Exercise sheet 6

Submit your solutions in the exercise group on 2011-May-23!

Exercise 21: The Dolbeault operator. (10 points)

Let M be a complex manifold, let $k \in \mathbb{N}_0$. Prove that the definitions of the operators

$$\overline{\partial} \colon \Gamma(\bigwedge^k T^* M^{\mathbb{C}}) \to \Gamma(\bigwedge^{k+1} T^* M^{\mathbb{C}}) \quad \text{and} \\ \partial \colon \Gamma(\bigwedge^k T^* M^{\mathbb{C}}) \to \Gamma(\bigwedge^{k+1} T^* M^{\mathbb{C}})$$

given in the lecture do not depend on the choice of local coordinates. Prove that the principal symbols $\sigma_1(\overline{\partial})$ and $\sigma_1(\partial)$ are given by $\sigma_1(\overline{\partial})_{\xi}(\eta) = \xi^{0,1} \wedge \eta$ and $\sigma_1(\partial)_{\xi}(\eta) = \xi^{1,0} \wedge \eta$.

Exercise 22: Differential operators and the principal symbol. (10 points)

Let $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$, let E, F be \mathbb{K} -vector bundles over a manifold M, let $m \in \mathbb{N}_0$, let $L \colon \Gamma(E) \to \Gamma(F)$ be a (\mathbb{K} -linear) differential operator of order m.

a. The definition of the notion *differential operator* says that every $x \in M$ has a neighborhood U on which there exist local coordinates χ of M and vector bundle trivializations ϕ of $E|_U$ and ψ of $F|_U$ such that with respect to χ, ϕ, ψ, L has the form described in the lecture:

$$L(s)_i = \sum_{j=1}^n \sum_{|\alpha| \le m} a^j_{\alpha i} \partial^\alpha s_j \quad .$$
⁽¹⁾

Prove that this implies that for every $x \in M$ and for every triple (χ, ϕ, ψ) of local coordinates and local vector bundle trivializations on an open subset U of M, there exists a neighborhood $\tilde{U} \subseteq U$ of x such that with respect to χ, ϕ, ψ , L has the form (1) on \tilde{U} .

b. Prove that the principal symbol of L does not depend on the choice of local coordinates and local trivializations used in its definition.

(to be continued on the next page \longrightarrow)

Exercise 23: Covariant derivatives and the Levi-Civita connection. (10 points)

Let $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$, let E be a \mathbb{K} -vector bundle over a manifold M. A *covariant derivative* (synonymously: *linear connection*) on E is a \mathbb{K} -linear map $\nabla \colon \Gamma(E) \to \Gamma(T^*M \otimes E)$ such that $\nabla(fs) = f\nabla s + df \otimes s$ holds for all $s \in \Gamma(E)$ and $f \in C^{\infty}(M, \mathbb{K})$.

- **a.** Let ∇ be a covariant derivative on E. Prove that there exists a unique $R^{\nabla} \in \Gamma(\bigwedge^2 T^*M \otimes \text{End}(E))$ such that $R^{\nabla}(X,Y)s = \nabla_X \nabla_Y s - \nabla_Y \nabla_X s - \nabla_{[X,Y]}s$ holds for all $X, Y \in \Gamma(TM)$ and $s \in \Gamma(E)$. (R^{∇} is called the *curvature (tensor) of* ∇ .)
- **b.** Let g be a Riemannian metric on M. Prove that there exists a unique covariant derivative ∇ on TM such that the *Koszul formula*

$$2g(\nabla_X Y, Z) = Xg(Y, Z) + Yg(X, Z) - Zg(X, Y) + g([X, Y], Z) + g([Z, X], Y) + g([Z, Y], X)$$

holds for all $X, Y, Z \in \Gamma(TM)$. This ∇ is called the *Levi-Civita connection* of g.

c. Prove that the Levi-Civita connection satisfies

$$Zg(X,Y) = g(\nabla_Z X,Y) + g(X,\nabla_Z Y)$$
$$[X,Y] = \nabla_X Y - \nabla_Y X$$

for all $X, Y, Z \in \Gamma(TM)$, and that it is the only linear connection on TM with this property.

Exercise 24: Divergence and Laplacian of a Riemannian metric. (10 points)

Let g be a Riemannian metric on a manifold M, let $f \in C^{\infty}(M, \mathbb{R})$, let $X \in \Gamma(TM)$. The gradient grad $f \in \Gamma(TM)$ of f (with respect to g) is the vector field on M such that $g(\operatorname{grad} f, V) = \operatorname{d} f(V)$ holds for all $V \in TM$. The divergence div $X \in C^{\infty}(M, \mathbb{R})$ of X (with respect to g) is the function on M such that for every $x \in M$, divX(x) is the trace of the endomorphism of T_xM given by $v \mapsto \nabla_v X$, where ∇ is the Levi-Civita connection of g. The Laplacian of f (with respect to g) is the function $\Delta f := \operatorname{div} \operatorname{grad} f \in C^{\infty}(M, \mathbb{R})$.

Compute the principal symbols of the differential operators $C^{\infty}(M, \mathbb{R}) \ni f \mapsto \operatorname{grad} f \in \Gamma(TM)$ and $\Gamma(TM) \ni X \mapsto \operatorname{div} X \to C^{\infty}(M, \mathbb{R})$ and $C^{\infty}(M, \mathbb{R}) \ni f \mapsto \Delta f \in C^{\infty}(M, \mathbb{R})$.

Universität Hamburg · Tor zur Welt der Wissenschaft