühn’s formula for
ω2

Ar in the prime exponent case

Let p be a prime number and Fp the regular model described in Section 4.1.
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Lx LzLy

. . .L

Sx

S
′
x

Sy

Figure 4.2: The divisors Sx,S ′x and Sy, where S ′x is coming from another cusp
of the form (0 : ζjp : 1).

Proposition 4.2.1. To distinguish between the cusp of Fp we use Notation 3.2.19. Let S and
S ′ be horizontal divisors of Fp coming from different cusps S and S′ on Fp. Then the following
properties are true:

1. S does not intersect S ′.

2. If S = Sx ( Sy,Sz resp.), then S only intersects the component Lx ( Ly, Lz resp.) in the
special fiber Fp ×Spec Z[ζp] Spec k(π) (see figure 4.2).

Proof: If we talk about a cusp in the following, we will mean a point of the form (0 : ζip − 1 : 1)
((ζip : ζip − 1 : 1) resp.) which is just Sx (Sy resp.) after the transformation of the line X + Y = 1
to the X-axis (cf. Section 4.1).
Now let S,S ′ be two horizontal divisors on Fp associated with cusps S, S′ and let Q ∈ SuppS ∩
SuppS ′ be a point. We will denote by m the maximal ideal corresponding to Q in an open affine
neighborhood of Q. For each element (ideal resp.) in a ring that corresponds to an open affine
subset of a fiber we will denote by the same symbol the image of this element (ideal resp.) in
the ring that corresponds to the neighborhood of Q. Let us analyze the different situations that
may arise. If the cusps lie above different branch points, for example S = (0 : ζip − 1 : 1) and
S′ = (ζjp : ζjp − 1 : 1), we have X,X − ζjp ∈ m. But then ζjp ∈ m which is impossible since ζjp
is a unit. So let S and S′ lie above the same branch point. Without loss of generality we may
assume S = (ζip : ζip − 1 : 1) and S′ = (ζjp : ζjp − 1 : 1). It is a basic result from number theory
that (ζlp − 1)/π is a unit in Z[ζp] if l 6≡ 0 mod p. We will denote this unit by εl. If Q is a
point in the fiber Fp ×Spec Z[ζp] Spec k(q), where q ∈ Spec Z[ζp], then q ⊆ m. On the other hand
since X − ζip, X − ζjp ∈ m we have ζip − ζjp = ζip(1 − ζj−ip ) = ζipεj−iπ and so (π) ⊆ m. Now if q is
different from (π) and so in particular coprime to (π) we have 1 ∈ m which gives us a contradiction
again. It follows that the only possibility for Q to be in a special fiber is to be in the fiber of bad
reduction Fp ×Spec Z[ζp] Spec k(π). It follows that we can reduce our analyzation to the scheme
Fp → SpecR that was constructed at the beginning of the previous section. Now since S and S′

are Q(ζp)-rational points S and S ′ are reduced to single points P and P ′ in this fiber. A direct
computation shows that

M =
(
X − ζip, π, Z − εi

)
and

M ′ =
(
X − ζjp, π, Z − εj

)
are the ideals corresponding to these points in the open affine subset U1 (cf. Equation (4.1.2)). If
we take a look at the affine open set U1 we can easily verify that M and M ′ are indeed maximal
ideals and that S and S ′ are reduced to these points in the fiber of bad reduction since

π (Z − εi) = Y − ζip + 1
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and π (Z − εj) = Y − ζjp + 1. Now if P = P ′ = Q we have

εi − εj =
ζip − 1
π
−
ζjp − 1
π

=
ζip − ζjp
π

=
ζip(1− ζj−ip )

π
= ζipεj−i .

and so ζipεj−i ∈ m. But since ζipεj−i ∈ Z[ζp]∗, this gives us a contradiction and we have completed
the proof of (i).
Now let S = (0 : ζip − 1 : 1), so S is Sx after the transformation described in Section 4.1. Again
S ∩ Fp ×Spec Z[ζp] Spec k(π) is reduced to a single point P . Let M be the corresponding maximal
ideal, so M = (X,π, Z − εi). The irreducible component Lx corresponds (in U1) to the prime
ideal I = (π,X). Obviously I ⊂M and so P is in the component Lx in the fiber of bad reduction
(remember that the component L does not lie in U1). Since S is only reduced to P it only intersects
Lx. Similar computations for Sy and Sz yield (ii). �

Now we are ready to compute the canonical divisor for the model Fp. In the Lemma 3.2.16
we saw that such a divisor can be constructed with a horizontal divisor S coming from a cusp
and vertical divisors having support in the fibers above the bad primes. Now let Sx be a cusp (cf.
Notation 3.2.19),

Vx = λxLx + λyLy + λzLz (4.2.1)

and

VΣ =
r∑
i=1

 p∑
j=1

λαi,jLαi,j + λαiLαi

+
s∑
j=1

λβjLβj , (4.2.2)

where

λx =
2g − p
p

, (4.2.3)

λy = λz = λβj = λαi,k = −p− 2
p

for all i = 1, . . . , r and j = 1, . . . , s , (4.2.4)

λαi = −2
(
p− 2
p

)
for all i = 1, . . . , r . (4.2.5)

Lemma 4.2.2. The divisor
Kx = (2g − 2)Sx + Vx + VΣ (4.2.6)

is a canonical divisor. In particular Sx + Fx with Fx = 1
(2g−2) (Vx + VΣ) satisfies (3.2.2) (notice

that Sx (Fx resp.) is one of the Sj (Fj resp.) in the notation of Theorem 3.2.2).

Proof: First of all notice that L is not included in Kx, since it is modulo the full fiber just
a linear combination of the other components. From Lemma 3.2.16 we know that there exists a
canonical divisor of the form (4.2.6) with (4.2.1) and (4.2.2) for some coefficients λ. Now, the
whole idea of the proof is the repeating use of the adjunction formula (Theorem 1.4.9) combined
with the fact that the genus of the components of the special fiber is zero (see [Mc], p.59: Theorem
3) in order to approve the choice of the coefficients λ we made in (4.2.3), (4.2.4) and (4.2.5). We
start with the observation

2λαi,j = λαi . (4.2.7)

Indeed, according to the adjunction formula L2
αi,j +Kx ·Lαi,j = 2g(Lαi,j )− 2 and L2

αi,j = −2 (see
previous section) we have

0 = Lαi,j · Kx = Lαi,j ·

(
p∑
l=1

λαi,jLαi,j + λαiLαi

)
= λαi,j (−2) + λαi .
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Now using (4.2.7) and the adjunction formula for Lαi , we get

p− 2 = Lαi · Kx =
p∑
j=1

λαi,j + λαi(−p) =
p

2
λαi − pλαi = −p

2
λαi .

Similar computations yield λy, λz and the λβj . Finally, one observes that

p− 2 = Kx · Lx = (2g − 2)Sx · Lx + λxL
2
x = (2g − 2) + λx(−p)

and with this we finish the first part of our proof. To show that Sx + 1
(2g−2) (Vx + VΣ) fulfills

(3.2.2) is now a simple verification. �

With a view to this lemma we see that the vertical part of two divisors coming from cusps that
lie over different branch points, say Kx and Ky, just differs in the parts Vx and Vy.

We now calculate certain intersection numbers, which will be used later to complete the com-
putations of the coefficient ap in (3.2.4).

Lemma 4.2.3. Let Vx and VΣ be the divisor defined in (4.2.1) and (4.2.2). Then we have

VΣ · VΣ = (p− 3)(−p)
(
p− 2
p

)2

, (4.2.8)

Vx · Vx = (−p)
(

2g − p
p

)2

+ (−2p)
(
p− 2
p

)2

(4.2.9)

and
Vx · VΣ = 0 . (4.2.10)

Proof: In all the computations in this proof we have to remember the coefficients we calculated
in Lemma 4.2.2. Let us start by showing the equation (4.2.8). If we write VΣ = VΣα +VΣβ , where
VΣα denotes the part with support in the Lα and VΣβ the part with support in the Lβ , we have

VΣ · VΣ = VΣα · VΣα + VΣβ · VΣβ ,

since each of the components of VΣα does not intersect any component of VΣβ and vice versa.
From Figure 4.1 we see that each Lβi just intersects itself and that the number of self-intersection
is −p. Since there are s lines Lβi , we have

VΣβ · VΣβ = s(−p)
(
p− 2
p

)2

.

Now let K be a canonical divisor. According to the adjunction formula, we have K ·Lαi,j = 0 and,
since each Lαi,j just intersects the VΣα part of K, the equation 0 = K · Lαi,j = VΣα · Lαi,j . This
yields

VΣα · VΣα = VΣα ·
r∑
i=1

λαiLαi =
r∑
i=1

λαi (VΣα · Lαi) ,

where each addend is

λαi (VΣα · Lαi) = λαi

((
p∑
i=1

λαi,jLαi,j + λαiLαi

)
· Lαi

)

= λαi

(p
2
λαi + λαi(−p)

)
= −p

2
λ2
αi = 2(−p)

(
p− 2
p

)2

.
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Since there are r lines Lαi , we have

VΣ · VΣ = (2r + s)(−p)
(
p− 2
p

)2

= (p− 3)(−p)
(
p− 2
p

)2

Next we show (4.2.9). The lines Lx,Ly and Lz only intersect themselves and each self-
intersection number is −p. Now everything follows from the equations (4.2.3) and (4.2.4).

Finally, equation (4.2.10) follows since SuppVx ∩ SuppVΣ = ∅. �

Lemma 4.2.4. Let
Dx = Sx + Gx , (4.2.11)

where Gx = 1
pLx. Then the divisor Dx is associated with

(
β∗OP1

Z[ζp]
(1)
)⊗ 1

p2 , or in other words

O(Dx)⊗p
2 ∼= β∗OP1

Z[ζp]
(1) ;

here β is the extension of the morphism β : FN → P1 (cf. Remark 4.1.3 ). In particular Sx + Gx
satisfies (3.2.3) since the Zariski-closure ∞ of ∞ in P1

Z[ζp] is associated with OP1
Z[ζp]

(1) (notice that

Sx (Gx resp.) is one of the Sj (Gj resp.) in the notation of Theorem 3.2.2).

Proof: Let Sx be a cusp and Q ∈ P1
Q(ζp) the corresponding branch point. Since Pic(P1

Q(ζp)) ∼= Z
and OP1

Q(ζp)
(1) is a generator of Pic(P1

Q(ζp)) any divisor of degree 1 is associated with OP1
Q(ζp)

(1).
We choose Q to be this associated divisor. Now

β∗Q =
p∑
i=1

pSi ,

where Si runs through the cusps lying above Q (we may assume without loss of generality S1 =
Sx). If follows from Theorem 3.2.14 that β∗Q = p2Sx in Cl(Fp)Q and so p2Sx is associated
with β∗OP1

Q(ζp)
(1). Since β∗OP1

Z[ζp]
(1)|Fp ∼= β∗OP1

Q(ζp)
(1) it is clear that we can find Dx with

O(Dx)⊗p
2 ∼= β∗OP1

Z[ζp]
(1) and Dx = Sx + Gx where Gx is a vertical divisor having support in the

special fiber Fp×Spec Z[ζp] Spec k(π) (Lemma 1.3.16). Now let I be the index set defined in (4.1.3).
Since each component of the special fiber which is different from L is mapped to a single point by
β, we have

(p2Dx) · Li = 0 (∀i ∈ I) (4.2.12)

(see [Liu], p. 398: Theorem 2.12 (a) ). On the other hand we have

p2 = p2Dx · Fp ×Spec Z[ζp] Spec k(π) = p2Dx · pL (4.2.13)

(see [Liu], p. 388: Remark 1.31.). Solving (4.2.12) and (4.2.13) we get Gx = 1
pLx. �

Theorem 4.2.5. Let Kx = (2g−2)(Sx+Fx) be a canonical divisor as in (4.2.6) and Dx = Sx+Gx
a divisor as in (4.2.11), where x indicates that this divisor belongs to a cusp Sx. Then

Fx · Fx = −p
3 − 7p2 + 15p− 8

p2(p− 3)2
,

and
Gx · Gx = −1

p
.



41

Proof: We have F2
x = 1

(2g−2)2

(
V2
x + V2

Σ

)
by Lemma 4.2.2 and Lemma 4.2.3. Now again Lemma

4.2.3 together with g = (p−1)(p−2)
2 yield (after simplifying equations) our first claim. Since Gx =

1
pLx the second claim follows. �

Now, we successfully prepared all the ingredients to calculate some intersection numbers for
the Fermat curves.

Theorem 4.2.6. Let Fp be the regular model of the fermat curve Fp over Spec Z[ζp] which was
constructed in Section 4.1. Then the arithmetic self-intersection number of its dualizing sheaf
equipped with the Arakelov metric satisfies

ω2
Fp,Ar ≤ (2g − 2)

(
log |∆Q(ζp)|Q|2 + [Q(ζp) : Q] (κ1 log p+ κ2) +

p2 − 4p+ 2
p(p− 3)

log p
)
,

where κ1, κ2 ∈ R∗+ are positive constants independent of p.

Proof: In Remark 4.1.3 and Remark 3.2.18 we saw that the morphism β : Fp → P1
Z[ζp] is a

morphism of arithmetic surfaces as in Assumption 3.2.1 and that the induced morphism β : Fp →
P1 fulfills the requirements of Theorem 3.2.2. Since β∗∞ =

∑p
i=1 pSi we have bj = bmax = p. The

morphism β is of degree p2. It follows with Theorem 4.2.5, Lemma 4.2.2 and Lemma 4.2.4 that
in our case the formula (3.2.4) of Theorem 3.2.2 becomes∑

p bad

ap log Nm(p) = ap log Nm(p) = −2gO(Gj)2 + (2g − 2)O(Fj)2

= −2gGj2 log p+ (2g − 2)Fj2 log p

=
2g
p

log p− (2g − 2)
p3 − 7p2 + 15p− 8

p2(p− 3)2
log p

=
p2 − 4p+ 2
p(p− 3)

log p.

�

4.2.1 ω2
Ar for the minimal regular model of Fp

In Section 4.1 we have seen that we get a minimal regular model Fminp of Fp if we blow down
the component L of the special fiber. Let π : Fp → Fminp denote this blowing-down. Then there
exists a vertical divisorW on Fp (with support in the special fiber above the bad prime) such that
π∗ωFminp

= ωFp ⊗O(W). We have

ω2
Fminp ,Ar = π∗ω2

Fminp ,Ar = ω2
Fp,Ar + 2ωFp · O(W) +O(W)2 .

Proposition 4.2.7. With the notation from above we have

2ωFp · O(W) +O(W)2 = (2p2 − 10p+ 13) log p.

Proof: We start by computing the canonical divisor Kminx of Fminp , so the divisor withO(Kminx ) ∼=
ωFminp

. Let L̃u := πLu, where u ∈ I and I is the index set (4.1.3). In order to compute intersections

of the L̃u we need to find their pullback and then compute everything on Fp. We have π∗L̃u = Lu
for u = αi,j and

π∗L̃u = Lu + L
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for all other u. Indeed, let for instance u = x. Then we have π∗L̃x = Lx + µxL, where µx is a
rational number. It follows that 0 = L · π∗L̃x = 1− µx (see [Liu], p.398: Theorem 2.12. (a)).
The canonical divisor on Fminp is given by

Kminx = (2g − 2)(Sx +
1
p
L̃x) .

To verify this we just need to prove that Kminx satisfies the adjunction formula and restricts to
the canonical divisor Kx of the generic fiber Fp (see Proposition 1.4.16). The second property is
obviously fulfilled. In order to verify the adjunction formula one has to check that it is valid for
each irreducible component of the special fiber. We will illustrate this for the component L̃x and
leave the rest to the reader since the computations are very similar. We have

Kminx · L̃x = (2g − 2)(Sx · L̃x +
1
p
L̃2
x)

= (2g − 2)(1 +
1
p

(Lx + L)2)

= p(p− 3)(1− 1
p

(p− 1)) = (p− 3)

(see [Liu], p.398: Theorem 2.12. (c) for the second equality). On the other hand

2pa(L̃x)− 2− L̃2
x = −2− (Lx + L)2 = (p− 3)

and so the formula is valid for L̃x. The pullback of the canonical divisor is

π∗Kminx = (2g − 2)(Sx +
1
p
Lx +

1
p
L)

and an easy computation shows that

W = −λyLy − λzLz −
(2− p)
p

Lx − VΣ +
2g − 2
p

L

fulfills π∗Kminx = Kx +W. It follows that we have to compute (2Kx · W +W2) log p in order to
get 2ωFp · O(W) +O(W)2. Since we have W · (2Kx +W) =W · (Kx + π∗Kminx ) we may compute
W · Kx and W · π∗Kminx . Using the adjunction formula and linearity we get

W · Kx = (p− 2)
(
−λy − λz −

(
2− p
p

))
− VΣ · Kx −

(
2g − 2
p

)

= 3
(

(p− 2)2

p

)
− V2

Σ −
(
p(p− 3)

p

)
= (p− 2)2 − (p− 3) .

On the other hand we have

W · π∗Kminx =W · (p(p− 3)Sx + (p− 3)Lx + (p− 3)L)

= (p− 2)(p− 3)− (p− 2)(p− 3) + (p− 3)2 + (p− 3)W · L

= (p− 3)2 + (p− 3)
(
−λy − λz −

2− p
p

+
p− 2
p

(p− 3)− (p− 3)
)

= (p− 3)2 + (p− 3)(p− 2)− (p− 3)2 = (p− 2)(p− 3)

and so 2ωFp · O(W) +O(W)2 = (2p2 − 10p+ 13) log p. �
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Theorem 4.2.8. Let Fminp be the minimal regular model of the fermat curve Fp over Spec Z[ζp]
from Section 4.1. Then the arithmetic self-intersection number of its dualizing sheaf equipped with
the Arakelov metric satisfies

ω2
Fminp ,Ar ≤ (2g − 2)

(
log |∆Q(ζp)|Q|2 + [Q(ζp) : Q] (κ1 log p+ κ2) +

3p2 − 14p+ 15
p(p− 3)

log p
)
,

where κ1, κ2 ∈ R∗+ are positive constants independent of p.

Proof: This follows directly from Theorem 4.2.6 and Proposition 4.2.7. �

Remark 4.2.9. Since |Q(ζp) : Q| = ϕ(p) = p − 1 it is obvious that - independent of κ1 and
κ2 - the analytic contribution [Q(ζp) : Q] (κ1 log p+ κ2) will dominate the geometric contribution
3p2−14p+15
p(p−3) log p for big prime numbers p.

Corollary 4.2.10. With the notation from the Theorem 4.2.8 we have:

ω2
Fminp ,Ar ≤ (2g − 2)ϕ(p) ((2 + κ1) log p+ κ2) +O(g log p) (4.2.14)

Proof: It is a well known fact that ∆Q(ζp)|Q = (−1)
ϕ(p)

2

(
pϕ(p)

p

)
and [Q(ζp) : Q] = ϕ(p) and so

Theorem 4.2.8 yields

ω2
Fp,Ar ≤ (2g − 2)

(
2 log

pϕ(p)

p
+ ϕ(p) (κ1 log p+ κ2) +

3p2 − 14p+ 15
p(p− 3)

log p
)

= (2g − 2)
(
ϕ(p) ((2 + κ1) log p+ κ2) +

p+ 5
p

log p
)
,

hence we obtain the asymptotic bound we claimed. �





Chapter 5

Some modular curves

In this chapter we describe how to compute the quantities Gj and Fj defined in (3.2.3) and (3.2.2)
in a situation that covers many cases of the modular curves X0(N) and X(N). Regular models
of these curves have been determined by Deligne and Rapoport [DR]; the latter one as well by
Katz and Mazur via moduli interpretation [KM]. We will give a short review of the models we
are interested in, similar to the review given in [Kü2] Chapter 6 and Chapter 9. Furthermore, we
will use our computation in order to apply Theorem 3.2.2 to specific cases (see as well footnote
below).

5.1 The general situation

Assumption 5.1.1. We consider the following situation: Let E be a number field with ring of
integers OE and β : X → Y a morphism of arithmetic SpecOE-surfaces as it is described in
Assumption 3.2.1; we denote by β the induced morphism of the algebraic curves X and Y that are
given by the generic fibers of X and Y. Furthermore, we assume Y to be smooth. Let us assume
for simplicity that there is just one bad prime ideal p ⊂ OE , and that the special fiber of X above
p consists of rp = n+ 1 components C0, . . . Cn of multiplicity one1 with β(Ci) = D, where D is the
special fiber of Y above p; all components intersect each other in a set of points which we will call
the supersingular points (Figure 5.1). The intersections are transverse and we denote the number
of supersingular points by s. We set

D

...
...

C0
C1

Cn−1

Cn

...

−→ β

Figure 5.1: The special fibers above p of the arithmetic surfaces. All compo-
nents C0, . . . , Cn are mapped to the component D and intersect each other in
the supersingular points.

1The cases with multiplicity greater than one can be handled with a little extra work with the same strategy.

45
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d = deg β (5.1.1)

and
di = deg β|Ci = |K(Ci) : K(D)| . (5.1.2)

Notice that we have

d =
n∑
i=0

di ,

since the multiplicity of the Ci is one. Let ∞ ∈ Y be a E-rational ramified point and

β∗∞ =
∑
j

bjSj . (5.1.3)

We assume that the Sj are E-rational and that any divisor of degree zero with support in them is
torsion. For a Sj we denote by Sj the Zariski-closure of Si in X . It follows that in this situation
the Theorem 3.2.2 is applicable.

Remark 5.1.2. Notice that we have now all the information we need to apply Proposition 3.2.9
and Theorem 3.2.10 to get an approximation of the geometric contribution. In this subsection we
are going to compute the geometric contribution explicitly (Theorem 5.1.6 and Theorem 5.1.9).

In order to compute the geometric contribution exactly we start by determining the vertical
divisor Gj defined in (3.2.3). The divisor Gj has to satisfy

d(Sj + Gj) · Ci = β∗∞ · Ci

for 0 ≤ i ≤ n. On the other hand, we have

β∗∞ · Ci =∞ · diD = di

for 0 ≤ i ≤ n (see e.g. [Liu], p.398: Theorem 2.12. (b)). Hence, we are searching for a vertical
divisor Gj , which satisfies

d(Sj + Gj) · Ci = dj (5.1.4)

for all 0 ≤ i ≤ n.
Given a column vector λ = (λ1, . . . , λn)t ∈ Qn, we set

Cλ := λ1C1 + . . .+ λnCn .

Since the adding of a rational multiple of the whole fiber gives us another divisor which satisfies
this equation, we can make the ansatz

Gj = Cλ ; (5.1.5)

hence, we do not require C0. We know, that Sj just intersects one of the Ci and that this intersection
is transverse (see e.g. [Liu], p.388: Remark 1.31. and Corollary 1.32.). Let us assume that Ck is
this component. To indicate this dependence we will introduce a second subscript and write Gj,k.
Equation (5.1.4) becomes now

d(Sj + Gj,k) · Ci = dj (5.1.6)

for all 0 ≤ i ≤ n. Solving this equation is nothing more than solving

Cλ = Dk , (5.1.7)

where C ∈ Qn×n is given by

C =

−ns s
. . .

s −ns

 ,
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and Dk = D − ek ∈ Qn, where

D =


d1
d
...
dn
d

 ,

e0 is the zero vector, and ek (for k 6= 0) is the column vector which has a 1 in the k-th position
and zeros everywhere else (notice that C is just the intersection matrix). If we add all the rows of
the augmented matrix (C|Dk) it can be easily seen that

−sλ1 − . . .− sλn =
∑n
i=1 di
d

− 1 = −d0

d
,

hence a solution λ of (5.1.7) solves (5.1.6) for j = 0 as well and is therefore indeed a solution of
(5.1.4) for all j.

Notation 5.1.3. Analog to our way of redefining the vertical divisor Gj,k we have to redefine the
ramification indices of the Sj : We will write bj,k if Sj intersects Ck (this notation is well defined,
since each Sj just intersects one of the components Ci).

Lemma 5.1.4. We have detC = (n+ 1)(n−1)(−s)n, hence (5.1.7) is uniquely solvable. Let us set

W =
n∑
i=1

di
d
, (5.1.8)

ak = − 1
(n+ 1)s

(We− e+Dk) ,

for k 6= 0, and

a0 = − 1
(n+ 1)s

(We+D) ,

where e ∈ Qn is the column vector which has everywhere 1 as entry. Then a solution of (5.1.6) is
given by Gj,k = Cak.

Proof: The formula for detC is a simple linear algebra exercise. That (5.1.7) is uniquely solvable
follows since detC 6= 0 or for example by Remark 3.2.6. We verify the second statement: Let
k 6= 0. Then

Cak = − 1
(n+ 1)

−n 1
. . .

1 −n

 ((W − 1)e+Dk)

= − 1
(n+ 1)

((1−W )e+

−n 1
. . .

1 −n

Dk)

= − 1
(n+ 1)

−(n+ 1) 0
. . .

0 −(n+ 1)

Dk = Dk ,

which proves that our choice of ak is in fact the solution. The verification for k = 0 follows in a
similar manner. �
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Corollary 5.1.5. We have

G2
j,k = atkCak = − 1

(n+ 1)s

(
W 2 +

n∑
i=1

(
di
d

)2
)

+
2

(n+ 1)s

(
W +

dk
d
− 1
)
,

for k 6= 0 and

G2
j,0 = at0Ca0 = − 1

(n+ 1)s

(
W 2 +

n∑
i=1

(
di
d

)2
)

;

the row vector atk denotes the transpose of ak, and W is defined by (5.1.8).

Proof: The first equality follows with (5.1.5) and the fact that C is the intersection matrix. Let
k 6= 0. Then the second equality follows, because

atkCak = atkDk

= − 1
(n+ 1)s

 n∑
i=1
i6=k

(
(W − 1)

dj
d

+
(
dj
d

)2
)

+ (W − 1)
dk
d
− 2

dk
d

+
(
dk
d

)2

−W + 2


= − 1

(n+ 1)s

(
W 2 −W +

n∑
i=1

(
di
d

)2

− 2
dk
d
−W + 2

)
.

Again, a similar computation gives us the result for the k = 0 case. �

The special fiber X ×SpecOE Spec k(p) is not smooth over Spec k(p). Hence we cannot assume
that the Cartier divisors are the Weil divisors in this situation. However the curves Ci are smooth
and we have the following diagram of regular schemes

Ci

β|Ci
��

p|Ci
// X

β

��

Y ×SpecOE Spec k(p)
p1

// Y

(5.1.9)

where β|Ci is the restriction of β to the component Ci, p1 is the first projection, and p|Ci is the
composition p|Ci = p1 ◦ ι of the closed immersion ι : Ci → X ×SpecOE Spec k(p) followed by the
first projection p1 : X ×SpecOE Spec k(p)→ X . Pullbacks with respect to β|Ci exist (see e.g. [Liu],
p.261: Lemma 1.33. (2)). The pullback p∗1∞ ((p|Ci)∗β∗∞ resp.) exists, because ∞ (β∗∞ resp.)
does not contain any irreducible component of the special fiber of X (cf. [Liu], p.260: Lemma 1.29
and p.261: Remark 1.30.). Since there are no vertical divisors in the special fiber of X which are
mapped to a closed point of Y we have β∗∞ = β∗∞ (cf. Remark 3.2.8). It follows that (p|Ci)∗β∗∞
exists an we have

(β|Ci)∗p∗1∞ = (p|Ci)∗β∗∞ (5.1.10)

(see e.g. [Gr3] (21.4.4)). The pullback with respect to p1 (p|Ci resp.) of a horizontal divisor that
came from an E-rational point is just a point of the special fiber with ramification index one (see
e.g. [Liu], p.381: Theorem 1.12. (d) and p.388: Corollary 1.32.). Let x = p∗1∞ be this point.
Then it follows by (5.1.10) that

(β|Ci)∗x =
∑
j

Sj ·Ci=1

bj,isj ,



49

where sj = (p|Ci)∗Sj . Combining this with (5.1.2) we get

di =
∑
j

Sj ·Ci=1

bj,i . (5.1.11)

Theorem 5.1.6. In the situation of Assumption 5.1.1 we have∑
j

bjG2
j =

d

(n+ 1)s

(
n∑
i=0

(
di
d

)2

− 1

)
,

where the bj are given by (5.1.3) and the Gj are the vertical divisor of the special fiber above the
bad prime p which are defined by (5.1.4) ( (3.2.3) resp.).

Proof: We have ∑
j

bjG2
j =

n∑
i=0

∑
j

Sj ·Ci=1

bj,iG2
j,i

(Notation 5.1.3). It follows by Corollary 5.1.5 and (5.1.11) that

n∑
i=0

∑
j

Sj ·Ci=1

bj,iG2
j,i =

n∑
i=0

− di
(n+ 1)s

(
W 2 +

n∑
i=1

(
di
d

)2
)

+
n∑
i=1

2di
(n+ 1)s

(
W +

di
d
− 1
)

= − d

(n+ 1)s

(
W 2 +

n∑
i=1

(
di
d

)2
)

+
n∑
i=1

2di
(n+ 1)s

(
W +

di
d
− 1
)

= − d

(n+ 1)s

n∑
i=0

(
di
d

)2

+
d

(n+ 1)s

(
2d0

d
− 1
)

+
n∑
i=1

2di
(n+ 1)s

(
di − d0

d

)

=
d

(n+ 1)s

n∑
i=0

(
di
d

)2

− d

(n+ 1)s
,

where we used a few times W = 1− d0
d (which is equivalent to

∑n
i=0 di = d). �

Next we want to compute the Fj defined in (3.2.2). The vertical divisor we are looking for has
to fulfill

(2g − 2)(Sj + Fj) · Ci = K · Ci (5.1.12)

for 0 ≤ i ≤ n, where K is a canonical divisor of X and g is the genus of the curve X. Let us assume
that the horizontal divisor Sj intersects the component Ck. Analog to the previous situation we
make the ansatz

Fj,k = Cλ , (5.1.13)

where we changed - as we did in the case of the Gj,k - the notation of the Fj to Fj,k (now our
notation indicates the cusp Sj we used and the vertical divisor Ck which is intersected by Sj). Let
us set

Ki =
K · Ci

(2g − 2)
. (5.1.14)

Notice that
∑n
i=0Ki = 1, since K · (C0 + . . .+ Cn) = 2g − 2. Then the problem of solving

(2g − 2)(Sj + Fj,k) · Ci = K · Ci (5.1.15)

for 0 ≤ i ≤ n may be reformulated as finding the vector

λ =

λ1

...
λn
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which satisfies
K − ek = Cλ ,

where C and ek are defined as before and K = (K1, . . . ,Kn)t. We denote by Kk the column vector
K − ek.

Lemma 5.1.7. Let us set

V =
n∑
i=1

Ki , (5.1.16)

and
ak = − 1

(n+ 1)s
(V e− e+Kk) ,

for k 6= 0, and

a0 = − 1
(n+ 1)s

(V e+K) ,

where e ∈ Qn is the column vector which has everywhere 1 as entry, and the Ki are defined by
(5.1.14). Then a solution of (5.1.15) is given by Fj,k = Cak.

Proof: The proof is totally analog to the one of Lemma 5.1.4. �

Corollary 5.1.8. We have

F2
j,k = atkCak = − 1

(n+ 1)s

(
V 2 +

n∑
i=1

K2
i

)
+

2
(n+ 1)s

(V +Kk − 1) ,

for k 6= 0 and

F2
j,0 = at0Ca0 = − 1

(n+ 1)s

(
V 2 +

n∑
i=1

K2
i

)
;

the row vector atk denotes the transpose of ak, V and Ki are given by (5.1.16) and (5.1.14).

Proof: The proof is the same as in Corollary 5.1.5, one just has to interchange the symbols. �

Theorem 5.1.9. In the situation of Assumption 5.1.1 we have∑
j

bjF2
j = − d

(n+ 1)s

n∑
i=0

K2
i +

2
(n+ 1)s

n∑
i=0

diKi −
d

(n+ 1)s
,

where the bj are given by (5.1.3) and the Fj are the vertical divisor of the special fiber above the
bad prime p which are defined by (5.1.12) ( (3.2.2) resp.).

Proof: It follows by Corollary 5.1.8 and equation (5.1.11) that∑
j

bjF2
j =

n∑
i=0

∑
j

Sj ·Ci=1

bj,iF2
j,i

= − d

(n+ 1)s

(
V 2 +

n∑
i=1

K2
i

)
+

n∑
i=1

2di
(n+ 1)s

(V +Ki − 1)

= − d

(n+ 1)s

n∑
i=0

K2
i +

d

(n+ 1)s
(2K0 − 1) +

n∑
i=1

2di
(n+ 1)s

(Ki −K0)

= − d

(n+ 1)s

n∑
i=0

K2
i +

2d
(n+ 1)s

K0 −
d

(n+ 1)s
+

n∑
i=1

2di
(n+ 1)s

Ki +
2(d0 − d)
(n+ 1)s

K0 ,

where we used V = 1−K0. �
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Corollary 5.1.10. If all the genera of the Ci are the same, then∑
j

bjF2
j = − dn

(n+ 1)2s
,

where the bj are given by (5.1.3) and the Fj are the vertical divisor of the special fiber above the
bad prime p which are defined by (5.1.12) ( (3.2.2) resp.).

Proof: Let us set gC := g(Ci). By the adjunction formula 1.4.9 we have

2g − 2 = K · (C0 + . . .+ Cn) = (n+ 1)(2gC − 2 + ns) ,

hence
Ki =

2gC − 2 + ns

(n+ 1)(2gC − 2 + ns)
=

1
n+ 1

.

Substitution of this into the equation of Theorem 5.1.9 gives the claim. �

Remark 5.1.11. Since the computation of O(Gj)2 and O(Fj)2 in (3.2.4) can be done fiber by
fiber (cf. Remark 3.2.6) we can easily extend the situation of Assumption 5.1.1 and its associated
results (Theorem 5.1.6 and Theorem 5.1.9) to situations with more than one bad prime.

5.2 The minimal regular model of X0(N)

Now we are going to apply the results of the previous subsection to the modular cuver X0(N) for
certain values of N .

Remark 5.2.1. Let N be a squarefree natural number coprime to 6 which has at least two
prime factors, and whose prime factors p fulfill p ≡ 1, 3 or 9 mod 12. Then it is shown in [Kü2]
Chapter 7 that the minimal regular model X0(N) of X0(N) together with the natural morphism
β : X0(N)→ X (1) fulfills the requirement of Assumption 5.1.1 (see also Remark 5.1.11). In fact,
with the notation from Assumption 5.1.1 we have d =

∏
p|N (p+ 1), s = d p−1

12(p+1) , n = 1, d0 = pd
p+1

and d1 = d
p+1 .

Lemma 5.2.2. In the situation of Remark 5.2.1 we have∑
j

bjO(Gj)2 = −12
∑
p|N

p

p2 − 1
log p

and ∑
j

bjO(Fj)2 = −3 logN −
∑
p|N

6
p− 1

log p ,

where Gj and Fj are the vertical divisors defined in (3.2.3) and (3.2.2).

Proof: The morphism β fulfills the conditions of Theorem 3.2.2 by the discussion above. We
have

O(Gj)2 =
∑
p|N

O(Gj,p)2, O(Fj)2 =
∑
p|N

O(Fj,p)2 , (5.2.1)

where Gj,p (Fj,p resp.) denotes the part of the vertical divisor Gj (Fj resp.) which has support in
the special fiber above p. Let us fix a bad prime p. Then by Theorem 5.1.6 it follows

∑
j

bjO(Gj,p)2 =
6(p+ 1)
p− 1

((
p

p+ 1

)2

+
(

1
p+ 1

)2

− 1

)
log p

=
−12p
p2 − 1

log p .
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Since C0 and C∞ are copies of the same curve, their genus is the same. Hence, we can apply
Corollary 5.1.10 and get ∑

j

bjO(Fj,p)2 = −12(p+ 1)
22(p− 1)

log p

= −3(p+ 1)
p− 1

log p .

Now, we use equation (5.2.1) and sum up over the bad primes. Simplifying the derived equations
yields our claim. �

Remark 5.2.3. The results of Lemma 5.2.2 are not new. They have been computed already by
U. Kühn in [Kü2] (Lemma 7.3. and Lemma 7.4). In his paper U. Kühn computes the quantities∑
j bjO(Gj)2 and

∑
j bjO(Fj)2 for more values of N (in this case vertical components can appear

which are mapped to a point by β). Unfortunately our approach does not attack these cases. Our
approach is a generalization of the computation of the other cases. The advantage is that it can be
applied to other modular curves whose special fiber of the (minimal) regular models looks similar
to the one of X0(N) for the values of N in Remark 5.2.1.

Remark 5.2.4. In [Kü2] the results are used to compute an upper bound for ω2
X0(N),Ar. It leads

to the bound
ω2
X0(N),Ar ≤ (16πκ◦ − 1)g log(N) +O(g) ,

where κ◦ ∈ R∗+ is an absolute constant independent of N and g is the genus of X0(N).

5.3 A regular model of X(N)

Let N = pkm, where p > 3 is a prime and m 6= 1 is a natural number coprime to 6p. The modular
curve X(N) is defined over the number field Q(ζN ); again, ζN denotes a primitive N -th root of
unity. Its complex valued points correspond to the compact Riemann surface Γ(N)\(H ∪ P1(Q)),
where

Γ(N) =
{(

a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 0
0 1

)
mod N

}
.

The regular model X (N) over Spec Z[ζN ] determined by Katz and Mazur can be described as
follows: The scheme X (N) is smooth over Z[ζN , 1/N ]. For a prime ideal p ⊂ Z[ζN ] with p∩Z = (p)
the special fiber X (N)×Spec Z[ζN ] Spec Fp is the union of

rp = pk + pk−1 (5.3.1)

irreducible components crossing in

sp =
p− 1

24
m2ϕ(m)

∏
q|m

(
1 +

1
q

)
(5.3.2)

supersingular points; here ϕ is Euler’s function. We assume that all intersections are transverse2.
The natural morphism β : X(N) → X(1) extends to a morphism β : X (N) → X (1) of the
arithmetic surfaces. It is a Galois cover, and its degree equals

d = deg β =
N3

2

∏
p|N

(
1− 1

p2

)
. (5.3.3)

2The transversality condition is not easy to verify. One could possibly use Corollary 13.8.5, p.431 in [KM] in
order to decide whether or not the condition is fulfilled.
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For p the components C0, . . . , Cpk+pk−1−1 are mapped to the smooth component D of the special
fiber of X (1). They all have the same local degree and since their multiplicity is one, this local
degree is given by

d

pk + pk−1
.

Remark 5.3.1. Let N be a natural number coprime to 6 that has at least two different prime
factors, let X (N) be the regular model of the modular curve X(N) over Spec Z[ζN ] which was
constructed by Katz and Mazur, and let β : X (N) → X (1) be the natural morphism that was
obtained as the extension of the morphism β : X(N) → X(1). For an Q(ζN )-rational ramified
point ∞ ∈ X(1) let β∗∞ =

∑
j bjSj . Then the Sj are Q(ζN )-rational and any divisor of degree

zero with support in them is torsion (cf. [Og] and Theorem 3.2.17); we have bj = N for all j (cf.
[Sh]). It follows that X (N) together with its morphism β : X (N)→ X (1) fulfills the requirements
of Assumption 5.1.1.

Lemma 5.3.2. In the situation of Remark 5.3.1 we have

∑
j

bjO(Gj)2 =
∑
j

bjO(Fj)2 = −ϕ(N)12
∑
p|N

p(pk + pk−1 − 1)
p2 − 1

log p , (5.3.4)

where Gj and Fj are the vertical divisors defined in (3.2.3) and (3.2.2).

Proof: Let us first show the second equality in (5.3.4). We have

O(Fj)2 =
∑

p bad

O(Fj,p)2 ,

where Fj,p denotes the part of the vertical divisor Fj which has support in the special fiber above
p. We fix a bad prime ideal p. The equations (5.3.1), (5.3.2) and (5.3.3) together with Corollary
5.1.10 yield

∑
j

bjO(Fj,p)2 = − 12
p− 1

p3k

(
1− 1

p2

)
pk + pk−1 − 1
(pk + pk−1)2

log Nm(p)

= −12pk(pk + pk−1 − 1)
p+ 1

log Nm(p) .

Now, let f be the inertial degree of p over p i.e. the natural number with Nm(p) = pf , and e
the ramification index of p over p. Since Q(ζN )/Q is a Galois extension, all the inertial degrees
and ramification indices of the prime ideals over p are the same, and we get the equation |Q(ζN ) :
Q| = efr, where r denotes the number of prime ideals over p. We have e = ϕ(pk) (see. [Ne], p.
61: (10.3)). Now, let us set

Fj,p :=
∑
p bad

p∩Z=(p)

Fj,p .

Since |Q(ζN ) : Q| = ϕ(N), we have fr = ϕ(m), hence

∑
j

bjO(Fj,p)2 = −r12pk(pk + pk−1 − 1)
p+ 1

log pf

= −ϕ(m)
12pk(pk + pk−1 − 1)

p+ 1
log p

= −ϕ(N)
12p(pk + pk−1 − 1)

p2 − 1
log p .
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Now, summing up along all primes p with p|N gives the claim. The first equality in (5.3.4)
follows either by direct computations as above (but now with Theorem 5.1.6) or by the fact that
β : X (N)→ X (1) is a Galois cover. �

Theorem 5.3.3. Let N be a natural number coprime to 6 that has at least two different prime
factors, and let X (N) be the regular model of the modular curve X(N) over Spec Z[ζN ] which
was constructed by Katz and Mazur. We assume that all intersections are transverse3. Then the
arithmetic self-intersection number of its dualizing sheaf equipped with the Arakelov metric satisfies

ω2
X (N),Ar ≤ (2g − 2)

(
log |∆Q(ζN )|Q|2 + [Q(ζN ) : Q](κ1 logN + κ2)

)
+

(2g − 2)48
N2
∏
p|N (1 + 1

p )

∑
p|N

p(pk + pk−1 − 1)
p2 − 1

log p ,

where κ1, κ2 ∈ R∗+ are positive constants independent of N .

Proof: By Remark 5.3.1 the requirements of Assumption 5.1.1 are fulfilled, hence Theorem
3.2.2 is applicable. Since bmax = N (cf. Remark 5.3.1) we only have to compute the geometric
contribution. By Lemma 5.3.2 we have∑

p bad

ap log Nm(p) = −2g
d

∑
j

bj O(Gj)2 +
2g − 2
d

∑
j

bj O(Fj)2

= −2
d

∑
j

bj O(Fj)2

=
48

N2
∏
p|N (1 + 1

p )

∑
p|N

p(pk + pk−1 − 1)
p2 − 1

log p ,

which completes the prove. �

Remark 5.3.4. In [Kü2] Kühn uses Proposition 3.2.9 and Theorem 3.2.10 (Proposition 6.1. and
Theorem 6.3 in [Kü2]) to approximate the geometric contribution. This leads to the upper bound

ω2
X (N),Ar ≤ (2g − 2)

(
log |∆Q(ζN )|Q|2 + [Q(ζN ) : Q](κ1 logN + κ2)

)
+ 2(2g − 2)

∑
p⊃(N)

(rp − 1)2

sp
log Nm p ,

where rp is the number of components and sp the number of supersingular points; the rest of the
notation is the same as in Theorem 5.3.3 (cf. Theorem 9.1. [Kü2]). However, our computation
gives us the exact value of the geometric contribution, hence Theorem 5.3.3 is an improvement of
Theorem 9.1. in [Kü2].

Theorem 5.3.5. With the notation of Theorem 5.3.3 we have the asymptotic bound

ω2
X (N),Ar ≤ (2g − 2)

(
log |∆Q(ζN )|Q|2 + [Q(ζN ) : Q](κ1 logN + κ2)

)
+O (g) .

3The transversality condition is not easy to verify. One could possibly use Corollary 13.8.5, p.431 in [KM] in
order to decide whether or not the condition is fulfilled.
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Proof: According to Theorem 5.3.3 we have

∑
p bad

ap log Nm(p) =
48

N2
∏
p|N (1 + 1

p )

∑
p|N

p(pk + pk−1 − 1)
p2 − 1

log p

<
48
N2

∑
p|N

pk log p

<
48
N

∑
p|N

log p

≤ 48
N

logN ∈ O(1) ,

and this yields the claim. �

Remark 5.3.6. Since
∑

p bad ap log Nm(p) ∈ O(1) it is obvious that the analytic contribution
dominates the geometric contribution.





Chapter 6

Fermat curves of squarefree
exponent

In the previous two chapters we applied Kühn’s formula (Theorem 3.2.2) to regular models of
curves. In case of the Fermat curves we used the model constructed by McCallum and in case
of the modular curves we used the model of Deligne and Rapoport (Katz and Mazur resp.). In
this chapter we extend the results about the Fermat curve of prime exponent to Fermat curves of
squarefree odd exponent. In order to do this we construct a regular model of this curve. Later
we will show that this model is in fact the minimal regular model of this curve, and we will apply
Kühn’s formula.

6.1 The minimal regular model of the Fermat curve of
squarefree exponent

Let N be a squarefree odd natural number which has at least two prime factors, and ζN a primitive
N -th root of unity. In this section we construct the minimal regular model of the Fermat curve

FN : XN + Y N = ZN

over Spec Z[ζN ]. Let p be a prime number with N = pm. Since N is squarefree, we have
gcd(p,m) = 1. We fix a prime ideal p of Z[ζN ] that divides p, or in other words that lies above it1.
We denote by R the localization of Z[ζN ] with respect to p, and by Rsh the strict henselization of
R. Let π be the prime element of R. We can and will interpret this element as the prime element
of Rsh too. We start with the model

F0
N,p = ProjR[X,Y, Z]/(XN + Y N − ZN ) . (6.1.1)

To construct the minimal regular model we will work with affine open subschemes of this model.
Later we just have to glue the constructed parts together to get the intended projective model.
We may illustrate everything with the affine open subscheme2

X := SpecR[X,Y ]/(XN + Y N − 1) . (6.1.2)

The Noetherian scheme X is integral because R[X,Y ] is a unique factorization domain and XN +
Y N − 1 is an irreducible element according to the Eisenstein criterion. For a natural number n we

1Contrary to the prime exponent case it may happen that there is more than just one prime ideal above the
prime. For example if N = 3 · 5 · 11, then there are 4 prime ideals lying above 11 (see e.g. [Ne] p. 61 (10.3)).

2In fact, if we want to make everything totally accurate we should introduce new variables X0 := X
Z

and Y0 := Y
Z

to get the subscheme R[X0, Y0]/(XN
0 + Y N

0 − 1) as the set of elements of degree 0 in the localization of the ring
with respect to the multiplicative subset {1, Z, Z2, Z3, . . .}. Instead of this, we will use - for simpicity - the symbols
X and Y for these new variables.
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will use (by abuse of notation) Fn to denote the polynomial Xn + Y n − 1. It will be clear from
the context if we refer to the Fermat curve or to the polynomial. For the following computations
it will be useful to write the equation (6.1.2) as

F pm + pψ(Xm, Y m) (6.1.3)

where

ψ(a, b) =
ap + bp − 1− (a+ b− 1)p

p
. (6.1.4)

According to [Ne] p. 61 (10.3) we have p = µπp−1 with a unit µ ∈ R∗. Using equation (6.1.3), it
can be easily seen that the special fiber of X is of the form

Spec(R[X,Y ]/(F pm + pψ(Xm, Y m))⊗R k(π)) = Spec(k(π)[X,Y ]/F pm) ,

where k(π) is a finite field extension of Fp, the field with p elements 3. The special fiber consists
of one component C which has multiplicity p (Proposition 1.4.11). The component - considered as
a subset of X - is the closure of the ideal I = (π, Fm)/(XN +Y N − 1) ⊂ R[X,Y ]/(XN +Y N − 1),
so V (I) = C. The ideal I is a prime ideal since the ring

R[X,Y ]/I ∼= k(π)[X,Y ]/(Xm + Y m − 1) (6.1.5)

is integral. Because of the regularity of this ring, the closed subscheme C is regular by definition.
However since FN ∈ Ip−1 and p 6= 2 the scheme X is singular. In fact, it is not even normal
because it is not regular in codimension 1 (Proposition 1.1.17)4.

Notation 6.1.1. In the following computations we have to work very often with factor rings of
the form

R[X1, . . . , Xr]/J ,

with an ideal J . If there is no danger of confusion, we will use for an element f ∈ R[X1 . . . , Xr]
the same symbol to denote the residue class of it in R[X1 . . . , Xr]/J . For example in the situation
described above we will write (π, Fm) ⊂ R[X,Y ]/(XN+Y N−1) to denote the ideal (π, Fm)/(XN+
Y N − 1).

Notation 6.1.2. We can interpret k(π) as a subfield of Fp, where Fp is an algebraic closure of
Fp. The algebraic closure of k(π) (in Fp) is just Fp. For this reason we choose Fp as the fixed
algebraic closure of k(π).

6.1.1 The polynomial ψ(Xm, Y m)

In this subsection we are going to study the polynomial ψ(Xm, Y m). In order to do this we take
a close look at the polynomial ψ(a, b) and then later we just have to insert Xm and Y m. We have
the following:

ψ(a, b)− ψ(a, 1− a) =
ap + bp − 1− (a+ b− 1)p

p
− ap + (1− a)p − 1

p

=
bp − (a+ b− 1)p + (a− 1)p

p
=

p−1∑
k=1

(
p
k

)
p

(a+ b− 1))p−kbk(−1)k .

Substituting Xm for a and Y m for b we get

ψ(Xm, Y m) = ψ(Xm, 1−Xm) +
p−1∑
k=1

(
p
k

)
p
Fm

p−kY mk(−1)k (6.1.6)

3Strictly speaking we have |k(π) : Fp| = fp, where fp denotes the smallest number with pfp ≡ 1 mod m (see
[Ne] p.61 (10.3)).

4It can be shown that the scheme SpecA[X,Y ]/(XN + Y N − 1), where A is the ring of integers of a number
field, is normal if and only if all prime numbers p|N are unramified in A (see [KW], p.106: Theorem 3.3.).
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For later computations it will be important to know the factorization of ψ(Xm, Y m). We will
review a result of McCallum [Mc]:

Lemma 6.1.3. Let p ≥ 3. We have the decomposition

ψ(a, 1− a) = a(a− 1)Ψ(a) , (6.1.7)

with a polynomial Ψ(a) ∈ R[a]. In the factorization of Ψ(a) over Fp, factors occur with multiplicity
1 if not rational over Fp, and with multiplicity 2 otherwise.

Proof: The proof is an elaboration of the proof given in [Mc] p.59. We have (ψ(a, 1 − a))′ =
ap−1−(1−a)p−1 ≡ −(a−2) · . . . ·(a−p+1) mod (π). The only roots of ψ(a, 1−a) mod (π) with
multiplicity higher than 1 are of the form α ∈

{
2, . . . , p− 1

}
with an α ∈ R. If we assume that

the multiplicity of α is greater than two the second derivative would vanish in α, too. But from
(p − 1)αp−2 + (p − 1)(1 − α)p−2 ≡ 0 mod (π) it follows αp−2 ≡ (α − 1)p−2 mod (π) and so by
multiplication with α(α− 1) we obtain α− 1 ≡ α mod (π) and this is obviously impossible. Let
us denote the root of multiplicity 2 by α1, . . . , αs (they are pairwise distinct, because otherwise
we would have a root of higher multiplicity).
Together with the fact that 0 and 1 are simple roots of ψ(a, 1 − a) (and ψ(a, 1 − a)) we get the
decomposition

ψ(a, 1− a) = a(a− 1)(a− β1) · . . . · (a− βr)(a− α1)2 · . . . · (a− αs)2 , (6.1.8)

over Fp, where βi /∈ Fp. �

Corollary 6.1.4. Let p ≥ 3. We have the decomposition

ψ(Xm, 1−Xm) = Xm
m−1∏
i=0

(X − ζim)Ψ(Xm) . (6.1.9)

In the factorization of Ψ(Xm) over Fp, factors (X − δ) occur with multiplicity 1 if δ
m

is not
rational over Fp, and with multiplicity 2 otherwise.

Proof: If we replace in (6.1.7) a by Xm it is obvious that we get (6.1.9), since ζim ∈ R. A
decomposition as in (6.1.8) becomes

ψ(Xm, 1−Xm) = Xm
m−1∏
i=0

(X − ζim)(X − δ1) · . . . · (X − δrm)(X − γ1)2 · . . . · (X − δsm)2

after this replacement; here δ
m

= β and γm = α. Since the αi and βj from Lemma 6.1.3 are not
zero the polynomials Xm − αi (Xm − βj resp.) split into coprime linear factors over Fp. The
linear polynomials (X − γk) are the only factors of multiplicity 2 in Ψ(Xm) over Fp. �

Definition 6.1.5. Let us denote by % the number of factors (X − γk)2 of Ψ(Xm) over Fp.

Remark 6.1.6. Since ψ(a, 1− a) is a polynomial of degree p− 1 the polynomial ψ(Xm, 1−Xm)
is of degree m(p− 1). Corollary 6.1.4 tells us that there are

deg Ψ(Xm)− 2% = m(p− 3)− 2%

linear factors of multiplicity one in Ψ(Xm). However, for different prime numbers p the corre-
sponding number %p may vary strongly. For example let p = 5. Then Ψ5(a) ≡ a2 − a+ 1 mod 5,
where a2 − a + 1 is an irreducible element of F5[a]. It follows that in this case %5 = 0. On
the other hand, consider the case p = 7. Here we have Ψ7(a) ≡ (a + 2)2(a + 4)2 mod 7, hence
%7 = 1

2 deg Ψ7(Xm) = 2m.
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6.1.2 The blowing-up of X along V (I)

We start by giving an explicit description of the blowing-up.

Proposition 6.1.7. The blowing-up X̃ of the scheme X in (6.1.2) along V (I), where I =
(π, Fm) ⊂ R[X,Y ]/FN , is given by the affine open subsets U1 = SpecS1 and U2 = SpecS2,
where

S1 := R[X,Y, Z]/(Fm − Zπ, πZp + µψ(Xm, Y m)) (6.1.10)

and
S2 := R[X,Y,W ]/(WFm − π, Fm + µW p−1ψ(Xm, Y m)) . (6.1.11)

In other words, we have X̃ = U1 ∪ U2.

Proof: The generators of the ideal I obviously form a regular sequence in R[X,Y ], since R[X,Y ]
and R[X,Y ]/π (R[X,Y ]/Fm resp.) are integral. It follows that we can apply Theorem 1.2.6. The
polynomial

FmZ
p−1 + µW p−1ψ(Xm, Y m) ∈ (R[X,Y ]) [W,Z]

is homogenous (in W and Z) and the coefficient µψ(Xm, Y m) is not in the ideal I. The statement
follows now with Remark 1.2.7. �

Remark 6.1.8. The scheme X̃ can be considered as a subscheme of the scheme Z̃ = V1 ∪ V2,
where

V1 := SpecR[X,Y, Z]/(Fm − Zπ)

and
V2 := SpecR[X,Y,W ]/(WFm − π) .

Since Z̃ is just the blowing-up of the regular scheme Z = SpecR[X,Y ] along (π, Fm), it is regular
as well (Lemma 1.2.4 and Theorem 1.2.10). The scheme X̃ is the strict transform of X in Z̃.

Proposition 6.1.9. The scheme X̃ from Proposition 6.1.7 is normal. Let Fm, ψ(Xm, 1−Xm) ∈
Fp[X,Y ] be the reductions of Fm and ψ(Xm, 1 − Xm) with respect to the canonical morphism
R[X,Y ]→ Fp[X,Y ]. The geometric special fiber X̃ ×SpecR Spec Fp has configuration as in Figure
6.1, where the components L(x,y) are of genus 0 and parameterized by the pairs (x, y) ∈ F2

p with

xm + ym − 1 = ψ(xm, 1− xm) = 0 .

L(x,y)

Fm

. . .. . .

Figure 6.1: The configuration of the geometric special fiber X̃ ×SpecR Spec Fp.
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Proof: We consider the scheme

X̃ sh = X̃ ×SpecR SpecRsh (6.1.12)

i.e. the scheme X̃ after the base change SpecRsh → SpecR. Since this base change is faithfully
flat, normality of X̃ sh implies normality of X̃ (the advantage is that the special fiber of X̃ sh is a
variety over the algebraically closed field Fp). We will start our computation with the affine open
subscheme Ush1 = SpecSsh1 , where Ssh1 = S1 ⊗R Rsh. The special fiber of this scheme is

Ush1 ×SpecRsh Spec Fp = Spec
(
Fp[X,Y, Z]/(Fm, ψ(Xm, Y m))

)
= Spec

(
Fp[X,Y, Z]/(Fm, ψ(Xm, 1−Xm))

)
. (6.1.13)

This variety consists of lines Lx,y = V (X − x, Y − y), where x is a root of ψ(Xm, 1 − Xm) and
y is a root of Y m + xm − 1 ∈ Fp[Y ]. These lines correspond to prime divisors V (P) of Ush1 ,
where P = (X −X ′, Y − Y ′, π) is a prime ideal of height 1 and X ′ ≡ x mod π (Y ′ ≡ y mod π
resp.). Because of Remark 6.1.8 and Proposition 1.1.17, the only thing to do is to show that
Ssh1 is regular at P (since the generic fiber of X̃ sh (Ush1 resp.) is regular Ssh1 is regular at every
prime ideal which does not contain π). Notice that π cannot be a divisor of X ′ and of Y ′, since
xm + ym = 1. Because of symmetry we may assume π - Y ′ without loss of generality. We have
ψ(X ′m, 1−X ′m) = λπ with an element λ ∈ Rsh. Now,

ψ(Xm, 1−Xm) = λπ + (X −X ′)G(X)

with a polynomial G(X) ∈ Rsh[X]. It follows from Proposition 6.1.7 and equation (6.1.6), that

−(X −X ′)G(X) = π
(
Zpµ−1 + ZY m(p−1) + λ+ πH(Y, Z)

)
in Ssh1 , where H(Y,Z) is a polynomial in Y and Z. Let us suppose that Zpµ−1 +ZY m(p−1) +λ+
πH(Y, Z) ∈ P. Then Zpµ−1 + ZY ′

m(p−1) + λ ∈ P and - using Hensel’s lemma - (Z − Z ′) ∈ P,
where Z ′ is a root of Zpµ−1 +ZY ′m(p−1) +λ =: f(Z) ∈ Rsh[Z]. Indeed, since f ′(Z) = ym(p−1) 6= 0
the polynomial f(Z) splits into coprime linear factors in Fp, and this decomposition “lifts” to Rsh.
But if this linear factor is in P then P is a maximal ideal, a contradiction since P was assumed
to be of height 1. If follows that Zpµ−1 + ZY m(p−1) + λ + πH(Y,Z) /∈ P and so this element
becomes a unit in (Ssh1 )P. We will denote this unit by ε.
Now, since π|X ′m + Y ′

m − 1 we have X ′m + Y ′
m − 1 = τπ with an element τ ∈ Rsh. It follows

again with Proposition 6.1.7 that

πZ = Xm + Y m − 1

= Xm −X ′m + Y m − Y ′m +X ′
m + Y ′

m − 1

= (X −X ′)
m−1∏
i=1

(X −X ′ζim) + (Y − Y ′)
m−1∏
i=1

(Y − Y ′ζim) + τπ

in Ssh1 . Now,
∏m−1
i=1 (Y − Y ′ζim) /∈ P because otherwise Y ′ ∈ P or (1 − ζim) ∈ P and this is

impossible, since these elements are units in Rsh. To see this, remember that π - Y ′, and that
(1 − ζim) is a divisor of m and m is coprime to p. It follows that

∏m−1
i=1 (Y − Y ′ζim) is a unit in

(Ssh1 )P. We will denote this unit by ε′. In the localization (Ssh1 )P we have

−(X −X ′)G(X)
1
ε

= π

and

−(X −X ′)

(
m−1∏
i=1

(X −X ′ζim) +G(X)
1
ε

(Z − τ)

)
1
ε′

= (Y − Y ′) .
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It follows P(Ssh1 )P = (X −X ′) and so Ssh1 is regular at P (Corollary 1.1.4).
In the second affine open subscheme Ush2 = SpecSsh2 , where Ssh2 = S2 ⊗R Rsh, the only thing left
to do is to check the regularity of Ssh2 at the prime ideal

P = (W,Fm, π) (6.1.14)

which corresponds to the component Fm in Figure 6.1. But in Ssh2 we even have P = (W )
(Proposition 6.1.7) and so this ring is obviously regular at P. �

6.1.3 The minimal regular model

The next thing we want to do is to find the singular closed points of X̃ and then resolve these
singularities (remember that there are no other (non-closed) singular points, since X̃ is normal).
These singular points are elements of irreducible closed subsets of codimension 1, i.e. prime divisors
of X̃ . Since we can identify vertical prime divisors with the components of the special fiber, we
will say that “a singular point P lies on a component L” when we want to indicate that P is
an element of the corresponding prime divisor. The resolution we have in mind can be done by
blowing up the lines that have singular points lying on them. Since blowing up commutes with
flat morphisms (Proposition 1.2.9 (2.)) we can work the whole time with X̃ sh instead of X̃ , as
long as we just blow up along ideal sheaves J of X̃ sh which are of the form IO eX sh with an ideal
sheaf I of X̃ . Before we come to the main result of this section we need to introduce some more
terminology:

Definition 6.1.10. We use the notation from Proposition 6.1.9. We call a component L(x,y) of
X̃ sh = X̃ ×SpecR SpecRsh a component of type A, if x = 0 or xm = 1, and a component of type
B , if x is a multiple root of ψ(Xm, 1−Xm) different from 0.

Theorem 6.1.11. Let X̃ sh be the normal scheme given by (6.1.12). If we blow up (m− 1)-times
along the components of type A, we get p chains consisting of (m− 1) lines (Figure 6.2), blowing
up along the components of type B gives p chains consisting of one line (Figure 6.3); we use the
word line to indicate that it is a component of genus 0. The resulting scheme is regular.

Before we proof the theorem we will show three preparative lemmata.

Lemma 6.1.12. We use the notation from Proposition 6.1.9. The only singular closed points of
X̃ sh lie on the components L(x,y) of type A and of type B (Figure 6.4).

Proof: In order to find the singular closed points we analyze the special fiber of X̃ sh. For
simplicity we will use, for the rest of the proof, the word point if we refer to a closed point. We
start our analyzation with the affine open subset

Ush1 ×SpecRsh Spec Fp = Spec
(
Fp[X,Y, Z]/(Fm, ψ(Xm, 1−Xm))

)
(from Equation (6.1.13)). The Jacobian criterion (Theorem 1.1.10) helps us to locate the possible
singular points. The Jacobian matrix is of the form

J(X,Y, Z) =
(
mXm−1 mY m−1 0
G(X)′ 0 0

)
,

where G(X) := ψ(Xm, 1 − Xm). If follows that a point P = (x, y, z) ∈ U1 ×SpecR Spec Fp is
singular if and only if

−mym−1G(x)′ = 0 .

Now, y = 0 implies xm − 1 = 0 and so x is a m-th root of unity. In case G(x)′ = 0 the element x
is a m-th root of an element of F∗p or 0 (Corollary 6.1.4). We continue our analyzation with the
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(m− 1)-times

Fm

p-times

L(xa,ya)

Figure 6.2: The configuration of the components after (m − 1)-times blowing
up a component L(xa,ya) of type A.

Fm

.

.

.p-times

. . . . . .

L(xb,yb)

Figure 6.3: The configuration of the components after blowing up a component
L(xb,yb) of type B.
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L(xb,yb)

Fm

. . .. . .

L(xa,ya)

Figure 6.4: The line L(xa,ya) is of type A i.e. xa = 0 or xma = 1, and the line
L(xb,yb) is of type B, so (X−xb) is a multiple factor of ψ(Xm, 1−Xm) different
from X.



64

affine open subset Ush2 . In fact, we just need to check if there are singular points lying on Fm (Fm
is the only component of the special fiber of X̃ sh which does not lie in Ush1 ): a point which lies on
Fm corresponds to a maximal ideal

m = (π,W,X −X ′, Y − Y ′) ⊂ Ssh2 ,

where X ′m + Y ′
m ≡ 1 mod π (cf. (6.1.14)). Without loss of generality we may again assume

π - Y ′. In Ssh2 we have
(Y − Y ′)ε′ ∈ (π,W,X −X ′) ⊂ Ssh2 ,

where ε′ =
∏m−1
i=1 (Y − Y ′ζim) /∈ m (one uses similar arguments as in Proposition 6.1.9 together

with (6.1.11)). This together with the fact that π = WFm in Ssh2 , gives us

m(Ssh2 )m = (W,X −X ′) ,

hence Ssh2 is regular at m (Corollary 1.1.4). Our analyzation shows that there are no singular
points lying on components which are different from those of type A and of type B. �

Lemma 6.1.12 shows us that we have to focus on the components of type A and of type B. Let
us analyze the former ones. A component L(xa,ya) of type A corresponds to a prime ideal

P = (π,X, Y − ζim) ⊂ Ssh1 .

There is an affine open neighborhood U of P with the property that V (P) ⊂ U = SpecA ⊆ Ush1

and PA = (π,X). To be more precise, we have Y m − 1 = (Y − ζim)f where f is the product of
the (Y − ζjm) with j 6= i. Then we may take A to be

A = S/(πZp + µψ(Xm, Y m)) , (6.1.15)

where
S =

(
Rsh[X,Y, Z]/(Fm − Zπ)

)
f

is the localization of Rsh[X,Y, Z]/(Fm−Zπ) with respect to the multiplicative set {1, f, f2, f3, . . .},
hence U is isomorphic to the principal open subset D(f) of Ush1 . Notice, since P is a regular prime
ideal of height one, it is not a problem to find an affine open neighborhood U ′ so that P will be
generated by one element in this neighborhood. Unfortunately U ′ does not contain V (P). Next,
we study schemes which naturally appear as blowing-ups of the scheme SpecA.

Lemma 6.1.13. Let l ∈ N with 1 ≤ l ≤ m− 1 and

Al := S[Tl]/(π − TlX l, gl(Tl)) , (6.1.16)

where

gl(Tl) = TlZ
p + µ

ψ(Xm, 1−Xm)
X l

+ µ

p−1∑
k=1

(
p

k

)
p−1(TlZ)p−kX l(p−k−1)Y mk(−1)k . (6.1.17)

Furthermore, let Ul = SpecAl. Then Ul is normal; the configuration of the special fiber of Ul is
given in Figure 6.5. The only components of the special fiber which correspond to prime ideals that
contain X are given by Ll,1, . . . , Ll,p and L(xa,ya). If l = m− 1 there are no singular closed points
lying on these components. If l < m − 1, the only singular closed points are the points where the
componets Ll,i intersect the component L(xa,ya).
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L(xa,ya)

Ll,1
Ll,2
Ll,3

Ll,p

. . ..
.
.

Figure 6.5: The configuration of the special fiber of Ul. If l < m − 1, the
components Ll,i intersect the component L(xa,ya) in a singular point of Ul.

Proof: First of all notice that Ul is a closed subscheme of the regular integral scheme Vl :=
SpecS[Tl]/(π − TlX l). To see that Vl is integral and regular one may observe that even the ring

B := Rsh[X,Y, Z, Tl]/(Fm − Zπ, π − TlX l)

has this properties: since π,X l is a regular sequence in the integral ring Rsh[X,Y, Z]/(Fm −Zπ),
the ring B is just one of the rings we get if we blow up Rsh[X,Y, Z]/(Fm − Zπ) along the ideal
(π,X l) (Lemma 1.2.5). It follows that B is integral (Lemma 1.2.2). To see the regularity we
use the Jacobian criterion (Theorem 1.1.10) and find that the only maximal ideals which may be
singular are of the form

m = (π,X, Y − ζim, T − T ′, Z − Z ′)

with T ′, Z ′ ∈ Rsh and i ∈ Z. We have the chain of prime ideals 0 ( (π,X, Y − ζim) ( (π,X, Y −
ζim, T − T ′) ( m. On the other hand mBm = (X,T − T ′, Z − Z ′). This gives us 3 ≤ dimBm ≤
dimk(m) m/m2 ≤ 3, hence the regularity of Bm. It follows that B is regular (Proposition 1.1.6).

Let us return to the scheme Ul and show that it is normal. In order to do this we may first
consider the affine open subscheme U ′l = Spec(Al)X , where (Al)X is the localization of Al with
respect to the set

{1, X,X2, X3, . . .} .

The special fiber of U ′l has the same configuration as the one of Ul but with the difference that
U ′l does not possess the components which correspond to prime ideals that contain X and π.
An easy computation shows that (Al)X ∼= (Ssh1 )Xf = (S1 ⊗R Rsh)Xf (cf. (6.1.10)) where Xf
is the multiplicative subset {1, f,X,Xf,X2, f2, . . .}. It follows that U ′l is normal and that its
special fiber has the same configuration as the special fiber of Ush1 = SpecSsh1 after removing the
components L(x,y) with x = 0 (cf. Proposition 6.1.9). Next, let us analyze the components of the
special fiber of Ul that do not lie in U ′l i. e. let us consider those components of Spec

(
Al ⊗Rsh Fp

)
whose corresponding prime ideal of Al contains X (since the generic fiber of Ul is regular Al is
regular at every prime ideal which does not contain π). For a prime ideal P ⊂ Al with π,X ∈ P
we have

TlZ
p + µTlZ(ζim)m(p−1) = TlZ(Zp−1 + µ) ∈ P , (6.1.18)

hence the only prime ideals of height one with this property are

(π,X, Tl), (6.1.19)

(π,X,Z), (6.1.20)

and
(π,X,Z − θζip−1) , (6.1.21)



66

where θ is an element of Rsh with θp−1 = −µ and 0 ≤ i ≤ p− 2. Notice that P can just contain
one of the elements Tl, Z or Z − θζip−1, because otherwise P = Al or P is a maximal ideal, hence
it is of height 2. Since π = TlX

l in Al it follows with (6.1.17) and (6.1.18) that P(Al)P = (X),
and therefore the normality of Ul.
Let m = (X,Tl − T ′, Z − Z ′) be a maximal ideal of Al with π - T ′ (notice that π ∈ m since
π = TlX

l in Al). It follows with (6.1.17) and (6.1.18) that T ′Z(Zp−1 + µ) ∈ m and so we may
assume without loss of generality that Z ′ = 0 or Z ′ = θζip−1. Since the factors

Z, (Z − θ), (Z − θζp−1), (Z − θζ2
p−1), . . . , (Z − θζp−2

p−1 ) (6.1.22)

are pairwise coprime, equation (6.1.17) and (6.1.18) show us that (Z − Z ′) is contained in the
ideal of (Al)m which is generated by X and (T − T ′), hence the ring Al is regular at m. Next, let
m = (X,Tl, Z−Z ′), where (Z−Z ′) is coprime to any of the factors in (6.1.22). Then Z(Zp−1 +µ)
becomes a unit in the localization with respect to m. Again, equation (6.1.17) and (6.1.18) yield
m(Al)m = (X,Z − Z ′) and therefore the regularity of Al at m. Now, the only situation left we
have to consider is m = (X,Tl, Z − Z ′), where Z ′ = 0 or Z ′ = θζip−1 with an integer i. We may
distinguish here between two cases. In case l = m− 1, we have

− T(m−1)Z(Zp−1 + µ) = µX

(
ψ(Xm, 1−Xm)

Xm
+ P (T(m−1))

)
(6.1.23)

in A(m−1); here P (T(m−1)) ∈ S[T(m−1)] is the polynomial given by

P (T(m−1)) =
p−2∑
k=1

(
p
k

)
p

(T(m−1)Z)p−kX(m−1)(p−k−1)−1Y mk(−1)k .

Obviously we have P (T(m−1)) ∈ m. If the term in brackets on the right-hand side of (6.1.23) was
contained in m then

ψ(Xm, 1−Xm)
Xm

∈ m ,

a contradiction. Hence, this term becomes a unit in (A(m−1))m, and we have

m(A(m−1))m = (T(m−1), Z − Z ′) .

In other words, A(m−1) is regular at m. Now, consider the case l < m − 1. Let M be the
prime ideal of the regular ring S[Tl]/(π − TlX

l) which is given by the preimage of m. Since
(Y − ζim) = −(Xm − ZTlX l)f−1 in S[Tl]/(π − TlX l), we have (Y − ζim) ∈M2, which yields

gl(Tl) ≡ TlZp + µTlZ ≡ 0 mod M2 .

It follows that Al is singular at m (Proposition 1.1.7). Let us denote the components which
correspond to the prime ideals (π,X,Z) and (π,X,Z − θζip−1) for 0 ≤ i ≤ p− 2 by Ll,1, . . . , Ll,p.
The configuration of Ul ×SpecRsh Spec Fp is given in Figure 6.5. �

Lemma 6.1.14. We use the notation from Lemma 6.1.13. Let l < m − 1. If we blow up along
the ideal (X,Tl) the resulting scheme will be covered by the affine open subset Ul+1 (cf. Lemma
6.1.13) and an affine open subset Ũl+1 = Spec Ãl+1. The configuration of the special fiber is given
by Figure 6.5 (just interchange l by l+ 1) in Ul+1 and by Figure 6.6 in Ũl+1. The scheme Ũl+1 is
regular.
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Ll+1,1

.

.

.

Ll+1,pLl,p

Ll,3

Ll,3

Ll,1

Ll+1,3

Ll+1,2

Figure 6.6: The configuration of Spec Ãl+1 ×SpecRsh Spec Fp. There are not
singular points lying on the components.

Proof: We blow up along the ideal (X,Tl). Setting X
Tl

= X̃ one affine open subset of the
blowing-up is given by the spectrum of

Al
[
XTl

−1
] ∼= S[Tl, X̃]/(π − T l+1

l X̃ l, X̃Tl −X, g̃l(X̃)) =: Ãl+1 ,

where

g̃l(X̃) = Zp + µ
ψ((X̃Tl)m, 1− (X̃Tl)m)

X̃ lTl
l+1

+ µ

p−1∑
k=1

(
p

k

)
p−1Tl

(l+1)(p−k−1)X̃ l(p−k−1)Zp−kY mk(−1)k .

Now, a prime ideal I which contains π, contains X and Y −ζim, since Tl ∈ I or X̃ ∈ I. Furthermore,
in case X̃ ∈ I it follows Zp + µZ ∈ I. Hence, the prime ideals of height 1 which contain X̃ are
of the form (X̃,G(Z)), where G(Z) is one of the factors in (6.1.22). We will denote these prime
ideals by P1, . . . ,Pp. In case Tl ∈ I we have Zp + µZ ∈ I, too. Analog to the previous case we
will denote the prime ideals (Tl, G(Z)) by Q1, . . . ,Qp. A maximal ideal m of Ãl+1 is of the form
m = (X̃,G(Z), Tl − T ′) (m = (Tl, G(Z), X̃ −X ′) resp.). If we localize with respect to this ideal,
the corresponding ideal in the localization will be generated by X̃ and Tl − T ′ (Tl and X̃ − X ′
resp.), hence the ring is regular at m. Since these are the only maximal ideals of this ring, the
ring itself is regular (Proposition 1.1.6). The blowing-up-morphism Ũl+1 = Spec Ãl+1 → SpecAl
is an isomorphism away from V (X,Tl). According to this isomorphism the components Ll,i of Ul
are the images of the components which correspond to the prime ideals Pi ⊂ Ãl+1 Therefore, we
will denote these components as well by Ll,i. The components which lie above the singular points
will be denoted by Ll+1,i. They correspond to the prime ideals Qi. Then the special fiber has the
configuration as in Figure 6.6. The component Ll,i intersect the component Ll+1,i in the point
corresponding to some m = (X̃, Tl, G(Z)). Let us take a look now at the other affine open subset
of the blowing-up. Setting Tl+1 = Tl

X we get

Al
[
TlX

−1
] ∼= S[Tl, Tl+1]/(π − Tl+1X

l+1, Tl+1X − Tl, gl+1(Tl+1)) = Al+1 .

Notice, that the components Ll+1,i of Ul+1 = SpecAl+1 are the components Ll+1,i of Spec Ãl+1.
�

Proof of Theorem 6.1.11: According to Lemma 6.1.12 there are just singular closed points on
the components of type A and type B. Let L(xa,ya) be a component of type A that corresponds
to a prime ideal P = (π,X, Y − ζim) ⊂ Ssh1 . We consider everything in the affine open subset
U = SpecA, where A is the ring of (6.1.15). We blow up U along V (PA). Since PA = (π,X),
the blowing-up will be covered by two affine open subsets. Setting T1 = π

X the first one is given
by U1. The only new components are L1,1, . . . , L1,p (cf. Figure 6.5 with l = 1). Setting X1 = X

π
the second subset is

SpecS[X1]/(X1π −X, g(X1)) ,
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where

g(X1) = Zp + µ
ψ((X1π)m, 1− (X1π)m)

π
+ µ

p−1∑
k=1

(
p

k

)
p−1Zp−kπp−k−1Y mk(−1)k .

Here we only have to study the prime ideals m with X1, π ∈ m, since all the others that lie above
π can be found in U1. We have

Zp + µZ = πP (X1)

in S[X1]/(X1π − X, g(X1)), with a polynomial P (X1) ∈ S[X1]. It follows Zp + µZ ∈ m, which
implies

Z ∈ m or Z − θζip−1 ∈ m (6.1.24)

with 0 ≤ i ≤ p− 2; here θ ∈ Rsh is an element with θp−1 = −µ. The prime ideal m is of the form
m = (π,X1, Z) (m = (π,X1, Z − θζip−1) resp.), hence maximal. In fact, they are the “end points”
of the components L1,i. Since the factors in (6.1.24) are pairwise coprime,

m (S[X1]/(X1π −X, g(X1)))m

will be generated by two elements, hence S[X1]/(X1π − X, g(X1)) is regular at m. There are p
singular closed points lying on L(xa,ya) (Lemma 6.1.12). If we blow up this line, we get another p
new components L2,1, . . . , L2,p (Lemma 6.1.14). There are no singular closed points lying on the
L1,i (Lemma 6.1.14). The only singular closed points that lie on the L2,i or the line L(xa,ya), are
the points where the L2,i intersect L(xa,ya) (Lemma 6.1.13). It is clear that repeating this process
(i.e. blowing up the component L(xa,ya)) (m-3)-times will give the resolution of the singularities
that lie on this component, and will therefore yield the configuration we claimed. By symmetry
we can argue the same way for components of type A which correspond to prime ideals of the
form P = (π,X − ζim, Y ). Finally, a similar (but simpler, since no inductive argument is needed)
computation shows that we just have to blow up the components of type B once in order to get
the remaining statements of the proof. �

Theorem 6.1.15. Let N be a squarefree odd natural number which has at least two prime factors,
ζN a primitive N -th root of unity and N = pm with a prime p. Furthermore, let R be the
localization of Z[ζN ] with respect to a fixed prime ideal p ∈ Spec Z[ζN ] that lies above p. We
denote by FminN,p → SpecR the minimal regular model of the Fermat curve FN over R. Then the
geometric special fiber

FminN,p ×SpecR Spec Fp
has the configuration as in Figure 6.7; the Table 6.1 gives us the number, multiplicity, genus and
self-intersection of the components. Finally, all intersection between components of the geometric
special fiber are transverse.

Number of components Multiplicity Genus Self-intersection
Li 3mp i 0 −2

LXY Z 3m m 0 −p
Lγi m% 2 0 −p
Lγi,j pm% 1 0 −2
Lδ m2(p− 3)− 2m% 1 0 −p
Fm 1 p 1

2 (m− 1)(m− 2) −m2

Table 6.1: % denotes the number of factors with multiplicity two of Ψ(Xm) over Fp (cf. Definition
6.1.5).
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Lγ

Lγ,p

Lγ,1

Lγ,2

Lγ,3

. . .

LXY Z

.

.

.

Fm

p-times

. . .

. . .

. . .

. . .

L1 L2 L(m−2) L(m−1)

.

.

.
.
.
.

. . .

Lδ

Figure 6.7: The configuration of the geometric special fiber FminN,p ×SpecR

Spec Fp.

Proof: The scheme
F0
N,p = ProjR[X0, Y0, Z0]/(XN

0 + Y N0 − ZN0 )

is covered by the affine scheme X in (6.1.2) and

X ′ = SpecR[Y ′, Z ′]/(1 + Y ′
N − Z ′N )

where Y ′ = Y0
X0

and Z ′ = Z0
X0

. To blow up F0
N,p along the ideal V+(Xm

0 + Y m0 − Zm0 , π) is to blow
up X along (π, Fm) and X ′ along (π, 1+Y ′

m−Z ′m) and then glue everything together; we denote
these blowing-ups by X̃ and X̃ ′. Since X is isomorphic to X ′ and (π, Fm) to (π, 1+Y ′m−Z ′m) via
X 7→ Z ′ and Y 7→ −Y ′ the blowing-ups X̃ and X̃ ′ are isomorphic as well. The only components
of X̃ ′ which are not in X̃ are the ones that correspond to prime ideals that contain Z ′. According
to the isomorphism above these components are isomorphic to the components of type A which
contain X. It follows that we can easily use Theorem 6.1.11 to resolve the singularities of these
schemes. The regular model of FN we achieve in this way will be denoted by FN,p. With the
discussion above, it follows that it is enough to analyze the regular scheme from Theorem 6.1.11
and to remember that there are a few more components which we cannot see in this affine open
subset. We give a sketch of the things one has to do to get the quantities in the table. In fact, we
will verify these quantities for FN,p and at the end of the proof it will turn out that FN,p = FminN,p .
Let us start with the number of components of FN,p. With Theorem 6.1.11 it is clear that the
geometric special fiber of FN,p is of the form Figure 6.7. The vertical components are parametrized
by pairs (x, y) ∈ Fp with xm+ym−1 = xm

∏m−1
i=0 (x− ζim)Ψ(xm) (Proposition 6.1.9). There are %

factors (X−γk)2 in Ψ(Xm), and for each γk the ploynomial Y m+γmk −1 ∈ Fp[Y ] has m solutions
(remember that γmk 6= 1). Hence, we get m% lines. We denote these lines by Lγ (these are the
ones of type B in Theorem 6.1.11). Furthermore, there are m(p − 3) − 2% linear factors (X − δ)
and with the same argument as before there are m(m(p−3)−2%) lines which correspond to these.
We denote these by Lδ. Now, the only solutions which are left are the following:

(0, ζ
i

m) (6.1.25)

for 0 ≤ i ≤ m− 1, and
(ζ
i

m, 0) (6.1.26)

for 0 ≤ i ≤ m−1. This gives us 2m lines (these are the components of type A in Theorem 6.1.11).
Like we mentioned before there are more lines which behave like the ones of type A but which
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cannot be seen in this affine picture. In fact, by the isomorphism we described at the beginning it
is clear that there are m more lines, hence these together with the ones of (6.1.25) and (6.1.26) give
us 3m lines. We denote them by LXY Z . According to Theorem 6.1.11, for each LXY Z there are
p chains of m− 1 lines, where the ends of the chains intersect LXY Z . These ends will be denoted
by L(m−1) and the following lines by L(m−2), L(m−3), etc. As well according to Theorem 6.1.11
there are p lines intersecting each Lγ . We will denote these lines by Lγ,1, . . . , Lγ,p. Collecting this
information we get the number of components of table 6.1.
Next, we want to study the multiplicity of the components. To do this one may use Remark 1.4.13.
We will illustrate this in a few cases. For example let us return to the scheme Ul = SpecAl in
(6.1.16). The prime ideals of height 1 of Al are (π,X,Z) and (π,X,Z − θζip−1) for 0 ≤ i ≤ p− 2.
These correspond to the components Ll. Furthermore, there is the prime ideal (π,X, Tl) which will
correspond to a LXY Z (after blowing up (m-1-l)-times). Let P be a prime ideal that corresponds
to Ll. In Theorem 6.1.11 we have seen that P(Al)P = (X). Since π = TlX

l in Al and Tl becomes
a unit in (Al)P, we get νLl(π) = l, hence the multiplicity of Ll is l. Now, let P = (π,X, Tl).
Equation (6.1.17) shows us that Tl = Xm−lε in (Al)P with a unit ε ∈ (Al)∗P. With the same
argument as before we get νLXYZ (π) = m, hence the component LXY Z has multiplicity m. To
get the multiplicities of the other components one can continue in the same way with the other
components. The genera of the components are clear; the formula 1

2 (m−1)(m−2) is just the well
known genus formula for curves which are given by a homogenous polynomial of degree m.
Next, we prove that all intersections are transverse. Let us denote by Fπ the geometric special
fiber of FN,p. According to Remark 1.4.14 we have

Fπ =
∑

dΓΓ ,

where the sum runs over all components together with their multiplicity (the symbol Γ stands for
any of the components in Figure 6.7). To each component Γ of the right-hand side, we have

0 < Γ(Fπ − dΓΓ) .

Let us denote by IΓ the sum of the multiplicities of the components that have a positive intersection
number with Γ. Obviously we have

IΓ ≤ Γ(Fπ − dΓΓ)

and equality holds for all Γ if and only if all intersections are transverse. We get the following
table:

Γ IΓ
Li 2i

LXY Z p+ p(m− 1)
Lγi 2p
Lγi,j 2
Lδ p
Fm m2p

Let us denote by K a canonical divisor of FN,p. By the adjunction formula (Theorem 1.4.9)
and Proposition 1.4.15 we have

2ga(FN )− 2 = K · Fπ

=
∑

dΓK · Γ

=
∑

dΓ(−Γ2 + 2ga(Γ)− 2)

=
∑

Γ(Fπ − dΓΓ) + 2pga(Fm)− 2
∑

dΓ

≥
∑

IΓ + 2pga(Fm)− 2
∑

dΓ ,
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hence the intersections are transverse if and only if

2ga(FN )− 2 =
∑

IΓ + 2pga(Fm)− 2
∑

dΓ . (6.1.27)

Using the known quantities of Table 6.1 and the table for the IΓ we get∑
IΓ = 3m3p− 2m2p+ 2pm%+m2p2

and
−2
∑

dΓ = −3m3p+m2p− 2pm%− 2p .

We have
2ga(FN )− 2 = m2p2 − 3mp

and ∑
IΓ − 2

∑
dΓ + 2pga(Fm) = −m2p+m2p2 − 2p+ p(m− 1)(m− 2)

= m2p2 − 3mp ,

which yields the equality (6.1.27) and therefore the transversality of the intersections.
Since we know the intersection numbers and the configuration of the geometric special fiber, one
can use Proposition 1.4.15 (1.) to get the self-intersection number of the components.
Finally, since there are no exceptional divisors, Corollary 2.2.9 tells us, that FN,p is already the
minimal regular model. �

Corollary 6.1.16. Let FnormalN,p be the normalization of the scheme

F0
N,p = ProjR[X,Y, Z]/(XN + Y N − ZN ) .

Then all singular (closed) points are rational singularities.

Proof: Let fnor : FminN,p → FnorN,p be the desingularization of FnormalN,p , where FminN,p is the minimal
regular model from Theorem 6.1.15. Let P ∈ FnormalN,p be a singular point and C1, . . . , Cn the
components of FminN,p with fnor(Ci) = P . Then P is rational if and only if the fundamental cycle
ZP with respect to P fulfills pa(ZP ) = 0 (see. [Ar2], p.132: Theorem 3.). Using Theorem 6.1.15
it can be easily seen that

ZP =
n∑
i=1

Ci .

Now, the adjunction formula together with an inductive argument yields

pa(ZP ) =
n∑
i=1

pa(Ci) +
∑

1≤i<j≤n

Ci · Cj − (n− 1) =
∑

1≤i<j≤n

Ci · Cj − (n− 1) .

Finally, it can be easily seen - using the configuration described in Theorem 6.1.15 - that pa(ZP ) =
0. �

Remark 6.1.17. Let U ⊂ Spec Z[ζN ] be the open subset consisting of the prime ideals p with
N /∈ p, hence U = Spec Z[ζN , 1/N ]. We set FminN,U := F0

N ×Spec Z[ζN ] U , where

F0
N = Proj Z[ζN ][X,Y, Z]/(XN + Y N − ZN ) ;

the scheme FminN,U is regular by Proposition 1.1.13. For a prime ideal p with N ∈ p we take the
minimal regular model FminN,p from Theorem 6.1.15, where p ∩ Z = (p). Now, we glue the scheme
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FminN,U and all the FminN,p together and obtain the minimal regular model FminN of the Fermat curve
FN over Spec Z[ζN ] (see Section 2.3). This model is indeed the minimal regular model, since it
is regular and there are no exceptional divisors. Notice, that the bad primes in this situation are
exactly the primes p with N ∈ p. Hence, a prime p is bad if and only if p|N , where p ∩ Z = (p).
The special fiber above a good prime q ∈ U just consists of one component. This component is
of multiplicity one. Similar to Remark 4.1.3 the morphism β : FN → P1 in (3.2.12) extends to a
morphism

β : FminN → P1
Z[ζN ]

(β : FminN,p → P1
R resp. ) since we were just performing a sequence of blowing-ups.

With the regular model we are ready now to compute a first upper bound for the arithmetic
self-intersection number of the dualizing sheaf. In order to do this we will use the results of
Subsection 3.2.2 to approximate the geometric contribution.

Theorem 6.1.18. Let N be a squarefree odd integer with at least two prime factors, and let
FminN be the minimal regular model of the fermat curve FN over Spec Z[ζN ]. Then the arithmetic
self-intersection number of its dualizing sheaf equipped with the Arakelov metric satisfies

ω2
FminN ,Ar ≤ (2g − 2)

(
log |∆Q(ζN )|Q|2 + [Q(ζN ) : Q](κ1 logN + κ2)

)
+ (2g − 2)

∑
p⊃(N)

4gN8Np +4

38Np −2(N2 − 9)
log Nm(p),

where κ1, κ2 ∈ R∗+ are positive constants independent of N .

Proof: In Remark 3.2.18 we saw that the morphism β : FN → P1 fulfills the requirements
of Theorem 3.2.2, hence we only have bound the geometric contribution. In order to do this
we will use Proposition 3.2.9 and Theorem 3.2.10. Using the notation of Proposition 3.2.9 we
have 32 ≤ up = max{p,m2} ≤

(
N
3

)2
, lp = 1 and cp = 2m = 2Np (cf. Theorem 6.1.15). Since

0 ≤ % ≤ m
2 (p− 3) we get

rp − cp − 1 = 3mp(m− 1) +m+ %m(p− 1) +m2(p− 3)

≤ 3mp(m− 1) +m+
m2

2
(p− 3)(p+ 1)

< N +
3N2

2
.

We will approximate
k−1∑
l=0

ul <
uk

u− 1

and

cp∑
k=1

u2k =
(ucp+1 − u)(ucp+1 + u)

(u− 1)(u+ 1)

=
u

u− 1
u

u+ 1
(u2cp − 1) <

u2

u2 − 1
u2cp
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in order to obtain

bp =

 cp∑
k=1

(
k∑
l=1

ul−1
p

)2

+ (rp − cp − 1)

(
cp∑
l=1

ul−1
p

)2
up

<

(
cp∑
k=1

u2k
p + (N +

3N2

2
)u2cp

p

)
up

(up − 1)2

<

(
81
80

+N +
3N2

2

)
u

2cp+1
p

(up − 1)2
(6.1.28)

Now since 81
80 +N + 3N2

2 < 2N2 and up ≤
(
N
3

)2
the term (6.1.28) is smaller than

2N2

(
N
3

)8Np +2

(
(
N
3

)2 − 1)2
=

2N8Np +4

38Np −2(N2 − 9)
.

Therefore, it follows with Theorem 3.2.10

∑
p bad

ap log Nm(p) <
∑

p bad

4gN8Np +4

38Np −2(N2 − 9)
log Nm(p) ,

hence the claim. �

Remark 6.1.19. One may use the results of Subsection 3.2.2 less wastefully in order to get an
improvement of Theorem 6.1.18. However, this is not our intention since we will compute the
geometric contribution exactly in the next subsection. Taking a look at Theorem 6.1.18 one could
get the impression in case of the Fermat curves in question that the geometric contribution is the
dominating term in the inequality (3.2.1). In the next subsection it will turn out as well that this
is not the case.

6.2 Explicit geometric contributions to Kühn’s formula for
ωAr2 in the squarefree case

Let N be a squarefree odd integer, which is not a prime number, and FminN the minimal model
described in Section 6.1, which was obtained by glueing the models FminN,p of Theorem 6.1.15 and
the model FminN,U (cf. Remark 6.1.17).

Proposition 6.2.1. Let S be a cusp of FN and S the horizontal divisor obtained by taking the
Zariski-closure of S in FminN,p . Then S only intersects one component of the geometric special fiber,
namely one of the L1 (see. Figure 6.7). Again, this intersection is transverse.

Proof: We use Notation 3.2.19. Without loss of generality we assume S = Sxi , with an integer
i. If we take the Zariski-closure of S in

F0
N,p = ProjR[X,Y, Z]/(XN + Y N − ZN ) (6.2.1)

we get a horizontal divisor S0, which corresponds to the prime ideal (X,Y −ζiN , Z−1). It intersects
the special fiber in the point Pxi = V+((X,Y − ζiN , Z − 1, π)). Now, our minimal regular Model
FminN,p comes together with a birational morphism

f : FminN,p → F0
N,p ; (6.2.2)
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in fact, f is just the composition of the blowing-ups in Proposition 6.1.7, Theorem 6.1.11 and
Theorem 6.1.15. We have

FminN,p ×SpecR Spec Fp · S = degKsh S = 1 , (6.2.3)

where Ksh = Frac(Rsh) (see e.g. [Liu], p.388: Remark 1.31.). It follows that FminN,p ×SpecR

Spec Fp ∩S is reduced to a point P and that P belongs to a single irreducible component which is
of multiplicity one (compare e.g. with [Liu], p.388: Corollary 1.32.). Furthermore, (6.2.3) shows
us that S intersects this component transversally (see e.g. [Liu], p.378: Proposition 1.8.). On the
other hand, we have P ∈ f−1(Pxi). But f−1(Pxi) consists of one component LXY Z and p chains of
components L1, L2, . . . , L(m−1), where the L(m−1) intersect the component LXY Z (compare with
Figure 6.7). Since the only components of f−1(Pxi) of multiplicity one are the L1, P must lie on
one of them. �

Remark 6.2.2. We use Notation 3.2.19. In the proof of Proposition 6.2.1 we saw that the
horizontal divisor Sxi , which was obtained as the Zariski-closure of the cusp Sxi , just intersects
one of the components L1, which lies in f−1(Pxi); here Pxi = V+((X,Y − ζiN , Z − 1, π)) and f :
FminN,p → F0

N,p is the minimal desingularization of F0
N,p. Analog to this we obtain that the horizontal

divisor that corresponds to a cusp Syi (Szi resp.) intersects a component L1 that lies in f−1(Pyi)
(f−1(Pzi) resp.), where Pyi = V+((X − ζiN , Y, Z − 1, π)) and Pzi = V+((X − ζiN , Y + 1, Z, π)).

Since there are 3N components L1 and 3N cusps we could guess that each L1 was intersected
by exactly one horizontal divisor which comes from a cusp. In fact, we show in the next proposition
that this is the case.

Proposition 6.2.3. For the cusps S and S′ of FN we denote by S and S ′ the associated horizontal
divisors of FminN,p . According to Proposition 6.2.1 these horizontal divisors intersect components L
and L′ of the special fiber (both are one of the L1). We have S = S′ if and only if L = L′.

Proof: We use Notation 3.2.19. We only have to show that L = L′ implies S = S′ (the other
direction is tautological). Let us assume that this is not true. Then there exist S and S′ with
S 6= S′ and L = L′. According to Remark 6.2.2 we may assume without loss of generality that
S = Sxi and S′ = Sxj with 0 ≤ j < i < N . Remember that the morphism f in (6.2.2) factors

f : FminN,p

f1→ F1
N,p

f0→ F0
N,p, where F1

N,p is the blowing-up of F0
N,p along V (Xm + Y m − Zm, π).

The scheme F1
N,p is covered by X̃ and X̃ ′ (cf. beginning of the proof of Theorem 6.1.15). and its

special fiber just consists of the components Fm, LXY Z , Lγi and Lδ. According to our assumption
we must have Supp f1(Sxi) ∩ Supp f1(Sxj ) = P with a closed point P which lies in the special
fiber of F1

N,p (this follows since all the components Li were blown down to points by f1). In fact P
is a singular point which lies in X̃ . It makes therefore sence to analyze X̃ (cf. Proposition 6.1.7)
again. Since all the singular points of X̃ lie in U1 = SpecS1 (cf. (6.1.10) and proof of Lemma
6.1.12) we can restrict our attention to this affine open subset. Because Fm = Zπ in S1 an easy
computation shows that

f1(Sxi)|U1 = V

(
X,Y − ζiN , Z −

(ζimN − 1)
π

)
and

f1(Sxj )|U1 = V

(
X,Y − ζjN , Z −

(ζjmN − 1)
π

)

(notice that (ζkmN −1)
π ∈ R∗ or (ζkmN −1)

π = 0 since ζmN is a primitive p-th root of unity). Let m be the
maximal ideal of S1 with V (m) = P . Then

ζiN − ζ
j
N = ζjN (ζi−jN − 1) ∈ m
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and since π ∈ m we must have p - i − j. Indeed, let us assume that p divides i − j. Then the
order of ζi−jN is coprime to p and therefore m contains a natural number coprime to p, hence a
contradiction. On the other hand, since

(ζimN − 1)
π

−
(ζjmN − 1)

π
=
ζjmN (ζ(i−j)m

N − 1)
π

∈ m ,

we have ζ(i−j)m
N = 1, hence p|i − j. This gives us another contradiction and shows that S = S′.

�

Similar to the situation in Section 4.2 we will compute now the canonical divisor for our schemes
FminN and FminN,p . Let us consider first the scheme FminN,p . Again, we can use Lemma 3.2.16, which
tells us that if we have a horizontal divisor Sj coming from a cusp Sj , then there exists a canonical
divisor of FminN,p of the form

Kj,p = (2g − 2)Sj + Vj,p , (6.2.4)

where Vj,p is a vertical divisor with support in the special fiber.
We can interpret any vertical divisor of FminN,p as a divisor of FminN . Using this we can show the

following:

Proposition 6.2.4. We interpret the vertical divisors Vj,p of (6.2.4) as divisors of FminN . If we
set

Vj =
∑

p bad

Vj,p ,

where the sum runs over all bad prime ideals p, then

Kj = (2g − 2)Sj + Vj (6.2.5)

is a canonical divisor of FminN . In particular, if we set Fj,p = 1
(2g−2)Vj,p, then Fj =

∑
p bad Fj,p

fulfills (3.2.2).

Proof: Any divisor, who satisfies the adjunction formula and whose restriction to the generic
fiber FN is a canonical divisor of FN , is a canonical divisor of FminN (Proposition 1.4.16). Obviously
Kj |FN is a canonical divisor of FN , hence the only thing to verify is that Kj fulfills the adjunction
formula. Now, let E be a vertical prime divisor of FminN . If E is contained in a special fiber above
a bad prime p, then

Kj · E = Kj,p · E = 2pa(E)− 2− E2 .

Otherwise E is a special fiber itself, which lies above a “good” prime q (Remark 6.1.17 and
Proposition 1.4.11). We have

Kj · E = 2pa(FN )− 2 ,

(Proposition 1.4.15 (1.) and [Liu], p.388: Remark 1.31.). On the other hand we have pa(E) =
pa(FN ) and E2 = 0 (Proposition 1.4.15 and [Liu], p. 350: Corollary 3.6.), hence the adjunction
formula is fulfilled. This yields the first claim. The second claim is obvious. �

With Proposition 6.2.4 in mind it seems to be useful to determine the Kx,p in (6.2.4), because
this yields a canonical divisor for FminN . In order to construct this divisor explicitly we need to
distinguish between the components in the special fiber. For this reason we will number these
components.

Notation 6.2.5. We use the notation from Theorem 6.1.15. Let us fix a cusp S and a correspond-
ing horizontal divisor S. We know that S just intersects one of the component of the special fiber,
in fact it must be one of the L1 (Proposition 6.2.1). In the geometric special fiber of FminN,p there
are 3m components LXY Z . To distinguish between these components we will number them and
denote by L(i) the i-th one of the LXY Z . Now, for each component L(i) there are p chains of com-
ponents L1, L2, . . . L(m−1), where the L(m−1) intersect L(i). Again, we will number these chains.
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We denote the components of the chains by L
(i)
j,k, where the superscript shows the belonging to

L(i), the first subscript j indicates that it is one of the components Lj and the second subscript k
shows that it is a component of the k-th chain. In the same way we proceed with the components
Lγ and Lδ. We will number them and denote them by L

(i)
γ and L

(i)
δ . The components Lγ,j will

be denoted by L
(i)
γ,j , where the superscript i indicates that L(i)

γ,j intersects L(i)
γ . Without loss of

generality we assume that we did this numbering in a way that S intersects the component L(1)
1,1.

Now we are ready to compute a canonical divisor of the scheme FminN,p . We set

V =
3m∑
i=1

m−1∑
j=1

p∑
k=1

λ
(i)
j,kL

(i)
j,k + λ(i)L(i)

 (6.2.6)

and

VΣ =
m%∑
i=1

 p∑
j=1

λ
(i)
γ,jL

(i)
γ,j + λ(i)

γ L(i)
γ

+
m2(p−3)−2m%∑

i=1

λ
(i)
δ L

(i)
δ , (6.2.7)

where % is the number introduced in Definition 6.1.5 and the coefficients are defined by

λ(1) =
2g − 2
p
− m(p− 2)

p
, (6.2.8)

λ
(1)
j,1 =

1
m

(
λ(1)j + (m− j)(2g − 2)

)
1 ≤ j ≤ m− 1, (6.2.9)

λ
(1)
j,k =

1
m
λ(1)j 1 ≤ j ≤ m− 1; 2 ≤ k ≤ p, (6.2.10)

λ(i) =− m(p− 2)
p

2 ≤ i ≤ 3m, (6.2.11)

λ
(i)
j,k =− p− 2

p
j 2 ≤ i ≤ 3m; 1 ≤ j ≤ m− 1; 1 ≤ k ≤ p (6.2.12)

λ
(i)
γ,j =− p− 2

p
1 ≤ j ≤ p; 1 ≤ i ≤ m% (6.2.13)

λ(i)
γ =− 2

(
p− 2
p

)
1 ≤ i ≤ m% (6.2.14)

λ
(i)
δ =− p− 2

p
1 ≤ i ≤ m2(p− 3)− 2m% . (6.2.15)

Similar to the previous subsection we can show the following lemma:

Lemma 6.2.6. The divisor
Kp = (2g − 2)S + V + VΣ , (6.2.16)

where V and VΣ are given by (6.2.6) and (6.2.7), is a canonical divisor of FminN,p .

Proof: According to Proposition 1.4.16 it is enough to check that Kp fulfills the adjunction
formula. This can be verified using the quantities computed in Theorem 6.1.15. �

Lemma 6.2.7. Let V and VΣ be the divisors of (6.2.6) and (6.2.7). Then we have

V · V = −(3m− 1)pm
(
p− 2
p

)2

+ λ(1)

(
(p− 2)− (2g − 2)

m

)
− m− 1

m
(2g − 2)2 , (6.2.17)
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VΣ · VΣ = −pm2(p− 3)
(
p− 2
p

)2

(6.2.18)

and
V · VΣ = 0 . (6.2.19)

Proof: Let us prove (6.2.17). By the adjunction formula we have V · L(i) = Kp · L(i) = p − 2
for all components L(i); the divisor Kp is the canonical divisor of Lemma 6.2.6. For a component
L

(i)
j,k with ijk 6= 1 we have V ·L(i)

j,k = Kp ·L(i)
j,k = 0. Furthermore, the intersection of L(1)

1,1 with V is

−(2g − 2), since 0 = Kp · L(1)
1,1 = ((2g − 2)S + V) · L(1)

1,1 = (2g − 2) + V · L(1)
1,1. Now, using equation

(6.2.6), we get

V · V = V ·
3m∑
i=1

m−1∑
j=1

p∑
k=1

λ
(i)
j,kL

(i)
j,k + λ(i)L(i)

 (6.2.20)

=
3m∑
i=1

m−1∑
j=1

p∑
k=1

λ
(i)
j,k(V · L(i)

j,k) + λ(i)(V · L(i))

 (6.2.21)

= −λ(1)
1,1(2g − 2) + (p− 2)λ(1) − (3m− 1)(p− 2)m

(
p− 2
p

)
, (6.2.22)

where we used equation (6.2.11) in the last line. Substituting the number of (6.2.9), we get

V · V = − 1
m

(
λ(1) + (m− 1)(2g − 2)

)
(2g − 2) + (p− 2)λ(1) − (3m− 1)pm

(
p− 2
p

)2

.

After rearranging the terms we will get the formular for the self-intersection of V.
Next, we show (6.2.18). If we take a look at the configuration of the geometric special fiber

given in Figure 6.7, we see that the components L(i)
δ and L(i)

γ intersect Fm and itself. While these
are the only components in case of the L(i)

δ , a component L(i)
γ intersects more components, namely

the L(i)
γ,j for 1 ≤ j ≤ p. Finally, a component L(i)

γ,j just intersects the component L(i)
γ and itself.

Since Fm does not appear in the sum VΣ, it follows

VΣ · VΣ =
m%∑
i=1

 p∑
j=1

λ
(i)
γ,jL

(i)
γ,j + λ(i)

γ L(i)
γ

2

+
m2(p−3)−2m%∑

i=1

−p
(
λ

(i)
δ

)2

.

We have  p∑
j=1

λ
(i)
γ,jL

(i)
γ,j + λ(i)

γ L(i)
γ

 · L(i)
γ,j = VΣ · L(i)

γ,j = Kp · L(i)
γ,j = 0

for every i and j, hence p∑
j=1

λ
(i)
γ,jL

(i)
γ,j + λ(i)

γ L(i)
γ

2

=

 p∑
j=1

λ
(i)
γ,jL

(i)
γ,j + λ(i)

γ L(i)
γ

 · λ(i)
γ L(i)

γ

= 2p
(
p− 2
p

)2

− 4p
(
p− 2
p

)2

= −2p
(
p− 2
p

)2
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It follows that

VΣ · VΣ = −2pm%
(
p− 2
p

)2

− pm2(p− 3)
(
p− 2
p

)2

+ 2pm%
(
p− 2
p

)2

,

which yields our claim.
Finally, equation (6.2.19) follows since SuppV ∩ SuppVΣ = ∅.

�

Next we want to find a divisor Dp of FminN,p , where the invertible sheaf which is associated to
N2Dp is isomorphic to the pullback of the twisting sheaf of Serre β∗OP1

R
(1). Without loss of

generality we continue assuming that S just intersects the component L(1)
1,1 in the special fiber. We

set

Gp =
m−1∑
j=1

p∑
k=1

µj,kL
(1)
j,k + µL(1) , (6.2.23)

where

µ =
1
p
, (6.2.24)

µj,1 =
j(1− p)
mp

+ 1, (6.2.25)

µj,k =
j

mp
, for k 6= 1 . (6.2.26)

Similar to the results in the prime-exponent-case (Lemma 4.2.4) we get now the following
result:

Lemma 6.2.8. Let
Dp = S + Gp , (6.2.27)

where Gp is the vertical divisor in (6.2.23). Then Dp is a divisor of FminN,p which is associated with(
β∗OP1

R
(1)
)⊗ 1

N2
; here β denotes the extension of β : FN → P1 (cf. Remark 6.1.17).

Proof: Analog to the proof of Lemma 4.2.4 we can show that N2S is associated with β∗OP1
K

(1),
where K is the fraction field of R. Since

β∗OP1
R

(1)|FN ∼= β∗OP1
K

(1) ,

it is clear that Dp can be chosen as Dp = S + Gp with a vertical divisor Gp. Again, the divisor Dp

has to fulfill the equations
(N2Dp) · C = 0 (6.2.28)

for all components C which are different from Fm (see e.g. [Liu], p.398: Theorem 2.12. (a)), and

N2 = N2Dp · FminN,p ×SpecR Spec Fp = N2Dp · pFm (6.2.29)

(see e.g. [Liu], p.388: Remark 1.31.). Now, one can use the quantities computed in Theorem 6.1.15
to verify that our choice of Gp in (6.2.23) indeed satisfies the equations (6.2.28) and (6.2.29). �

Corollary 6.2.9. We interpret the divisors Gp as divisors of FminN and denote by S the Zariski-
closure of S in FminN . Then the divisor

D = S +
∑

p bad

Gp (6.2.30)

is associated with (β∗OP1
Z[ζN ]

(1))⊗
1
N2 ; here β denotes the extension of β : FN → P1 (cf. Remark

6.1.17).
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Proof: By the same arguments as in Lemma 4.2.4 and Lemma 6.2.8 we can assume that the
divisor we are looking for is of the form D = S + G with a vertical divisor G with support in
the fibers which are above the bad primes. Analog to the previous lemma we make the following
observation: For a component C which lies in the special fiber above p (here p ∩ Z = p and p|N)
and which is different from the component FN/p, D has to fulfill the equation

(N2D) · C = 0 .

As well, D has to fulfill

N2 = N2D · FminN ×SpecR Spec Fp = N2D · pFN/p .

On the other hand, if we take G =
∑

p bad Gp, then these equations are satisfied, because a
component C which belongs to the fiber above p just intersects Gp. Hence, we have shown that
our choice of the divisor G is the correct one. �

Theorem 6.2.10. Let Kp = (2g − 2)S + V + VΣ be the canonical divisor of FminN,p from Lemma
6.2.6 and Dp = S + Gp the divisor defined in Lemma 6.2.8. We set Fp = 1

2g−2 (V + VΣ). Then

Fp · Fp = −N
4 −N3(p+ 5) +N2(6p+ 2)−N(9p− 15) + 4(N/p)2 − 12(N/p)

(N2 − 3N)2

and
Gp · Gp = −N − p+ 1

N
.

Proof: Since g(FN ) = 1
2 (m2p2 − 3mp+ 2) Lemma 6.2.7 gives us

(2g − 2)2F2
p =V2 + V2

Σ

=−m2(p− 2)2 +
m(p− 2)2

p

+
(
m2p2 − 3mp

p
− m(p− 2)

p

)(
p− 2− m2p2 − 3mp

m

)

− (m− 1)(m2p2 − 3mp)2

m

=− 2m2p2 − 4m2 − 15mp+ 12m+ 5m3p3 − p4m4 + p4m3 − 6m2p3 + 9mp2 .

Now, substituting N = pm gives us the first equation. In order to verify the second equation one
observes that

0 = D · L(1)
j,k = Gp · L(1)

j,k

for all L(1)
j,k with jk 6= 1. As well, we have

0 = D · L(1) = Gp · L(1)

and therefore

Gp · Gp = µ2
1,1

(
L

(1)
1,1

)2

+ µ1,1µ2,1 = −S · µ1,1L
(1)
1,1 =

p− 1
mp

− 1 ,

which completes our proof. �
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Lemma 6.2.11. Let N be a squarefree odd integer with at least two prime factors, and let FminN

be the minimal regular model of the fermat curve FN over Spec Z[ζN ] which was constructed in
Section 6.1. Furthermore, let Sj be a cusp (with respect to the morphism β : FN → P1 in (3.2.12))
which lies above the branch point ∞. For each bad prime p we number the components of FminN,p

so that Sj is the fixed cusp from Notation 6.2.5, and we compute Fp and Gp from Theorem 6.2.10
and Lemma 6.2.8 with respect to this numbering. Let us set

Fj =
∑

p bad

Fp

and
Gj =

∑
p bad

Gp ,

where we interpret the Fp and Gp as divisors of FminN . Then Fj (Gj resp.) fulfills (3.2.2) ( (3.2.3)
resp.).

Proof: For Fj the statement follows directly by Proposition 6.2.4. In case of the Gi we can argue
as follows: the cusp Sj lies above the branch point ∞. The Zariski-closure ∞ of ∞ in P1

Z[ζN ] is
associated with OP1

Z[ζN ]
(1). Hence, the claim follows with Corollary 6.2.9. �

Lemma 6.2.12. In the situation of Lemma 6.2.11 we set F2
p = F2

p and G2
p = G2

p for each prime p
with p|N ; here p is any prime ideal above p and F2

p and G2
p are the numbers computed in Theorem

6.2.10. Then
O(Fj)2 =

∑
p|N

ϕ(N)/ϕ(p)F2
p log p

and
O(Gj)2 =

∑
p|N

ϕ(N)/ϕ(p)G2
p log p .

Proof: We have
O(Fj)2 =

∑
p bad

O(Fp)2 =
∑
p|N

∑
p bad

p∩Z=(p)

O(Fp)2 ,

with O(Fp)2 = F2
p log Nm(p), where F2

p is the number computed in Theorem 6.2.10. For each
prime p let us denote by rp the number of prime ideals of Z[ζN ] that lie above p. For a prime ideal
p with p ∩ Z = (p), we have

rp log Nm(p) = ϕ(N)/ϕ(p) log(p)

(cf. proof of Lemma 5.3.2). For prime ideals of Z[ζN ], that lie above the same prime number p,
the special fibers of FminN are isomorphism, hence it follows that∑

p bad
p∩Z=(p)

O(Fp)2 = rpF2
p log Nm(p) = ϕ(N)/ϕ(p)F2

p log p .

Now, if we sum up over all prime numbers p with p|N , we obtain the formula for O(Fj)2. The
formula for O(Gj)2 can be computed in a similar way. �

Theorem 6.2.13. Let N be a squarefree odd integer with at least two prime factors, and let FminN

be the minimal regular model of the fermat curve FN over Spec Z[ζN ] which was constructed in
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Section 6.1. Then the arithmetic self-intersection number of its dualizing sheaf equipped with the
Arakelov metric satisfies

ω2
FminN ,Ar ≤(2g − 2)

(
log |∆Q(ζN )|Q|2 + [Q(ζN ) : Q](κ1 logN + κ2)

)

+ (2g − 2)
∑
p|N

ϕ(N)
ϕ(p)

3N2 − 2Np− 10N + 6p− 6− 4
(
N
p

)2

+ 12
(
N
p

)
N(N − 3)

 log p ,

where κ1, κ2 ∈ R∗+ are positive constants independent of N .

Proof: In Remark 6.1.17 and Remark 3.2.18 we saw that the morphism β : FminN → P1
Z[ζN ]

is a morphism of arithmetic surfaces as in Assumption 3.2.1 and that the induced morphism
β : FN → P1 fulfills the requirements of Theorem 3.2.2. Analog to the prime exponent case we
have deg β = N2 and β∗∞ =

∑N
i=1NSi, hence bj = bmax = N . It follows that in our case the

formula (3.2.4) of Theorem 3.2.2 becomes∑
p bad

ap log Nm(p) = −2gO(Gj)2 + (2g − 2)O(Fj)2

=
∑
p|N

ϕ(N)
ϕ(p)

(
−2gG2

p + (2g − 2)F2
p

)
log p

=
∑
p|N

ϕ(N)
ϕ(p)

3N2 − 2Np− 10N + 6p− 6− 4
(
N
p

)2

+ 12
(
N
p

)
N(N − 3)

 log p ,

where we used Lemma 6.2.12 for the second equality and Theorem 6.2.10 for the last equality. �

Remark 6.2.14. Notice that the analytic contribution dominates the geometric contribution
again. Since N is a squarefree odd integer and

|∆Q(ζN )|Q| =
Nϕ(N)∏

p|N p
ϕ(N)/(p−1)

(6.2.31)

we have

∑
p bad

ap log Nm(p) =
∑
p|N

ϕ(N)
ϕ(p)

3N2 − 2Np− 10N + 6p− 6− 4
(
N
p

)2

+ 12
(
N
p

)
N(N − 3)

 log p

≤
∑
p|N

ϕ(N)
ϕ(p)

3N
N − 3

log p ≤
∑
p|N

15
4

log p
ϕ(N)
(p−1) (6.2.32)

=
15
4

log(∆−1Nϕ(N)) ∈ O(log(∆−1Nϕ(N))) , (6.2.33)

for the geometric contribution; here ∆ = |∆Q(ζN )|Q|. In order to show the claimed relation of
dominance we just need to show that

ϕ(N)κ1 logN + ϕ(N)κ2 −
∑
p|N

15
4

log p
ϕ(N)
(p−1)
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is positive for big N (N being odd and squarefree). If fact, we will show that∑
p|N

(
κ1 −

15
4(p− 1)

)
log p

is positive since this will imply the previous statement. Let us denote by pi the i-th odd prime
number. Furthermore let l ∈ N be the maximum with κ1 − 15/(4pl − 4) ≤ 0 and k ∈ N the
minimum with

∑l
i=1(κ1 − 15/(4pi − 4)) log pi + (κ1 − 15/(4pk − 4)) log pk > 0. Then, for N with∏k

i=1 pi ≤ N it follows that N must have a prime factor p′ with p′ ≥ pk since N is squarefree.
Hence,

∑
p|N

(
κ1 −

15
(4p− 4)

)
log p ≥

l∑
i=1

(
κ1 −

15
(4pi − 4)

)
log pi +

(
κ1 −

15
(4p′ − 4)

)
log p′ > 0 ,

and the positivity is shown.

Corollary 6.2.15. With the notation from the Theorem 6.2.13 we have the asymptotic bound

ω2
FminN ,Ar ≤ (2g − 2)ϕ(N)(2 + κ1) logN +O(gϕ(N) + g log(∆−1Nϕ(N))) , (6.2.34)

where ∆ = |∆Q(ζN )|Q|.

Proof: In Remark 6.2.14 we have seen that∑
p bad

ap log Nm(p) ∈ O(log(∆−1Nϕ(N))) .

The analytic contribution is

ϕ(N)(κ1 logN + κ2) = ϕ(N)κ1 logN +O(ϕ(N)) .

Finally, the term log |∆Q(ζN )|Q|2 = log ∆2 becomes

log |∆Q(ζN )|Q|2 = 2 logNϕ(N) +O(log(∆−1Nϕ(N)))) .

Now, the statement follows with Theorem 6.2.13. �

Remark 6.2.16. Notice that (6.2.34) is valid for arbitrary squarefree odd integer N , hence odd
prime numbers as well. This follows with (4.2.14) and p = |∆Q(ζp)|Q|−1pϕ(p). However, since in
the prime exponent case the term ϕ(p)κ2 will dominate the term log p, as the size of the prime
numbers increases, it makes sense not to include ϕ(p)κ2 in the “big O”-part. If N is not a prime
number the situation looks different. In this case we neither have ϕ(N) ∈ O(log(∆−1Nϕ(N))) nor
log(∆−1Nϕ(N)) ∈ O(ϕ(N)). In other words, non of the fractions

ϕ(N)
log(∆−1Nϕ(N))

(6.2.35)

and
log(∆−1Nϕ(N))

ϕ(N)
(6.2.36)

is bounded by a constant as N varies over the squarefree odd integers. To see this we will construct
for each fraction a sequence of integers for which there exists no bound. Let us denote by pi the
i-th odd prime number. We define the first sequence of integers by Ni := pipi+1. Now, for (6.2.35)
we obtain

ϕ(Ni)

log(∆−1N
ϕ(Ni)
i )

=
1

log
∏
p|Ni p

1
p−1

>
1

2 log p
1

pi−1

i

,
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hence limi→∞ log(∆−1N
ϕ(Ni)
i )−1ϕ(Ni) = ∞. For the second fraction we define a different se-

quence. Set Ni :=
∏i
j=1 pj . Then

log(∆−1N
ϕ(Ni)
i )

ϕ(Ni)
= log

∏
p|Ni

p
1
p−1 =

i∑
j=1

1
pj − 1

log pj ≥
i∑

j=1

1
pj

=: si .

It is a well known fact of number theory that the sequence (si)i diverges. It follows

lim
i→∞

ϕ(Ni)−1 log(∆−1N
ϕ(Ni)
i ) =∞ .

We see that the relation of domination depends strongly on the factorization of N into prime
numbers.





Chapter 7

Remarks on the Fermat curve for
the remaining cases

With Chapter 4 and Chapter 6 we obtained a description of the minimal regular model of the
Fermat curves FN of squarefree odd exponent N over the ring of integers of the N -th cyclotomic
field. In this chapter we give a few remarks on the situation of the “squarefree even”-case and the
case of non-squarefree exponents. Furthermore, we sketch a different construction of the results
of Section 6.1 and a different general approach.

7.1 The minimal regular model of the Fermat curve for
squarefree even exponent

Let N be a squarefree natural number which is divisible by 2 and FN the Fermat curve of exponent
N . The purpose of this section is to discuss the construction of the minimal regular model of FN
and the differences to the construction of the model in the odd-case. Since we do not restrict
ourselves to the situation that N has at least two different prime divisors we may start our
analyzation with the case N = 2. Again, we would like to work over a number field which contains
the roots of unity in question. However, since the second roots of unity are just 1 and -1 our
number field will be Q and the ring of integers will be Z. The origin of our construction is the
scheme

F0
2 = Proj Z[X,Y, Z]/(X2 + Y 2 − Z2) .

We analyze the affine open subscheme

X = Spec Z[X,Y ]/(X2 + Y 2 − 1) .

Contrary to the odd-case this scheme is normal. This can be easily seen by writing the equation
X2 + Y 2 − 1 as

X2 + Y 2 − 1 = (X + Y − 1)2 + 2(X + Y − 1−XY )

and then by showing that the Ideal I = (X + Y − 1, 2) can be generated by (X + Y − 1) in the
localization with respect to I. A few computations - which are similar to the one in Section 6.1 -
yield that the blowing-up of X along I is covered by

Spec Z[X,Y, Z]/(F1 − 2Z, 2Z2 +X + Y − 1−XY )

and
Spec Z[X,Y,W ]/(WF1 − 2, F1 +W (X + Y − 1−XY )) ,

where F1 = X + Y − 1, and that this scheme is regular. The configuration of the special fiber
is given by a component L, which has multiplicity 2 and self-intersection -1, and components LX
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and LY , which have multiplicity 1 and self-intersection -2. The components LX and LY do not
intersect each other but intersect L transversally. Remembering the situation for odd N one could
ask if there is a third component LZ which cannot be seen in this picture. A symmetry argument
will not work since the scheme X is not isomorphic to X ′ = Spec Z[X,Z]/(X2 + 1− Z2). To see
this one could just verify that X has two singular closed points and X ′ just one. In fact, there is
no third component.

Since the genus of the Fermat curve F2 is 0 we cannot expect that there exists a minimal
regular model (cf. Remark 2.2.8). In fact, if we blow down the (-1)-component L we end up with
the situation that the components LX and LY intersect each other transversally and that both
have multiplicity 1 and self-intersection -1. If we now blow down the component LX we will get
a relatively minimal model which is not isomorphic to the relatively minimal model we get when
we blow down LY . Hence, there does not exist a minimal model of F2.

Let us next consider the case that N is a squarefree even number that has at least two different
prime divisors. Since the genus of this curve is greater than 0 we know that there exists a minimal
regular model (Theorem 2.2.7). If we make the construction of this model fiber by fiber we have
to distinguish between two cases: The construction for a fiber over 2 and the construction for a
fiber over p, where p 6= 2. We start with the latter case, hence N = pm, where 2|m. Most of
the results in Section 6.1 do not use the fact that m is assumed to be odd, hence it should be
possible as well to adapt these results to the current situation. If we consider the fiber above 2
the situation looks slightly different. Here we have N = 2m, where m is a squarefree odd number.
Since exponentiating with 2 does not respect minus signs the results of Subsection 6.1.1 cannot
be applied to this situation. However, in this case we can rewrite the Fermat equation as

XN + Y N − 1 = (Xm + Y m − 1)2 + 2(Xm + Y m − 1−XmY m) .

Analog to the situation of the Fermat curve of exponent 2 we can use this equation to show that
the components of the special fiber over 2 are regular, hence we do not need to normalize in this
part. Another thing which is similar to this situation and different to the odd-case is that the
affine open subschemes Spec Z[ζm][X,Y ]/(X2m+Y 2m−1) and Spec Z[X,Z][ζm]/(X2m+1−Z2m)
are not isomorphic. However, the author conjectures that most of the results in Section 6.1 can
be used after a small modification and that Theorem 6.1.15 remains true for squarefree even
natural numbers with the difference that the model FminN,p for a prime ideal with 2 ∈ p has just 2m
components LXY Z , 4m components Li and no components Lγ and Lδ.

7.2 An alternative way to the results in Section 6.1

In this section the author reviews a different approach to the result of Section 6.1. This approach
was suggested by Franz Király.

The idea is the following: Let Fminp be the minimal regular model of the Fermat curve Fp of
odd prime exponent p which was constructed by William G. McCallum (see Section 4.1 or the
original article [Mc]). We consider the normalization of this scheme in the function field K(FN ) of
the Fermat curve FN of exponent N , where N is a squarefree odd natural number with N = pm
(just as in Section 6.1); this normalization will be denoted by

Y = N(Fminp ,K(FN )) .

It is birational to the minimal regular model FminN of the curve FN and since it is normal there
can be just isolated singularities i.e. all singular points left are closed points. Now, if one can
locate these singular points and determine their desingularization behavior, the model FminN can
be obtained by this information. We sketch how this could possibly be done.

The morphism of curves FN → Fp, which is given by (a : b : c) 7→ (am : bm : cm), induces
a Galois extension K(FN )/K(Fp) of the function fields and in fact Fp can be interpreted as the
quotient curve FGN , where G is this Galois group G(K(FN )/K(Fp)). Furthermore one observes
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that this Galois group operates on the scheme Y as well1, and it follows that the quotient scheme
YG exists since G is finite (cf. [Liu], p.59: Exercise 3.3.23.). Because of the universal property of
the quotient scheme we have a morphism YG → Fminp , and since K(YG) = K(Y)G = K(FN )G =
K(Fp) the uniqueness of the normalization yields that this morphism is in fact an isomorphism.
Now we want to relate the schemes Y and YG. In order to do this let us denote by f the quotient
morphism f : Y → YG = Fminp . Then for an element y ∈ Y we have OYG,f(y) = (OY,y)G. Király
suggests that in this situation a theorem of Serre ([CES], p.352: Theorem 2.3.9.) can be used in
order to verify whether or not y ∈ Y is a singular point2. For that only the knowledge of the
minimal regular model Fminp and the knowledge of the function field K(FN ) is needed. Serre’s
theorem works in this situation since the characteristic of the residue field k(y) (k(f(y)) resp.)
does not divide the order of the group. Furthermore, Király conjectures that the singular points
of Y are tame cyclic quotient singularities in the sense of ([CES], p.351: Definition 2.3.7.). The
desingularization of these singularities is well known.

It is planned by Király and the author to verify this approach and publish the results in a
forthcoming paper.

7.3 Difficulties in the non-squarefree case

Let p be a prime number and Fpk the Fermat curve of exponent pk, where k > 1. If we assume that
one has constructed minimal regular models of these curves for all primes p, then the construction
of minimal regular models of Fermat curves of arbitrary exponent (or at least of exponent of the
form mpk with gcd(p,m) = 1 and m squarefree) should not be a big problem. However, it seems
to be very difficult to say something about the minimal regular model of the curve Fpk . A direct
approach, as it was made by McCallum and the author in the squarefree-case, will probably get
stuck in this case since the complexity of the equations involved increases too rapidly. In order to
make an approach as it is described in Section 7.2 one would need a result similar to the one of
Serre but with the difference that here the characteristic of the residue field divides the order of
the group. As an improvement of Serre’s theorem Király and Lütkebohmert give in [KL] exactly
such result (see [KL], p.2: Theorem 1 and Corollary 3). After constructing a normal model (which
can be done the same way it was done in Section 7.2) their work could be used in order to find the
singularities of this model just by the minimal regular model Fminp and the function field K(Fpk).
However, it seems to be likely that the desingularization of these singularities is complicated, and
it is therefore not clear if this approach can be used in order to find a (easy) construction of the
minimal regular model of Fpk .

7.4 Stable and semi-stable models of the Fermat curve

In this section we sketch an approach how one could possibly obtain a regular model of the Fermat
curve FN once a (semi-) stable model of this curve has been constructed. For example, for Fp,
where p is an odd prime number, a stable model of Fp was given by Hironobu Maeda [Mae1],[Mae2]
and by Jeroen J. van Beele [vB]. In order to use the approach for the Fermat curve of another
exponent one would need to construct the (semi-) stable model of this curve. However, in general
the construction of these models is not easy.

The approach: it is well known that there exists a number field E so that the Fermat curve FN

1 In case of affine schemes this is easy to see. Take for example a ring A with field of fractions Frac(A) = K and
a finite Galois extension L of K. Furthermore let B be the integral closure of A in L and G = (L/K) the Galois
group of the field extension. By definition, for each element b ∈ B there exists a monic polynomial f(T ) ∈ A[T ]
with f(b) = 0. Now, for every σ ∈ G we have 0 = σ(f(b)) = f(σ(b)), hence σ(b) ∈ B. It follows σ(B) = B. For
arbitrary schemes this statement remains true because of the construction of the normalization and the statement
in the affine case.

2Notice, that we cannot apply the theorem of Serre directly since the Galois extension K(FN )/K(Fp) is not
cyclic. However, we can find an intermediate extension so that K(FN )/K(Fp) splits into two cyclic extensions for
which we can use this theorem.
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has a stable model over the ring of integers OE of this number field ([DM])3. Let us assume that
we have found such a stable model over OE . Then one can make a finite étale base change to a ring
R in order to obtain a stable model that only has split ordinary double points (see [Liu], p.510:
Proposition 3.15. and p.514: Corollary 3.22.). Furthermore, if one can determine the thickness of
these singularities then a regular model can be obtained as well (cf. [Liu], p.515: Corollary 3.25.).
Finally, blowing down (−1)-curves will yield a minimal regular model over R.

3In fact, this statement - and therefore the approach - is not restricted to Fermat curves.
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Mass., (1982), 57–70.

[MU] P. Michel, E. Ullmo: Points de petite hauteur sur les courbes modulaires X0(N). Invent.
Math. 131 (1998), 645–674.

[Mi] J. S. Milne: Étale cohomology. Princeton Mathematical Series 33. Princeton University
Press, Princeton, N.J., 1980.

[MB] L. Moret-Bailly: Métriques permises. Astérisque 127 (1985), 29–87.
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