Exercise sheet 2

Submit your solutions in the exercise group on 2011-Apr-18!

Exercise 5: Examples of (pre)sheaves. (4+4+4+4 points)

Prove that each of the following data sets (\mathscr{F}_i, r^i) defines a presheaf of \mathbb{R} -vector spaces on M. Decide whether it satisfies the separation axiom, whether it satisfies the gluing axiom, and whether it is a sheaf (the answers might depend on M and/or n).

- **a.** Let M be a complex manifold. For each open set $U \subseteq M$, let $\mathscr{F}_0(U)$ be the set of holomorphic functions $U \to \mathbb{C}$. For open sets $U \subseteq V \subseteq M$, let $r^0_{UV} : \mathscr{F}_0(V) \to \mathscr{F}_0(U)$ be the usual restriction of functions.
- **b.** Let $n \geq 1$, let $M = \mathbb{R}^n$. For each open set $U \subseteq M$, let $\mathscr{F}_1(U)$ be the set of continuous functions $f: U \to \mathbb{R}$ with $\int_U |f(x)| dx < \infty$. For open sets $U \subseteq V \subseteq M$, let $r_{UV}^1: \mathscr{F}_1(V) \to \mathscr{F}_1(U)$ be the usual restriction of functions.
- **c.** Let $x \neq y$, let $M = \{x, y\}$ be equipped with the discrete topology, let $n \geq 2$. Let $\mathscr{F}_2(\emptyset) = \{0\}$ and $\mathscr{F}_2(\{x\}) = \mathscr{F}_2(\{y\}) = \mathbb{R}$ and $\mathscr{F}_2(M) = \mathbb{R}^n$. For $S \subseteq M$, let $r_{\emptyset S}^2$ be the unique map $\mathscr{F}_2(S) \to \{0\}$, and let r_{SS}^2 be the identity on $\mathscr{F}_2(S)$. Let $r_{\{x\}M}^2 \colon \mathbb{R}^n \to \mathbb{R}$ be the projection to the first coordinate, let $r_{\{y\}M}^2 \colon \mathbb{R}^n \to \mathbb{R}$ be the projection to the second coordinate.
- **d.** Let M be a topological space, let $x \in M$, let $n \ge 1$. For each open set $U \subseteq M$, let $\mathscr{F}_3(U)$ be \mathbb{R}^n if $x \in U$, and let it be $\{0\}$ otherwise. For open sets $U \subseteq V \subseteq M$, let $r^3_{UV} : \mathscr{F}_3(V) \to \mathscr{F}_3(U)$ be $\mathrm{id}_{\mathbb{R}^n}$ if $x \in U$, and let it be 0 otherwise.

Exercise 6: Kernels, images, cokernels. (8 points)

Let \mathscr{F}, \mathscr{G} be presheaves of abelian groups on a topological space M, let $\varphi \colon \mathscr{F} \to \mathscr{G}$ be a presheaf morphism. Prove that the data sets $\ker(\varphi)$ and $\operatorname{im}^{\operatorname{pre}}(\varphi)$ and $\operatorname{coker}^{\operatorname{pre}}(\varphi)$ defined in the lecture are indeed presheaves of abelian groups over M, and that $\ker(\varphi)$ is a sheaf if \mathscr{F} and \mathscr{G} are sheaves.

Exercise 7: Sheafification yields a sheaf. (8 points)

Let \mathscr{F} be a presheaf of abelian groups on a topological space M. Prove that the definition of \mathscr{F}^+ given in the lecture yields indeed a well-defined sheaf of abelian groups on M. Prove that $\theta : \mathscr{F} \to \mathscr{F}^+$ is indeed a well-defined presheaf morphism.

Exercise 8: The sheafification of a sheaf. (2+6 points)

Let M be a topological space.

- **a.** Let \mathscr{F}, \mathscr{G} be presheaves of abelian groups on M, let $\varphi : \mathscr{F} \to \mathscr{G}$ be a presheaf morphism such that for every open subset U of M, φ_U is bijective. Prove that φ is a presheaf isomorphism.
- **b.** Let \mathscr{F} be a sheaf of abelian groups on M. Prove that the canonical morphism $\theta \colon \mathscr{F} \to \mathscr{F}^+$ is a sheaf isomorphism.

Universität Hamburg · Tor zur Welt der Wissenschaft