Exercise sheet 5

Submit your solutions in the exercise group on 2011-May-16!

The rules for the exercises have changed: From now on, you are allowed to form groups of up to three people. Each group submits a joint solution.

Exercise 17: The Lie bracket. (10 points)

Let X, Y be vector fields on a smooth manifold M. Prove that the Lie bracket [X, Y] is a vector field. Prove that with respect to local coordinates (x_1, \ldots, x_n) on M, the Lie bracket of $X = \sum_{i=1}^n X^i \frac{\partial}{\partial x^i}$ and $Y = \sum_{i=1}^n Y^i \frac{\partial}{\partial x^i}$ is

$$[X,Y] = \sum_{i,j=1}^{n} \left(X^{i} \frac{\partial Y^{j}}{\partial x^{i}} - Y^{i} \frac{\partial X^{j}}{\partial x^{i}} \right) \frac{\partial}{\partial x^{j}}$$

Exercise 18: The Nijenhuis tensor. (10 points)

Let M be a smooth manifold.

- **a.** Let $F: \Gamma(TM) \to \Gamma(TM)$ be \mathbb{R} -linear. Prove that the following statements are equivalent:
 - (1) F(X)_x = F(X̃)_x holds for all x ∈ M and all vector fields X, X̃ on M with X_x = X̃_x.
 (2) F is C[∞](M, ℝ)-linear.
- **b.** Let *J* be an almost complex structure on *M*. Prove that the map $N_J \colon \Gamma(TM) \times \Gamma(TM) \to \Gamma(TM)$ which defines the Nijenhuis tensor is $C^{\infty}(M, \mathbb{R})$ -bilinear and thus induces indeed a section in $\bigwedge^2 T^*M \otimes TM$.

(to be continued on the next page \longrightarrow)

Exercise 19: Quaternions and octonions. (10 points)

Recall that a (unital) \mathbb{R} -algebra is an \mathbb{R} -vector space A together with a multiplication $:: A \times A \to A$ and an element $1 \in A$ such that $(x+y) \cdot z = x \cdot z + y \cdot z$ and $z \cdot (x+y) = z \cdot x + z \cdot y$ and $(rx) \cdot (sy) = (rs)(x \cdot y)$ and $1 \cdot x = x = x \cdot 1$ hold for all $x, y, z \in A$ and $r, s \in \mathbb{R}$. An \mathbb{R} -algebra is associative iff the associative law $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ holds for all $x, y, z \in A$. An \mathbb{R} -algebra is alternative iff the associative law holds whenever two of the three elements $x, y, z \in A$ are equal. For brevity, we omit every " \cdot " from now on. For \mathbb{R} -algebras A, B, an \mathbb{R} -linear map $f : A \to B$ is an \mathbb{R} -algebra homomorphism iff $f(1_A) = 1_B$ and f(xy) = f(x)f(y) hold for all $x, y \in A$.

An objective algebra is an \mathbb{R} -algebra A together with a sub vector space $\operatorname{Im}(A)$ of A such that $A = \mathbb{R}1 \oplus \operatorname{Im}(A)$. For $x \in A$, the unique $y =: \operatorname{Re} x \in \mathbb{R}1$ and $z =: \operatorname{Im} x \in \operatorname{Im}(A)$ with x = y + z are called the *real part* and *imaginary part* of x, respectively. The conjugation $-: A \to A$ is defined by $x \mapsto \overline{x} := \operatorname{Re} x - \operatorname{Im} x$. For objective algebras A, B, a map $f : A \to B$ is an objective algebra homomorphism iff it is an \mathbb{R} -algebra homomorphism such that $f(\overline{x}) = \overline{f(x)}$ holds for all $x \in A$; it is an objective algebra isomorphism iff it is also bijective.

Let A be an objective algebra. We define an objective algebra $\mathscr{C}(A)$ whose underlying \mathbb{R} -vector space is $A \oplus A$ by $(a, b)(c, d) := (ac - \overline{d}b, da + b\overline{c})$ and $1_{\mathscr{C}(A)} := (1_A, 0)$ and $\operatorname{Im}(\mathscr{C}(A)) := \operatorname{Im}(A) \oplus A$.

- **a.** Check that this defines indeed an objective algebra.
- **b.** Check that the map $\iota \colon A \to \mathscr{C}(A)$ given by $a \mapsto (a, 0)$ is an objective algebra homomorphism.
- **c.** Check that $f: \mathscr{C}(\mathbb{R}) \to \mathbb{C}$ given by f(a, b) := a + bi is an objective algebra isomorphism. (Im(\mathbb{R}) is chosen in the only possible way: Im(\mathbb{R}) = {0}.)
- **d.** Prove that the \mathbb{R} -algebra $\mathbb{H} := \mathscr{C}(\mathbb{C})$ is associative, but (its multiplication is) not commutative. Prove that the elements $\mathbf{i} := (\mathbf{i}, 0)$ and $\mathbf{j} := (0, 1)$ and $\mathbf{k} := (0, \mathbf{i})$ of $\mathrm{Im}(\mathbb{H})$ satisfy $\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{ijk} = -1$. Prove that $\overline{xy} = \overline{y} \overline{x}$ and $\mathrm{Re}(xy) = \mathrm{Re}(yx)$ hold for all $x, y \in \mathbb{H}$. (The elements of \mathbb{H} are called *quaternions*. Depending on your linear algebra course, you might already know another definition of \mathbb{H} . Whatever definition that is, our equations for $\mathbf{i}, \mathbf{j}, \mathbf{k}$ will yield a short proof that your alternatively defined algebra \mathbb{H} is isomorphic to ours here.)
- e. Prove that the \mathbb{R} -algebra $\mathbb{O} := \mathscr{C}(\mathbb{H})$ is alternative, but neither associative nor commutative. (The elements of \mathbb{O} are called *octonions*.)

Remark. The "objective" terminology (distinguishing between real and imaginary) is not standard but has been invented here to give short definitions.

Exercise 20: An almost complex structure on S^6 . (10 points)

In $\mathbb{O} = \mathbb{H}^2 = \mathbb{C}^4 = \mathbb{R}^8$, we identify $\operatorname{Im}(\mathbb{O}) = \{0\} \times \mathbb{R}^7$ with \mathbb{R}^7 . Note that TS^6 is the sub vector bundle $\{(x, v) \in S^6 \times \mathbb{R}^7 \mid \langle x, v \rangle = 0\}$ of the trivial bundle of rank 7 over S^6 ; here $\langle ., . \rangle$ denotes the standard scalar product on \mathbb{R}^7 .

a. We define $J \in \Gamma(\text{End}(TS^6))$ by $J_x(v) := xv$ (multiplication in \mathbb{O}) for all $x \in S^6$ and $v \in T_xS^6$. Prove that J is well-defined and an almost complex structure on S^6 .

(*Hint.* Check that $\langle x, y \rangle = \operatorname{Re}(\overline{x}y)$ and $\langle x, x \rangle = \overline{x}x$ hold for all $x, y \in \mathbb{H}$ with respect to the standard scalar product on $\mathbb{H} = \mathbb{R}^4$. Then check the same with $\mathbb{O} = \mathbb{R}^8$ instead of \mathbb{H} .)

b. Prove that S^6 does not admit a holomorphic atlas whose complex structure is J.

Universität Hamburg · Tor zur Welt der Wissenschaft