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Exercise sheet 5
Submit your solutions in the exercise group on 2011-May-16!

The rules for the exercises have changed: From now on, you are allowed to form groups
of up to three people. Each group submits a joint solution.

Exercise 17: The Lie bracket. (10 points)

Let X,Y be vector fields on a smooth manifold M . Prove that the Lie bracket [X,Y ] is a vector field.
Prove that with respect to local coordinates (x1, . . . , xn) on M , the Lie bracket of X =

∑n
i=1X

i ∂
∂xi
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i=1 Y
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∂xi is
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)
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∂xj
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Exercise 18: The Nijenhuis tensor. (10 points)

Let M be a smooth manifold.

a. Let F : Γ(TM)→ Γ(TM) be R-linear. Prove that the following statements are equivalent:

(1) F (X)x = F (X̃)x holds for all x ∈M and all vector fields X, X̃ on M with Xx = X̃x.

(2) F is C∞(M,R)-linear.

b. Let J be an almost complex structure onM . Prove that the mapNJ : Γ(TM)×Γ(TM)→ Γ(TM)
which defines the Nijenhuis tensor is C∞(M,R)-bilinear and thus induces indeed a section in∧2 T ∗M ⊗ TM .

(to be continued on the next page −→)
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Exercise 19: Quaternions and octonions. (10 points)
Recall that a (unital) R-algebra is an R-vector space A together with a multiplication · : A×A→ A and
an element 1 ∈ A such that (x+y)·z = x·z+y ·z and z ·(x+y) = z ·x+z ·y and (rx)·(sy) = (rs)(x·y)
and 1 ·x = x = x · 1 hold for all x, y, z ∈ A and r, s ∈ R. An R-algebra is associative iff the associative
law x · (y · z) = (x · y) · z holds for all x, y, z ∈ A. An R-algebra is alternative iff the associative law
holds whenever two of the three elements x, y, z ∈ A are equal. For brevity, we omit every “·” from now
on. For R-algebras A,B, an R-linear map f : A → B is an R-algebra homomorphism iff f(1A) = 1B
and f(xy) = f(x)f(y) hold for all x, y ∈ A.
An objective algebra is an R-algebra A together with a sub vector space Im(A) of A such that A =
R1 ⊕ Im(A). For x ∈ A, the unique y =: Rex ∈ R1 and z =: Imx ∈ Im(A) with x = y + z
are called the real part and imaginary part of x, respectively. The conjugation : A → A is defined
by x 7→ x := Rex − Imx. For objective algebras A,B, a map f : A → B is an objective algebra
homomorphism iff it is an R-algebra homomorphism such that f(x) = f(x) holds for all x ∈ A; it is an
objective algebra isomorphism iff it is also bijective.
Let A be an objective algebra. We define an objective algebra C (A) whose underlying R-vector space is
A⊕A by (a, b)(c, d) := (ac− db, da+ bc) and 1C (A) := (1A, 0) and Im(C (A)) := Im(A)⊕A.

a. Check that this defines indeed an objective algebra.

b. Check that the map ι : A→ C (A) given by a 7→ (a, 0) is an objective algebra homomorphism.

c. Check that f : C (R)→ C given by f(a, b) := a+ bi is an objective algebra isomorphism. (Im(R)
is chosen in the only possible way: Im(R) = {0}.)

d. Prove that the R-algebra H := C (C) is associative, but (its multiplication is) not commutative.
Prove that the elements i := (i, 0) and j := (0, 1) and k := (0, i) of Im(H) satisfy i2 = j2 = k2 =
ijk = −1. Prove that xy = y x and Re(xy) = Re(yx) hold for all x, y ∈ H. (The elements of H
are called quaternions. Depending on your linear algebra course, you might already know another
definition of H. Whatever definition that is, our equations for i, j, k will yield a short proof that
your alternatively defined algebra H is isomorphic to ours here.)

e. Prove that the R-algebra O := C (H) is alternative, but neither associative nor commutative. (The
elements of O are called octonions.)

Remark. The “objective” terminology (distinguishing between real and imaginary) is not standard but
has been invented here to give short definitions.

Exercise 20: An almost complex structure on S6. (10 points)
In O = H2 = C4 = R8, we identify Im(O) = {0}×R7 with R7. Note that TS6 is the sub vector bundle{

(x, v) ∈ S6 × R7
∣∣ 〈x, v〉 = 0

}
of the trivial bundle of rank 7 over S6; here 〈., .〉 denotes the standard

scalar product on R7.

a. We define J ∈ Γ(End(TS6)) by Jx(v) := xv (multiplication in O) for all x ∈ S6 and v ∈ TxS6.
Prove that J is well-defined and an almost complex structure on S6.

(Hint. Check that 〈x, y〉 = Re(xy) and 〈x, x〉 = xx hold for all x, y ∈ H with respect to the
standard scalar product on H = R4. Then check the same with O = R8 instead of H.)

b. Prove that S6 does not admit a holomorphic atlas whose complex structure is J .
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