Exercise sheet 3

Submit your solutions in the exercise group on 2011-May-02!

Exercise 9: Complex tori. (10 points)

Let (b_1, \ldots, b_{2n}) be a real basis of \mathbb{C}^n , let Γ be the additive subgroup of \mathbb{C}^n generated by b_1, \ldots, b_{2n} .

- **a.** Prove that Γ acts by translations freely and properly discontinuously on \mathbb{C}^n .
- **b.** Prove that \mathbb{C}^n/Γ is diffeomorphic to the real torus $T^{2n} := \mathbb{R}^{2n}/\mathbb{Z}^{2n}$.

Exercise 10: Hopf manifolds. (10 points)

Let $n \in \mathbb{N}$, let $\lambda \in \mathbb{C}^{\times} = \mathbb{C} \setminus \{0\}$ satisfy $|\lambda| \neq 1$. The multiplicative subgroup $\langle \lambda \rangle$ of \mathbb{C}^{\times} generated by λ acts on $\mathbb{C}^n \setminus \{0\}$ by multiplication.

- **a.** Prove that $(\mathbb{C}^n \setminus \{0\})/\langle \lambda \rangle$ is diffeomorphic to $S^{2n-1} \times S^1$.
- **b.** Prove that there exists an element τ of the upper half-plane \mathcal{H} such that $\mathbb{C}^{\times}/\langle\lambda\rangle$ is biholomorphic to \mathbb{C}/Γ_{τ} , where Γ_{τ} denotes the additive subgroup of \mathbb{C} generated by 1 and τ .

Exercise 11: Grassmannians. (10 points)

Let $n \in \mathbb{N}$, let $k \in \{0, ..., n\}$. Prove that $\operatorname{Gr}_k(\mathbb{C}^n)$ is biholomorphic to $\operatorname{Gr}_{n-k}(\mathbb{C}^n)$.

Exercise 12: Fine sheaves are soft. (10 points)

Let \mathscr{F} be a fine sheaf of abelian groups on a manifold M. Prove that \mathscr{F} is soft.