Exercise sheet 5

Submit your solutions in the exercise group on 2011-May-16!

The rules for the exercises have changed: From now on, you are allowed to form groups of up to three people. Each group submits a joint solution.

Exercise 17: The Lie bracket. (10 points)

Let X, Y be vector fields on a smooth manifold M. Prove that the Lie bracket $[X, Y]$ is a vector field. Prove that with respect to local coordinates $\left(x_{1}, \ldots, x_{n}\right)$ on M, the Lie bracket of $X=\sum_{i=1}^{n} X^{i} \frac{\partial}{\partial x^{i}}$ and $Y=\sum_{i=1}^{n} Y^{i} \frac{\partial}{\partial x^{i}}$ is

$$
[X, Y]=\sum_{i, j=1}^{n}\left(X^{i} \frac{\partial Y^{j}}{\partial x^{i}}-Y^{i} \frac{\partial X^{j}}{\partial x^{i}}\right) \frac{\partial}{\partial x^{j}} .
$$

Exercise 18: The Nijenhuis tensor. (10 points)
Let M be a smooth manifold.
a. Let $F: \Gamma(T M) \rightarrow \Gamma(T M)$ be \mathbb{R}-linear. Prove that the following statements are equivalent:
(1) $F(X)_{x}=F(\tilde{X})_{x}$ holds for all $x \in M$ and all vector fields X, \tilde{X} on M with $X_{x}=\tilde{X}_{x}$.
(2) F is $C^{\infty}(M, \mathbb{R})$-linear.
b. Let J be an almost complex structure on M. Prove that the map $N_{J}: \Gamma(T M) \times \Gamma(T M) \rightarrow \Gamma(T M)$ which defines the Nijenhuis tensor is $C^{\infty}(M, \mathbb{R})$-bilinear and thus induces indeed a section in $\Lambda^{2} T^{*} M \otimes T M$.

Exercise 19: Quaternions and octonions. (10 points)

Recall that a (unital) \mathbb{R}-algebra is an \mathbb{R}-vector space A together with a multiplication $\cdot: A \times A \rightarrow A$ and an element $1 \in A$ such that $(x+y) \cdot z=x \cdot z+y \cdot z$ and $z \cdot(x+y)=z \cdot x+z \cdot y$ and $(r x) \cdot(s y)=(r s)(x \cdot y)$ and $1 \cdot x=x=x \cdot 1$ hold for all $x, y, z \in A$ and $r, s \in \mathbb{R}$. An \mathbb{R}-algebra is associative iff the associative law $x \cdot(y \cdot z)=(x \cdot y) \cdot z$ holds for all $x, y, z \in A$. An \mathbb{R}-algebra is alternative iff the associative law holds whenever two of the three elements $x, y, z \in A$ are equal. For brevity, we omit every "." from now on. For \mathbb{R}-algebras A, B, an \mathbb{R}-linear map $f: A \rightarrow B$ is an \mathbb{R}-algebra homomorphism iff $f\left(1_{A}\right)=1_{B}$ and $f(x y)=f(x) f(y)$ hold for all $x, y \in A$.
An objective algebra is an \mathbb{R}-algebra A together with a sub vector space $\operatorname{Im}(A)$ of A such that $A=$ $\mathbb{R} 1 \oplus \operatorname{Im}(A)$. For $x \in A$, the unique $y=: \operatorname{Re} x \in \mathbb{R} 1$ and $z=: \operatorname{Im} x \in \operatorname{Im}(A)$ with $x=y+z$ are called the real part and imaginary part of x, respectively. The conjugation ${ }^{-}: A \rightarrow A$ is defined by $x \mapsto \bar{x}:=\operatorname{Re} x-\operatorname{Im} x$. For objective algebras A, B, a map $f: A \rightarrow B$ is an objective algebra homomorphism iff it is an \mathbb{R}-algebra homomorphism such that $f(\bar{x})=\overline{f(x)}$ holds for all $x \in A$; it is an objective algebra isomorphism iff it is also bijective.
Let A be an objective algebra. We define an objective algebra $\mathscr{C}(A)$ whose underlying \mathbb{R}-vector space is $A \oplus A$ by $(a, b)(c, d):=(a c-\bar{d} b, d a+b \bar{c})$ and $1_{\mathscr{C}(A)}:=\left(1_{A}, 0\right)$ and $\operatorname{Im}(\mathscr{C}(A)):=\operatorname{Im}(A) \oplus A$.
a. Check that this defines indeed an objective algebra.
b. Check that the map $\iota: A \rightarrow \mathscr{C}(A)$ given by $a \mapsto(a, 0)$ is an objective algebra homomorphism.
c. Check that $f: \mathscr{C}(\mathbb{R}) \rightarrow \mathbb{C}$ given by $f(a, b):=a+b \mathrm{i}$ is an objective algebra isomorphism. $(\operatorname{Im}(\mathbb{R})$ is chosen in the only possible way: $\operatorname{Im}(\mathbb{R})=\{0\}$.)
d. Prove that the \mathbb{R}-algebra $\mathbb{H}:=\mathscr{C}(\mathbb{C})$ is associative, but (its multiplication is) not commutative. Prove that the elements $\mathrm{i}:=(\mathrm{i}, 0)$ and $\mathrm{j}:=(0,1)$ and $\mathrm{k}:=(0, \mathrm{i})$ of $\operatorname{Im}(\mathbb{H})$ satisfy $\mathrm{i}^{2}=\mathrm{j}^{2}=\mathrm{k}^{2}=$ $\mathrm{ijk}=-1$. Prove that $\overline{x y}=\bar{y} \bar{x}$ and $\operatorname{Re}(x y)=\operatorname{Re}(y x)$ hold for all $x, y \in \mathbb{H}$. (The elements of \mathbb{H} are called quaternions. Depending on your linear algebra course, you might already know another definition of \mathbb{H}. Whatever definition that is, our equations for $\mathrm{i}, \mathrm{j}, \mathrm{k}$ will yield a short proof that your alternatively defined algebra \mathbb{H} is isomorphic to ours here.)
e. Prove that the \mathbb{R}-algebra $\mathbb{O}:=\mathscr{C}(\mathbb{H})$ is alternative, but neither associative nor commutative. (The elements of \mathbb{O} are called octonions.)

Remark. The "objective" terminology (distinguishing between real and imaginary) is not standard but has been invented here to give short definitions.

Exercise 20: An almost complex structure on S^{6}. (10 points)
$\operatorname{In} \mathbb{O}=\mathbb{H}^{2}=\mathbb{C}^{4}=\mathbb{R}^{8}$, we identify $\operatorname{Im}(\mathbb{O})=\{0\} \times \mathbb{R}^{7}$ with \mathbb{R}^{7}. Note that $T S^{6}$ is the sub vector bundle $\left\{(x, v) \in S^{6} \times \mathbb{R}^{7} \mid\langle x, v\rangle=0\right\}$ of the trivial bundle of rank 7 over S^{6}; here $\langle.,$.$\rangle denotes the standard$ scalar product on \mathbb{R}^{7}.
a. We define $J \in \Gamma\left(\operatorname{End}\left(T S^{6}\right)\right)$ by $J_{x}(v):=x v$ (multiplication in \mathbb{O}) for all $x \in S^{6}$ and $v \in T_{x} S^{6}$. Prove that J is well-defined and an almost complex structure on S^{6}.
(Hint. Check that $\langle x, y\rangle=\operatorname{Re}(\bar{x} y)$ and $\langle x, x\rangle=\bar{x} x$ hold for all $x, y \in \mathbb{H}$ with respect to the standard scalar product on $\mathbb{H}=\mathbb{R}^{4}$. Then check the same with $\mathbb{O}=\mathbb{R}^{8}$ instead of \mathbb{H}.)
b. Prove that S^{6} does not admit a holomorphic atlas whose complex structure is J.

