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Abstract. In this article we improve the upper bound for the arithmetic self-intersection
number of the dualizing sheaf of the minimal regular model for the Fermat curves Fp of
prime exponent, given by the second author in [Kü2].
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0. Introduction

The main motivation of Arakelov to develop an arithmetic intersection theory was the idea
of proving the Mordell conjecture by mimicking the proof in the function field case done by
Parshin [Pa1]. Let E be a number field. A central step in this program relies on suitable
upper bounds for the arithmetic self-intersection number ωAr

2, where ωAr is the dualizing
sheaf ωX = ωX/OE ⊗ f ∗ωOE/Z equipped with the Arakelov metric (see [Ar], p.1177, [MB1],
p.75), of an arithmetic surface X → SpecOE that varies in certain complete families (cf.
[Pa2], [MB2], or Vojta’s appendix in [La]). However finding such bounds turned out to be
an intricate problem. The best results obtained so far give asymptotics or upper bounds
for ωAr

2 on regular models for certain discrete families of curves as modular curves (see
[AU], [MU], [JK1] and [Kü2]) and Fermat curves (see [Kü2]). Bounds for these curves have
been asked for since the beginning of Arakelov theory (see e.g. [La], p. 130 or [MB2], 8.2).
In this article we improve the upper bound of ωAr

2 for Fermat curves Fp of prime exponent.
Our calculations rely on a careful analysis of the cusps behaviour above the prime p. This
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allows us to compute exactly the “algebraic contributions” of a formula for ωAr
2 in [Kü2].

We also take into account the difference between the minimal regular model Fminp and the
regular model Fp constructed in [Mc], i.e. the minimal desingularisation of the closure in
P2

Z[ζp] of the Fermat curve xp + yp = zp with prime exponent p. This leads to the following

result.

Theorem 0.1. Let π : Fminp → Spec Z[ζp] be the minimal regular model of the Fermat curve
Fp : xp + yp = zp of prime exponent and genus g. Then the arithmetic self-intersection
number of its dualizing sheaf equipped with the Arakelov metric satisfies

ω2
Fminp ,Ar ≤ (2g − 2)

(
log |∆Q(ζp)|Q|2 + [Q(ζp) : Q] (κ1 log p+ κ2) +

3p2 − 14p+ 15

p(p− 3)
log p

)
,

where κ1, κ2 ∈ R∗+ are positive constants independent of p.

Proof: See Theorem 8.4. �

It is a well known fact that ∆Q(ζp)|Q = (−1)
p−1
2 pp−2 and [Q(ζp) : Q] = p−1 and so Theorem

0.1 yields

ω2
Fminp ,Ar ≤ (2g − 2)

(
(p− 1) (κ1 log p+ κ2) +

2p2 − p− 5

p
log p

)
.

In comparison to previous results in [Kü2] our explicit calculation of the algebraic con-
tributions reduces the maximal possible growth of ω2

Fminp ,Ar as a function in p by a factor

g(Fp)p
6. In the forthcoming thesis of the first named author the more general case of

Fermat curves with squarefree exponents will be considered.

1. Intersection theory for arithmetic surfaces

We start by reminding some notation used in the context of Arakelov Theory. Most of it
will be very similar to the notation used in [So].

Definition 1.1. An arithmetic surface X is a regular integral scheme of dimension 2
together with a projective flat morphism f : X → SpecOE, where OE is the ring of integers
of a number field E. Moreover we assume that the generic fiber XE = X ×SpecOE SpecE of
f is geometrically irreducible, i.e. X is a regular model for XE over SpecOE. We denote the
complex valued points X (C) by X∞; this is a compact, 1-dimensional, complex manifold,
which may have several connected components. Actually we have the decomposition

X∞ =
∐

σ:E↪→C

Xσ(C) ,

where Xσ(C) denotes the set of complex valued points of the curve Xσ = X ×SpecE,σ Spec C
coming from the embedding σ : E ↪→ C. For each s ∈ SpecOE we define the fibre above
s as Xs := X ×SpecOE Spec k(s). We have X(0) = XE. Any point s 6= (0) will be called a
closed point and the corresponding fibre Xs a special fibre.
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Remark 1.2. Let f : X → SpecOE be an arithmetic surface in the sense of Definition
1.1. Due to the fact that SpecOE is Noetherian and that f is of finite type it follows that
X is Noetherian as well.

Definition 1.3. We denote by Z1(X ) the group of Weil divisors of X , by Cl(X ) the divisor
class group of X i.e. the group of Weil divisors divided by the subgroup of principal divisors
R1(X ), and by Pic(X ) the Picard group of X .

Remark 1.4. Since X is a regular Noetherian integral scheme, the divisor class group
Cl(X ) of X is isomorphic to the Picard group Pic(X ) (see [Li2], p.257: Corollary 1.19 and
p.271: Proposition 2.16). Let us denote by g′ the canonical surjection g′ : Z1(X )→ Cl(X )
and by g the isomorphism g : Cl(X )→ Pic(X ). For any divisor D ∈ Z1(X ) we denote the
corresponding invertible sheaf (g ◦ g′)(D) by OX (D).

Definition 1.5. We set Cl(X )Q = Cl(X )⊗Z Q. Obviously Cl(X )Q is a group again. The
difference is that we are now allowed to work with divisors with rational coefficients. We
will use Z1(X )Q and Pic(X )Q for the analog construction for the group of Weil divisors
and the Picard group. The morphisms g′, g of Remark 1.4 extend to morphisms g′Q :=
g′⊗ idQ, gQ := g⊗ idQ of the groups Z1(X )Q,Cl(X )Q and Pic(X )Q. Again, for D ∈ Z1(X )Q
we will denote by OX (D) its image with respect to gQ ◦ g′Q in Pic(X )Q.

Lemma 1.6. Let f : X → SpecOE be an arithmetic surface and s ∈ SpecOE a closed
point. Then

Xs =
1

m
div(h)

in Z1(X )Q, where Xs = f ∗s, h ∈ K(X ) and m ∈ Z.

Proof: We know that the divisor class group Cl(SpecOE) is finite and so we can find
a positive integer m and a rational function g ∈ K(SpecOE) with the property that
m · s = div(g). Since X is regular it follows that f ∗s = Xs (see [Li2], p.351: Lemma 3.9)
and so f ∗(m · s) = m · Xs = div(h) for a h ∈ K(X ). Now, in Z1(X )Q we may divide this
equation by m and the lemma is proven. �

Definition 1.7. Let D, E be effective divisors without common component, x ∈ X a
closed point and f , g local equations of D, E in the local ring OX ,x. Then we define the
intersection number ix(D, E) in x as the length of OX ,x/(f, g) as a OX ,x-module. The
symbol ix(D, E) is bilinear and so we may extend the intersection number to all pairs of
divisors of X that have no common component (just write D as D+ − D− with D+ and
D− effective and then define ix(D, E) := ix(D+, E)− ix(D−, E)). Now let s ∈ SpecOE be a
closed point. The intersection number of D and E above s is then defined as

is(D, E) :=
∑
x∈Xs

ix(D, E)[k(x) : k(s)] ,

where x runs through the closed points of Xs and k(x), k(s) denote the residue class field
of x, s respectively. If it is clear from the context which intersection number we compute
(above which s), we simply write D · E .
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Definition 1.8. Let s ∈ SpecOE be a closed point and E a vertical divisor contained in
the special fiber Xs. According to the moving lemma (see e.g. [Li2], p.379: Corollary 1.10)
there exists a principal divisor (f) so that D := E+(f) and E have no common component.
Since (f) · E = 0 (see. e.g. [La], p.58: Theorem 3.1.) we may define the self-intersection
of E as

E2 := D · E .

Remark 1.9. Another possible way to define E2 can be done via cohomological methods
(see e.g. [De]).

2. Canonical divisors on an arithmetic surface

Let f : X → SpecOE be an arithmetic surface in the sense of Definition 1.1. As f is a
local complete intersection (see [Li2], p.232: Example 3.18.), we can define the canonical
sheaf ωX/SpecOE of f : X → SpecOE (see e.g. [Li2], p.239: Definition 4.7.).

Remark 2.1. Since the scheme SpecOE is a locally Noetherian scheme and f is a flat pro-
jective local complete intersection of relative dimension 1, the canonical sheaf is isomorphic
to the 1-dualizing sheaf (see [Li2], p.247: Theorem 4.32.).

Definition 2.2. We call any divisor K of X with OX (K) ∼= ωX/ SpecOE a canonical divisor.
This divisor exists because of Remark 1.4.

Remark 2.3. By abuse of language we call a divisorK ∈ Z1(X )Q withOX (K) = ωX/ SpecOE
in Pic(X )Q a canonical divisor as well.

Remark 2.4. Let s ∈ SpecOE be a closed or the generic point. For each fibre Xs →
Spec k(s) we get a canonical sheaf ωXs/ Spec k(s). We have the relation ωXs/ Spec k(s)

∼=
ωX/SpecOE |Xs (see [Li2], p.239: Theorem 4.9). If s is the generic point we can define a
canonical divisor K of X := X ×SpecOE SpecE in the same way we did with the arithmetic
surface. Similar to the relation between the canonical sheaves we get K|X ∼= K.

Now let E be a vertical divisor contained in a special fiber Xs and K a canonical divisor on
X . Since any other canonical divisor is rationally equivalent to K the intersection number
K · E depends uniquely on ωX/OSpecE

and not on the choice of a representative K. We have
the following important theorem:

Theorem 2.5 (Adjunction formula). Let f : X → SpecOE be an arithmetic surface,
s ∈ SpecOE a closed point and E a vertical divisor contained in the special fiber Xs. Then
we have

(2.1) 2pa(E)− 2 = E2 +K · E ,
where pa(E) is the arithmetic genus of E.

Proof: See [Li1] Theorem 3.2. �

Later on it will be important to construct the canonical divisor explicitly. The following
proposition will help us with that.
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Proposition 2.6. Let C ∈ Z1(X )Q be a divisor on X which satisfies the adjunction formula
(2.1) and whose restriction to the generic fibre X is a canonical divisor of X. Then C is a
canonical divisor on X .

Proof: Let K be a canonical divisor on X (we already know that it exists). We want to
show that K ∼ C and so that C is a canonical divisor as well. We denote the horizontal part
of the divisors by Kh and Ch. Since the restriction to the generic fibre of both divisors is
a canonical divisor of X we have K|X = Kh|X ∼ Ch|X = C|X and so there exists a rational
element g ∈ K(X), which yields K|X −div(g) = C|X . Because we have K(X) ∼= K(X ), we
can interpret g as an element of K(X ) and so obtain a principal divisor whose restriction to
X is div(g). We denote this principal divisor by div(g) as well. If we now set C ′ := C+div(g)
we get a divisor with the properties that C ′ ∼ C and C ′h = Kh. Since we are just interested
in C up to rational equivalence we may assume from now on that the horizontal part of C
is the same as the one of K.
Let s ∈ SpecOE be a closed point and Xs the fibre above it. We denote by Ks and Cs the
vertical divisor of K and C which have support in Xs. Since K and C fulfill the adjunction
formula and have the same horizontal part we have

0 = (Ks − Cs) · (K − C) = (Ks − Cs) · (Ks − Cs) .

and so Ks−Cs = qXs, where q is a rational number (see [La], p.61: Proposition 3.5.). Now,
according to Lemma 1.6, we find m ∈ Z and h ∈ K(X ) so that Ks − Cs = qXs = q

m
div(h)

and so we have Ks = Cs in Cl(X )Q. If we set C ′ := C + q
m

div(h) we have just changed the

components of C with support in Xs. Again, we have C ′ ∼ C and now Kh +Ks = C ′h + C ′s.
Continuing successively with the other closed points of SpecOE we arrive at a divisor C ′′

with C ′′ = K and C ′′ ∼ C as we claimed at the beginning. �

Remark 2.7. The Proposition 2.6 uses the fact that in Z1(X )Q the special fibres are
divisors coming from functions (see Lemma 1.6). In other words, the canonical divisor in
the sense of Remark 2.3 is only defined up to rational multiples of principal divisors and
therefore in particular defined only up to special fibres (in Z1(X )Q).

3. Arithmetic intersection numbers for hermitian line bundles

Definition 3.1. A hermitian line bundle L = (L, h) is a line bundle L on X together with
a smooth, hermitian metric h on the induced holomorphic line bundle L∞ = L ⊗Z C on
X∞. We denote the norm associated with h by || · ||. Two hermitian line bundles L,M on
X are isomorphic, if

L ⊗M
−1 ∼= (OX , | · |) ,

where | · | denotes the usual absolute value. The arithmetic Picard group P̂ic(X ) is the
group of isomorphy classes of hermitian line bundles L on X , the group structure being
given by the tensor product.
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Definition 3.2. Let L,M be two hermitian line bundles on X and l,m non-trivial, global
sections, whose induced divisors div(l) and div(m) on X have no horizontal component in
common. Then we define the intersection number at the finite places (l.m)fin of l and m
by the formula

(l.m)fin :=
∑
x∈X

log ] (OX ,x/(lx,mx)) =
∑
x∈X

ix(div(l), div(m)) log |k(x)|

=
∑

s∈SpecOE

(∑
x∈Xs

ix(div(l), div(m))[k(x) : k(s)]

)
log |k(s)| ,

where lx and mx are local equations of l and m at the point x ∈ X ; the sum runs through
the closed points x of X .
The sections l and m induce global sections on L∞ and M∞, which we denote by abuse
of notation again by l and m. We assume that the associated divisors div(l) and div(m)
on X∞ have no points in common. Writing div(l) =

∑
α pαPα with pα ∈ Z and Pα ∈ X∞,

we set

(log ||m||)[div(l)] :=
∑
α

pα log ||m(Pα)|| ,

where || · || is the norm which is associated to the metric ofM∞. The intersection number
at the infinite places (l.m)∞ of l and m is now given by the formula

(3.1) (l.m)∞ := −(log ||m||)[div(l)]−
∫
X∞

log ||l|| · c1(M) ,

where the first Chern form c1(M) ∈ H1,1(X∞,R) of M is given, away from the divisor
div(m) on X∞, by

c1(M) = ddc(− log ||m(·)||2) ;

the integral in (3.1) has to be understood as integrating with respect to the extension of
c1(M) to all of X∞. We define the arithmetic intersection number L.M of L and M by

(3.2) L.M := (l.m)fin + (l.m)∞ .

For general L and M we can choose line bundles Li and Mj (i, j = 1, 2) for which non-
trivial global sections exist, such that Li has disjoint global sections withMj for i, j = 1, 2
and

(3.3) L ∼= L1 ⊗ L⊗−1
2 ,M∼=M1 ⊗M⊗−1

2 .

We provide Li∞ and Mj∞ with metrics in such a way that the equivalences in (3.3) are

isometries. Then we define L.M by linearity. The arithmetic self-intersection number of
L is given by L.L.

Theorem 3.3 (Arakelov, Deligne et al.). Formula (3.2) induces a bilinear, symmetric
pairing

P̂ic(X )× P̂ic(X )→ R .
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Proof: See for example [So]. �

Remark 3.4. Theorem 3.3 is a generalisation, essentially due to Deligne, of the arithmetic
intersection pairing, invented by Arakelov, where only hermitian line bundle, whose Chern
forms are multiples of a fixed volume form, are considered.

If the genus of X is greater than one, then for each σ we have on Xσ(C) the canonical
volume form

νσcan(z) =
i

2g

∑
j

|fσj |2dz ∧ dz,

where fσ1 (z)dz, ... fσg (z)dz is an orthonormal basis of H0(Xσ(C),Ω1) equipped with the
natural scalar product. We write νcan for the induced volume form on X∞ and for ease of
notation we set

O(D) = O(D)νcan .

Here the norm of the section 1D of O(D) is given by ‖1D‖ = g(D, ·) where g is the canonical
green function (see e.g. [La]).
Due to Arakelov is the observation that there is a unique metric ‖ · ‖Ar on ωX such that
for all sections P of X it holds the adjunction formula

ωAr.O(P ) +O(P )2 = log |∆E|Q|,(3.4)

where ωAr = (ωX , ‖ · ‖Ar). Moreover ωAr is a νcan-admissible line bundle (see [Ar], p.1189
ff.).

Remark 3.5. In Remark 2.7 we saw that the canonical divisor is in particular only defined
up to rational multiples of the special fibres. Because of formula (3.4) this indeterminacy
will be deleted by the norm of the section.

Convention 3.6. Analog to the first and second section we will allow rational coefficients

for P̂ic(X ). The corresponding group will be denoted by P̂ic(X )Q. Furthermore, we will
extend the arithmetic intersection numbers to this group. Unless otherwise specified, we
will always assume to work with rational coefficients.

Assumption 3.7. Let Y → SpecOE be an arithmetic surface and write Y for its generic
fiber. We fix Q,P1, ..., Pr ∈ Y (E) such that Y \ {Q,P1, ..., Pr} is hyperbolic. Then we
consider any arithmetic surface X → SpecOE equipped with a dominant morphism of
arithmetic surfaces β : X → Y such that the induced morphism β : X → Y of algebraic
curves defined over E is unramified above Y (E) \ {Q,P1, ..., Pr}. Let g ≥ 2 be the genus
of X and d = deg(β). We write β∗Q =

∑
bjSj and the points Sj will be called labeled.

Set bmax = maxj{bj}. Divisors on X with support in the labeled points are called labeled.
Finally, a prime p is said to be bad if the fiber of X above p is reducible1.

1note that a prime of bad reduction need not be a bad prime
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Theorem 3.8. Let β : X → Y be a morphism of arithmetic surfaces as in Assumption
3.7. Assume that all labeled points are E-rational points and that all labeled divisors of
degree zero are torsion, then the arithmetic self-intersection number of the dualizing sheaf
on X satisfies the inequality

ω2
Ar ≤ (2g − 2)

(
log |∆E|Q|2 + [E : Q] (κ1 log bmax + κ2) +

∑
p bad

ap log Nm(p)

)
,(3.5)

where κ1, κ2 ∈ R∗+ are positive constants that dependent only on Y and the points Q,P1, ..., Pr.
The coefficients ap ∈ Q are determined by certain local intersection numbers (see formula
(3.6) below).

Proof: See [Kü2] Theorem I. The method of proof uses classical Arakelov theory, as well
as generalized arithmetic intersection theory (see [Kü1]), which allows to use a refinement
of a result of Jorgenson and Kramer [JK2]. �

Definition 3.9. To keep the notation simple, we write Sj for the Zariski closure in X of
a labeled point Sj. Let K be a canonical divisor of X , then for each labeled point Sj we
can find a divisor Fj such that(

Sj + Fj −
1

2g − 2
K
)
· C = 0

for all vertical irreducible components C of X . Similarly we find for each labeled point Sj
a divisor Gj such that also for all C as before(

Sj + Gj −
1

d
β∗Q

)
· C = 0 .

Notice that we can choose Fj and Gj to have support in the fiber above the bad primes
(Lemma 1.6). The rational numbers ap in Theorem 3.8 are determined by the following
arithmetic intersection numbers of trivially metrised hermitian line bundles∑

p bad

ap log Nm(p) = −2g

d

∑
j

bj O(Gj)2 +
2g − 2

d

∑
j

bj O(Fj)2.(3.6)

Remark 3.10. Since the divisors Gj and Fj are vertical the hermitian line bundles O(Gj)
and O(Fj) have a trivial metric. In order to indicate this circumstance we will write O(Gj)
and O(Fj) instead of O(Gj) and O(Fj). The intersection number at the infinite places
of O(Gj)2 and O(Fj)2 is zero, and so the computation of (3.6) becomes a pure algebraic
problem.

4. Fermat curves and their natural Belyi uniformization

For the rest of this article we will consider the Fermat curve

Fp : Xp + Y p = Zp,



ARITHMETIC SELF-INTERSECTION NUMBERS FOR FERMAT CURVES OF PRIME EXPONENT 9

where p > 3 is prime number, together with the natural morphism

β : Fp → P1(4.1)

given by (x : y : z) 7→ (xp : yp). Since the morphism β is defined over Q, it is defined over
any number field. It is a Galois covering of degree p2 and, since there are only the three
branch points Px = (0 : 1), Py = (1 : 0) and Pz = (1 : −1), it is a Belyi morphism. All the
ramification orders equal p. In [MR] Murty and Ramakrishnan give the associated Belyi
uniformisation Fp(C) \ β−1{Px, Py, Pz} ∼= ΓP \ H. The subgroup ΓP of Γ(2) is given by
Γp = kerψ where ψ : Γ(2) → Z/pZ × Z/pZ maps the generators of Γ(2) to the elements
(1, 0) and (0, 1).
The ramification points of β are defined over Q(ζp). A ramification point that maps to Px is
of the form (0 : ζ ip : 1) and we denote it by Sx; this abuse of notation will be justified by the
Lemma 6.2 below, which shows that the properties of Sx, relevant for our considerations,
do not depent on the exponent i. Similar we denote by Sy (resp. Sz) a preimage of Py
(resp. Pz), they are of the form (ζ ip : 0 : 1) (resp. (ζ ip : −1 : 0)). A ramification point
will also be called a cusp. Divisors with support in the cusps having degree zero are called
cuspidal divisor.

Proposition 4.1. Let Fp a Fermat curve and β : Fp → P1 the morphism in (4.1).

(i) The group of cuspidal divisors generate a torsion subgroup of Cl(Fp).
(ii) Let S ∈ Fp(Q(ζp)) be a cusp, then (2g − 2)S is a canonical divisor.

Proof: The first statement follows from [Ro], p. 101: Theorem 1. So only the second
statement is left. By the Hurwitz formula there exists a canonical divisor with support in
the cusps. Then by (i) the claim follows. �

5. A regular model and the minimal model for Fp

In this section we are going to sketch the construction done by McCallum [Mc] of a regular
model and the minimal model of the curve Fp : xp + yp = zp over S = SpecR, where
R = Zp[ζp] denotes the ring of integers of the field Qp(ζp) and ζp a primitive p-th root of
unity. In order to simplify our computations we may consider the curve

(5.1) Cp : xp + yp = 1

in A2
S because the model, we are starting with, is just the normalization of the projective

completion of Cp. Let (π) := (1 − ζp) be the prime ideal which is lying above (p); in
fact since p is totally ramified in Qp(ζp) we have p = uπp−1 with an element u ∈ Zp[ζp]

∗.
Reduction modulo p gives us a p-tuple line which is non-regular. Moving this line to the
x-axis, or in other words setting

(5.2) X = x and Y = y + x− 1 ,

equation (5.1) becomes

−uπp−1φ(X,−Y − 1) + uπp−1φ(Y ) + Y p = 0 ,
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where

φ(X, Y ) :=
(X + Y )p −Xp − Y p

p
and φ(X) := φ(X, 1). Now, by blowing up the line π = Y = 0, one obtains a model which
is covered by the two affine open sets: we introduce new variables a and b. Setting b = π

Y
,

we have U1 = Spec (R[X, Y, b]/(bY − π, F1(X, Y ))) where

F1(X, Y ) = −ubp−1φ(X,−Y − 1) + ubp−1φ(Y ) + Y ;

setting a = Y
π

the second affine open set is U2 = Spec (R[X, Y, a]/(aπ − Y, F2(X, Y )))
where

F2(X, Y ) = −uφ(X,−Y − 1) + uφ(Y ) + πap .

The geometric special fibre U1 ×S Spec k(π) ∪ U2 ×S Spec k(π) of this model consists
of a component L (which is located just in U1 and associated to the ideal (Y , b) in
R[X, Y, b]/(bY − π, F1(X, Y )) and components Lx, Ly, Lα1 , . . . , Lαr , Lβ1 , . . . , Lβs which in-
tersect L and correspond to the different roots of the polynomial

φ(X,−1) = −X(X − 1)
r∏
i=1

(X − αi)2

s∏
j=1

(X − βj) ;

we have α ∈ k(π), α 6= 0, 1 and β /∈ k(π). The Lαi appear with multiplicity 2 whereas all
other components with multiplicity 1. There is also a line Lz crossing the point at infinity
on L, which we cannot see in this affine model. There are just singularities left on the
double lines Lαi . Blowing up these singularities we achieve new components Lαi,j crossing
Lαi . All components have genus 0. For later applications we define the index set

(5.3) I := {x, y, z, βi, αj, αj,k, . . .} .
Let us denote the model we achived by Fp. The scheme Fp is a regular model and its

geometric special fibre Fp ×SpecR Spec k(π) corresponding to (π) has the configuration as
in figure 1 where all components of the fibre have genus 0 and the pair (n,m) indicates the
multiplicity n and the self-intersection m of the component ([Mc], Theorem 3.).

LzLx Ly

. . . L

Lα1,j
Lαr,j

.

.

.

.

.

.

.

.

.

.

.

.

(1,−2) (1,−2)

(1,−2)

(1,−2)

(1,−2)

(1,−2)

(1,−p)

Lβ1 . . . Lβs

(p,−1)

. . .

. . .
(1,−p)(2,−p)

Lα1 Lαr. . .

Figure 1. The configuration of the geometric special fibre Fp ×SpecR Spec k(π).
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Remark 5.1. If we now blow down the curve L (which is the only one with self-intersection
−1), we get the minimal regular model Fminp (see [Ch], p.315: Theorem 3.1).

Remark 5.2. A regular model over Z[ζp] can be obtained by glueing the model Fp over
S and the smooth model of Fp over Spec Z[ζp] \ {(π)}. We will denote this model as well
by Fp. According to Remark 5.1 there is just one prime of bad reduction, namely (π) (cf.
[Li2], p.462: Proposition 1.21. (b)). This is the only bad prime of the scheme Fp.

Theorem 5.3. The morphism β : Fp → P1 extends to a morphism of arithmetic surfaces

β : Fp → P1
Z[ζp].

Moreover, the assumptions of Theorem 3.8 are fulfilled, if we choose Px, Py or Pz as the
distinguished point Q in Assumption 3.7.

Proof: The morphism β : Fp → P1 obviously extends to a morphism of models β : F0
p →

P1
Z[ζp], where F0

p = Proj Z[ζp][X, Y, Z]/(Xp + Y p − Zp). Since we where just performing

a sequence of blow-ups in order to obtain Fp from F0
p, it also extends to a morphism

β : Fp → P1
Z[ζp]. Now P1 \ {Px, Py, Pz} is hyperbolic and since β : Fp → P1 has only the

three branch points Px, Py and Pz it is unramified above P1 \ {Px, Py, Pz}. Furthermore,
since β is non-constant its extension is a dominant morphism as in Assumption 3.7. Finally
it follows with Proposition 4.1 (a), that, if we choose any of the points Px, Py or Pz as the
point Q, the labeled divisor of degree zero are torsion. �

Convention 5.4. We make for the rest of this work the convention that Q = Px.

Remark 5.5. Because of symmetry we could have chosen Q = Py or Q = Pz in Convention
5.4 as well. Then, some of the following computations in this work would have to be done
with respect to this choice.

The rest of this paper is devoted to calculate the quantities ap in Theorem 3.8.

6. Extensions of cusps and canonical divisors on Fp

Definition 6.1. If we take the Zariski-closure of a cusp Sx in Fp, we get a horizontal
divisor, which we denote by Sx. Again, similar for y and z.

For any two divisors D and E of Fp we say that D intersects E , if suppD ∩ supp E 6= 0.

Proposition 6.2. Let S and S ′ be horizontal divisors of Fp coming from different cusps
S and S

′
on Fp. Then the following properties are true:

(i) S does not intersect S ′.
(ii) If S = Sx (resp. Sy,Sz), then S only intersects the component Lx (resp. Ly, Lz)

in the special fiber Fp ×Spec Z[ζp] Spec k(π) (see figure 2).
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Lx LzLy

. . .L

Sx

S
′
x

Sy

Figure 2. The divisors Sx,S
′
x and Sy, where S ′x is coming from another

cusp of the form (0 : ζjp : 1).

Proof: For the proof, we need to work with the explicit description of the regular
model Fp. So if we talk about a cusp in the following, we will mean a point of the
form (0 : ζ ip − 1 : 1) ((ζ ip : ζ ip − 1 : 1) resp.) which is just Sx (Sy resp.) after the
transformation (5.2). For any element in the ring Z[ζp][X, Y, b] (Z[ζp][X, Y, a] resp.) we
will denote by a bar the corresponding element in the ring Z[ζp][X, Y, b]/(bY −π, F1(X, Y ))
(Z[ζp][X, Y, a]/(aπ − Y, F2(X, Y )) resp.).
Now let S,S ′ be two horizontal divisors on Fp associated with cusps S, S

′
and let Q ∈

suppS ∩ suppS ′ be a point. We will denote by m the maximal ideal corresponding to
Q. If the cusps lie above different branch points, for example S = (0 : ζ ip − 1 : 1) and

S
′

= (ζjp : ζjp − 1 : 1), we have X,X − ζjp ∈ m. But then ζjp ∈ m which is impossible since

ζjp is a unit. So let S and S
′

lie above the same branch point. Without loss of generality
we may assume S = (ζ ip : ζ ip − 1 : 1) and S

′
= (ζjp : ζjp − 1 : 1). It is a basic result from

number theory that (ζ ip − 1)/π is a unit in Z[ζp] if i 6≡ 0 mod p. We will denote this unit
by εi. If Q is a point in the fibre Fp ×Spec Z[ζp] Spec k(q), where q ∈ Spec Z[ζp], then q ⊆ m.

On the other hand since X − ζ ip, X − ζ
j
p ∈ m we have ζ ip − ζjp = ζ ip(1− ζj−ip ) = ζ ipεj−iπ and

so (π) ⊆ m. Now if q is different from (π) and so in particular coprime to (π) we have
1 ∈ m which gives us a contradiction again. It follows that the only possibility for Q to be
in a special fibre is to be in the fibre of bad reduction Fp ×Spec Z[ζp] Spec k(π). Now since

S and S
′

are Q(ζp)-rational points S and S ′ are reduced to single points P and P
′

in this
fibre. A direct computation shows that

M =
(
X − ζ ip, π, a− εi

)
and

M
′
=
(
X − ζjp , π, a− εj

)
are the ideals corresponding to these points. If we take a look at the affine open set U2,
described in the previous section, we can easily verify that M and M

′
are indeed maximal
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ideals and that S and S ′ are reduced to these points in the fibre of bad reduction since

π (a− εi) = Y − ζ ip + 1

and π (a− εj) = Y − ζjp + 1. Now if P = P
′
= Q we have

εi − εj =
ζ ip − 1

π
−
ζjp − 1

π
=
ζ ip − ζjp
π

=
ζ ip(1− ζj−ip )

π
= ζ ipεj−i .

and so ζ ipεj−i ∈ m. But since ζ ipεj−i ∈ Z[ζp]
∗, this gives us a contradiction and we have

completed the proof of (i).
Now let S = (0 : ζ ip−1 : 1), so S is Sx after the transformation (5.2). Again S∩Fp×Spec Z[ζp]

Spec k(π) is reduced to a single point P . Let M be the corresponding maximal ideal, so
M = (X, π, a− εi). The irreducible component Lx corresponds (in U2) to the prime ideal
I = (π,X). Obviously I ⊂ M and so P is just in the component Lx in the fibre of bad
reduction (remember that the component L does not lie in U2). Since S is only reduced to
P it only intersects Lx. Similar computations for Sy and Sz yield (ii). �

Lemma 6.3. Let Fp → Spec Z[ζp] be the arithmetic surface constructed above. There exists
a canonical divisor C ∈ Z1(Fp)Q = Z1(Fp)⊗Z Q on Fp of the form

C = (2g − 2)S + V ,

where S is a horizontal divisor coming from a cusp, g = g(Fp) is the genus of Fp and V
denotes a vertical divisor having support in the special fibre Fp ×Spec Z[ζp] Spec k(π).

Proof: It follows from Proposition 4.1 that

(2g − 2)S

is a canonical divisor in Z1(Fp)Q, where S is any cusp. If we now set

C0 := (2g − 2)S + V0 ,

where S is the Zariski closure of S and V0 is a sum of divisors, having support in the
closed fibres, so that C0 fulfills the adjunction formula, then C0 is a canonical divisor of
Fp (see Proposition 2.6). Note that similar arguments, as in the proof of Proposition 2.6,
assure that V0 exists. For all primes q ∈ Spec Z[ζp] not dividing p - in fact these are
the primes of good reduction - the special fibre Fp ×Spec Z[ζp] Spec k(q) is smooth and so it
consists of a single irreducible component. Since the self-intersection of this fibre is zero
(see [La]: p.61: Proposition 3.5.) we can add any multiple of it to C0 and the resulting
divisor still fulfills the adjunction formula. Using this fact we can transform C0 into a
divisor C = (2g− 2)S + V , where V is a vertical divisor having support in the special fibre
over π. Again, by Proposition 2.6, this is a canonical divisor. �

Now we are ready to compute the canonical divisor for the model Fp. In the previous
lemma we saw that such a divisor can be constructed with a horizontal divisor S coming
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from a cusp and vertical divisors having support in the fibre of bad reduction. Now let Sx
be a cusp,

(6.1) Vx = λxLx + λyLy + λzLz

and

(6.2) VΣ =
r∑
i=1

(
p∑
j=1

λαi,jLαi,j + λαiLαi

)
+

s∑
i=1

λβiLβi ,

where

λx =

(
2g − p
p

)
,(6.3)

λy = λz = λβi = λαj,k = −
(
p− 2

p

)
for all i = 1, . . . , s and j = 1, . . . , r ,(6.4)

λαj = −2

(
p− 2

p

)
for all j = 1, . . . , r .(6.5)

Then we claim that the divisor Cx given by

(6.6) Cx = (2g − 2)Sx + Vx + VΣ

is a canonical divisor. Notice that L is not included in Cx, since it is modulo the full fiber
just a linear combination of the other components.

Lemma 6.4. The divisor Cx in (6.6) is indeed a canonical divisor.

Proof: From Lemma 6.3 we know that there exists a canonical divisor of the form (6.6)
with (6.1) and (6.2) for some coefficients λ. The only thing we need to do is to show that
for these λ is no other choice possible than the one we made in (6.3), (6.4) and (6.5). So
the whole idea of the proof is the repeating use of the adjunction formula (see [Li2], p.390:
Theorem 1.37) combined with the fact that the genus of the components of the special
fibre is zero (see [Mc], p.59: Theorem 3) to approve the choice we made. We start with
the observation

(6.7) 2λαi,j = λαi .

Indeed, according to the adjunction formula L2
αi,j

+Cx ·Lαi,j = 2g(Lαi,j)−2 and L2
αi,j

= −2

(see previous section), we have

0 = Lαi,j · Cx = Lαi,j ·

(
p∑
l=1

λαi,jLαi,j + λαiLαi

)
= λαi,j(−2) + λαi .

Now using (6.7) and the formula for Lαi , we get

p− 2 = Lαi · Cx =

p∑
j=1

λαi,j + λαi(−p) =
p

2
λαi − pλαi = −p

2
λαi .



ARITHMETIC SELF-INTERSECTION NUMBERS FOR FERMAT CURVES OF PRIME EXPONENT 15

Similar computations yield λy, λz and the λβi . Finally, one observes that

p− 2 = Cx · Lx = (2g − 2)Sx · Lx + λxL
2
x = (2g − 2) + λx(−p)

and with this we finish our proof. �

With a view to this lemma we see that the vertical part of two divisors coming from cusps
that lie over different branch points, say Cx and Cy, just differs in the parts Vx and Vy.

7. The algebraic contributions to ωAr
2

We now calculate certain intersection numbers, which will be used later to complete the
computations of the coefficient ap.

Lemma 7.1. For VΣ given in (6.2) we have

VΣ · VΣ = (p− 3)(−p)
(
p− 2

p

)2

.

Proof: In all the computations in this proof we have to remember the coefficients we
calculated in Lemma 6.4. If we write VΣ = VΣα +VΣβ , where VΣα denotes the part coming
from the Lα and VΣβ the part coming from the Lβ, we have

VΣ · VΣ = VΣα · VΣα + VΣβ · VΣβ ,

since each of the components of VΣα does not intersect any component of VΣβ and vice
versa. From figure 1 we see that each Lβi just intersects itself and that the number of
self-intersection is −p. Since there are s lines Lβi , we have

VΣβ · VΣβ = s(−p)
(
p− 2

p

)2

.

Now let C be a canonical divisor. According to the adjunction formula, we have C ·Lαi,j = 0
and, since each Lαi,j just intersects the VΣα part of C, the equation 0 = C ·Lαi,j = VΣα ·Lαi,j .
This yields

VΣα · VΣα = VΣα ·
r∑
i=1

λαiLαi =
r∑
i=1

λαi (VΣα · Lαi) ,

where each addend is

λαi (VΣα · Lαi) = λαi

((
p∑
i=1

λαi,jLαi,j + λαiLαi

)
· Lαi

)
= λαi

(p
2
λαi + λαi(−p)

)
= −p

2
λ2
αi

= 2(−p)
(
p− 2

p

)2

.

Since there are r lines Lαi , we have

VΣ · VΣ = (2r + s)(−p)
(
p− 2

p

)2

= (p− 3)(−p)
(
p− 2

p

)2
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�

Lemma 7.2. Let Vx be a vertical divisors as in (6.1) which belongs to a cusp. Then

Vx · Vx = (−p)
(

2g − p
p

)2

+ (−2p)

(
p− 2

p

)2

.

Proof: The lines Lx,Ly and Lz only intersect themselves and each self-intersection number
is −p. Now everything follows from the equations (6.3) and (6.4). �

Lemma 7.3. Let

(7.1) Dx = Sx + Gx ,

where Gx = 1
p
Lx. Then the divisor Dx is associated with

(
β∗OP1

Z[ζp]
(1)
)⊗ 1

p2

, or in other

words O(Dx)
⊗p2 ∼= β∗OP1

Z[ζp]
(1); here β is the morphism from Theorem 5.3.

Proof: Let Sx be a cusp and Q ∈ P1
Q(ζp) the corresponding branch point. Since

Pic(P1
Q(ζp))

∼= Z and OP1
Q(ζp)

(1) is a generator of Pic(P1
Q(ζp)) any divisor of degree 1 is

associated with OP1
Q(ζp)

(1). We choose Q to be this associated divisor. Now

β∗Q =

p∑
i=1

pSi ,

where Si runs through the cusps lying above Q. It follows from Proposition 4.1 (a) that
β∗Q = p2Sx in Cl(Fp)Q (remember that Sx is one of the cusps) and so p2Sx is associated
with β∗OP1

Q(ζp)
(1). Since β∗OP1

Z[ζp]
(1)|Fp ∼= β∗OP1

Q(ζp)
(1) it is clear with Lemma 1.6 that we

can choose Dx = Sx + Gx where Gx is a vertical divisor having support in the special fibre
Fp×Spec Z[ζp] Spec k(π). Now let I be the index set from (5.3). Since each component of the
special fibre which is different to L is mapped to a single point by β, we have

(7.2) (p2Dx) · Li = 0 (∀i ∈ I)

(see [Li2], p. 398: Theorem 2.12 (a) ). On the other hand we have

(7.3) p2 = p2Dx · Fp ×Spec Z[ζp] Spec k(π) = p2Dx · pL
(see [Li2], p. 388: Remark 1.31.). Solving (7.2) and (7.3) we get Gx = 1

p
Lx. �

Proposition 7.4. Let Cx = (2g− 2)(Sx +Fx) be a canonical divisors and Dx = Sx + Gx a
divisors as in (7.1), where x indicates that this divisor belongs to a cusp Sx. Then

Fx · Fx = −p
3 − 7p2 + 15p− 8

p2(p− 3)2
,

Gx · Gx = −(Sx · Gx) = −1

p
.
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Proof: We have F2
x = 1

(2g−2)2
(V2

x + V2
Σ). Now Lemma 7.1 and Lemma 7.2 together with

g = (p−1)(p−2)
2

yield (after simplifying equations) our first claim.

With equation (7.2) we get Sx · Gx = −(Gx · Gx). Since Gx = 1
p
Lx the second claim follows.

�

Now, we successfully prepared all the ingredients to actually calculate some intersection
numbers for the Fermat curves.

8. Proof of the main result

Theorem 8.1. Let Fp be the regular model of the fermat curve Fp over Spec Z[ζp] which
was constructed in section 5. Then the arithmetic self-intersection number of its dualizing
sheaf equipped with the Arakelov metric satisfies

ω2
Fp,Ar ≤ (2g − 2)

(
log |∆Q(ζp)|Q|2 + [Q(ζp) : Q] (κ1 log p+ κ2) +

p2 − 4p+ 2

p(p− 3)
log p

)
,

where κ1, κ2 ∈ R∗+ are positive constants independent of p.

Proof: In Theorem 5.3 we saw that β : Fp → P1 extends to a morphism as in Assumption
3.7 who fulfills the requirements of Theorem 3.8 (cf. Convention 5.4). Since β∗Q =∑p

i=1 pSi we have bj = bmax = p. The morphism β is of degree p2. Because G2
i = G2

j

(F2
i = F2

j resp.) for 1 ≤ i, j ≤ p it follows with Proposition 7.4 that in our case the
formula (3.6) of Theorem 3.8 becomes∑

p bad

ap log Nm(p) = ap log Nm(p) = −2gO(Gj)2 + (2g − 2)O(Fj)2

= −2gGj2 log p+ (2g − 2)Fj2 log p

=
2g

p
log p− (2g − 2)

p3 − 7p2 + 15p− 8

p2(p− 3)2
log p

=
p2 − 4p+ 2

p(p− 3)
log p.

�

Remark 8.2. In Section 5 we have seen that we get a minimal regular model Fminp of Fp
if we blow down the component L of the special fibre. Let π : Fp → Fminp denote this
blow-down. Then there exists a vertical divisorW on Fp (with support in the special fibre)
such that π∗ωFminp

= ωFp ⊗O(W). We have

ω2
Fminp ,Ar = π∗ω2

Fminp ,Ar = ω2
Fp,Ar + 2ωFp · O(W) +O(W)2 .

Lemma 8.3. With the notation from above we have

2ωFp · O(W) +O(W)2 = (2p2 − 10p+ 13) log p.
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Proof: We start by computing the canonical divisor Kminx of Fminp , so the divisor with

O(Kminx ) ∼= ωFminp
. Let L̃u := πLu, where u ∈ I and I is the index set (5.3). In order to

compute intersections of the L̃u we need to find their pullback and then compute everything
on Fp. We have π∗L̃u = Lu for u = αi,j and

π∗L̃u = Lu + L

for all other u. Indeed, let for instance u = x. Then we have π∗L̃x = Lx + µxL, where µx
is a rational number. It follows that 0 = L ·π∗L̃x = 1−µx (see [Li2], p.398: Theorem 2.12.
(a)).
The canonical divisor on Fminp is given by

Kminx = (2g − 2)(Sx +
1

p
L̃x) .

To verify this we just need to proof that Kminx satisfies the adjunction formula and restricts
to the canonical divisor Kx of the generic fibre Fp (see Proposition 2.6). The second
property is obviously fulfilled. In order to verify the adjunction formula one has to check
that it is valid for each irreducible component of the special fibre. We will illustrate this
for the component L̃x and leave the rest to the reader since the computations are very
similar. We have

Kminx · L̃x = (2g − 2)(Sx · L̃x +
1

p
L̃2
x)

= (2g − 2)(1 +
1

p
(Lx + L)2)

= p(p− 3)(1− 1

p
(p− 1)) = (p− 3)

(see [Li2], p.398: Theorem 2.12. (c) for the second equality). On the other hand is

2pa(L̃x)− 2− L̃2
x = −2− (Lx + L)2 = (p− 3)

and so the formula is valid for L̃x.
The pullback of the canonical divisor is now

π∗Kminx = (2g − 2)(Sx +
1

p
Lx +

1

p
L)

and an easy computation shows that

W = −λyLy − λzLz −
(2− p)
p

Lx − VΣ +
2g − 2

p
L

fulfills π∗Kminx = Kx+W . It follows that we have to compute (2Kx ·W+W2) log p in order
to get 2ωFp · O(W) +O(W)2. Since we have W · (2Kx +W) =W · (Kx + π∗Kminx ) we may
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compute W · Kx and W · π∗Kminx . Using the adjunction formula and linearity we get

W · Kx = (p− 2)

(
−λy − λz −

(
2− p
p

))
− VΣ · Kx −

(
2g − 2

p

)
= 3

(
(p− 2)2

p

)
− V2

Σ −
(
p(p− 3)

p

)
= (p− 2)2 − (p− 3) .

On the other hand we have

W · π∗Kminx = W · (p(p− 3)Sx + (p− 3)Lx + (p− 3)L)

= (p− 2)(p− 3)− (p− 2)(p− 3) + (p− 3)2 + (p− 3)W · L

= (p− 3)2 + (p− 3)

(
−λy − λz −

2− p
p

+
p− 2

p
(p− 3)− (p− 3)

)
= (p− 3)2 + (p− 3)(p− 2)− (p− 3)2 = (p− 2)(p− 3)

and so 2ωFp · O(W) +O(W)2 = (2p2 − 10p+ 13) log p. �

Theorem 8.4. Let Fminp be the minimal regular model of the fermat curve Fp over Spec Z[ζp]
from section 5. Then the arithmetic self-intersection number of its dualizing sheaf equipped
with the Arakelov metric satisfies

ω2
Fminp ,Ar ≤ (2g − 2)

(
log |∆Q(ζp)|Q|2 + [Q(ζp) : Q] (κ1 log p+ κ2) +

3p2 − 14p+ 15

p(p− 3)
log p

)
,

where κ1, κ2 ∈ R∗+ are positive constants independent of p.

Proof: Follows directly from Theorem 8.1 and Lemma 8.3. �

Corollary 8.5. With the notation from the previous theorem we have:

ω2
Fminp ,Ar ≤ (2g − 2)

(
(p− 1) (κ1 log p+ κ2) +

2p2 − p− 5

p
log p

)
Proof: It is a well known fact that ∆Q(ζp)|Q = (−1)

p−1
2 pp−2 and [Q(ζp) : Q] = p − 1 and

so Theorem 8.4 yields

ω2
Fp,Ar ≤ (2g − 2)

(
log p2p−4 + (p− 1) (κ1 log p+ κ2) +

3p2 − 14p+ 15

p(p− 3)
log p

)
= (2g − 2)

(
(p− 1) (κ1 log p+ κ2) +

2p2 − p− 5

p
log p

)
�
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References

[Ar] S. J. Arakelov: An intersection theory for divisors on an arithmetic surface. Izv. Akad. Nauk SSSR
Ser. Mat. 38 (1974), 1179–1192.

[AU] A. Abbes, E. Ullmo: Auto-intersection du dualisant relatif des courbes modulaires X0(N). J. Reine
Angew. Math. 484 (1997), 1–70.

[Ch] T. Chinburg: Minimal models for curves over Dedekind rings. Arithmetic geometry (Storrs, Conn.,
1984). Springer, New York, 1986, 309–326.

[De] P. Deligne: Intersections sur les surfaces régulières. Sem. Geom. algebrique Bois-Marie 1967-1969,
SGA 7 II, Lect. Notes Math. 340, 1973, 1–38.

[JK1] J. Jorgenson, J. Kramer: Bounds for special values of Selberg zeta functions of Riemann surfaces.
J. Reine Angew. Math. 541 (2001), 1–28.

[JK2] J. Jorgenson, J. Kramer: Bounding the sup-norm of automorphic forms. Geom. Funct. Anal. 14
(2004), 1267–1277.
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