Exercise sheet 4

Submit your solutions in the exercise group on 2011-May-09!

Exercise 13: Submanifolds are manifolds. (10 points)

Let N be a k-dimensional complex submanifold of a complex manifold M. Prove that the local charts of M which are adapted to N form a holomorphic atlas which turns N (considered as a topological space with respect to the subspace topology of M) into a k-dimensional complex manifold.

Exercise 14: Lemma for the Plücker embedding. (10 points)

Let $k \in \{0, ..., n\}$, let $\Lambda \in \bigwedge^k \mathbb{C}^n$. Prove that $\Lambda \in \bigwedge^k \Sigma_{\Lambda}$. (*Hint*. Choose a complementary subspace of Σ_{Λ} in \mathbb{C}^n , then decompose $\bigwedge^k \mathbb{C}^n$.)

Exercise 15: Pullback vector bundles. (10 points)

Let M, N be smooth manifolds of dimensions m and n, respectively. Let $f: M \to N$ be a smooth map. Let $\pi: E \to N$ be a smooth \mathbb{K} -vector bundle of rank k. We define

$$f^*E := \{(x, e) \in M \times E \mid f(x) = \pi(e)\}$$

and we define $\hat{\pi} \colon f^*E \to M$ by $\hat{\pi}(x, e) = x$.

- **a.** Prove that f^*E is a smooth submanifold of $M \times E$. Determine the dimension of f^*E .
- **b.** Prove that $\hat{\pi}$ is smooth and surjective. For every $x \in M$, consider the fiber $(f^*E)_x := \hat{\pi}^{-1}(x)$ and prove that the map $\zeta_x : (f^*E)_x \to E_{f(x)}$ given by $(x, e) \mapsto e$ is bijective.
- **c.** On each fiber $(f^*E)_x$, we define a \mathbb{K} -vector space structure by declaring ζ_x to be a \mathbb{K} -vector space isomorphism. Prove that this turns $\hat{\pi} \colon f^*E \to M$ into a \mathbb{K} -vector bundle of rank k over M.

This vector bundle is called the *f*-pullback of $\pi: E \to N$. The maps ζ_x are usually regarded as identifications; i.e., one writes $(f^*E)_x = E_{f(x)}$. We will do so in Exercise 16, for example.

Exercise 16: Direct sums of vector bundles. (10 points)

Let M be a smooth manifold, let $\pi_E \colon E \to M$ and $\pi_F \colon F \to M$ be smooth \mathbb{K} -vector bundles. Prove that there exists a unique smooth \mathbb{K} -vector bundle $\pi \colon E \oplus F \to M$ with the following properties:

- (1) For all $x \in M$, the K-vector space $(E \oplus F)_x$ is equal to $E_x \oplus F_x$.
- (2) When φ: π_E⁻¹(U) → U × K^k is a local trivialization of E and ψ: π_F⁻¹(U) → U × K^l is a local trivialization of F, let φ: π⁻¹(U) → U × (K^k ⊕ K^l) be the map whose restriction to each fiber (E ⊕ F)_x with x ∈ U is given by E_x ⊕ F_x ∋ v ⊕ w ↦ (x, pr(φ(v)) ⊕ pr(ψ(w))); here pr: U × K^m → K^m denotes projection to the second component. Then φ is a local trivialization of E ⊕ F.

Determine the rank of $E \oplus F$. Prove that if $f: N \to M$ is a smooth map, then $f^*(E \oplus F) = f^*E \oplus f^*F$.

Universität Hamburg · Tor zur Welt der Wissenschaft

Fachbereich Mathematik · Analysis und Differentialgeometrie