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THE SPECIAL GEOMETRY OF EUCLIDIAN
SUPERSYMMETRY: A SURVEY

VICENTE CORTÉS

Abstract. This is a survey about recent joint work with Christoph Mayer,
Thomas Mohaupt and Frank Saueressig on the special geometry of Euclidian
supersymmetry. It is based on the second of two lectures given at the II
Workshop in Differential Geometry, La Falda, Córdoba, 2005.

Introduction

The purpose of this note is to present some geometric structures and construc-
tions which arise in the study of supersymmetric field theories on a Euclidian
rather than Minkowskian space-time, see [CMMS1, CMMS2].

The text is written for readers with a background in differential geometry.
Nevertheless, a rough idea of supersymmetry and the restrictions it imposes on
the geometry of the scalar manifold would be helpful for orientation. A short
introduction to classical (rigid) supersymmetric field theories and to the notion
of special geometry is provided in another contribution to this volume, based on
the first of my two talks given at the II Workshop in Differential Geometry. Such
theories are usually considered on the d-dimensional Minkowski space. The case
d = 4 is particularly important since our observed space-time is four-dimensional.

For various physical reasons, it is useful to consider also field theories on Eu-
clidian space, even if our physical space-time metric is not positive definite. In
quantum field theory, for instance, one needs to understand instantons, since
they contribute to the Feynman path integral. Instantons are particular solu-
tions of the Euler-Lagrange equations of a Euclidian counterpart of the underlying
Minkowskian classical field theory.

For the Euclidian 4-space there exists an N = 2 super-Poincaré algebra and
Euclidian vector multiplets can be defined [CMMS1]. (There exists no N = 1
super-Poincaré algebra on the Euclidian 4-space.) The special geometry of the
scalar manifold in supersymmetric field theories with Euclidian vector multiplets
was determined in [CMMS1] and named (affine) special para-Kähler geometry,
since the role of the complex structure J in special Kähler geometry is now played
by a para-complex structure J , J2 = Id. Special para-Kähler manifolds are dis-
cussed in section 1.

In section 2 we present several maps, which relate various special geometries
associated to field theories in five, four and three dimensions. In particular, we
discuss two purely geometric constructions of para-hyper-Kähler manifolds, which
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correspond to the dimensional reduction of a Euclidian or Minkowskian theory in
4 dimensions to a Euclidian theory in 3 dimensions [CMMS2].

1. Special para-Kähler manifolds

1.1. Definitions.

Definition 1. A para-Kähler manifold is a pseudo-Riemannian manifold (M, g)
endowed with a parallel skew-symmetric involution J ∈ Γ(EndTM).

A special para-Kähler manifold (M, J, g,∇) is a para-Kähler manifold (M, J, g)
endowed with a flat torsion-free connection ∇ satisfying

(i) ∇ω = 0, where ω = g(J ·, ·) is the symplectic form associated to (M, J, g) and
(ii) (∇XJ)Y = (∇Y J)X, ∀X, Y ∈ Γ(TM).

From the definition of a para-Kähler manifold it follows that the eigen-distri-
butions T±M of J are isotropic, of the same dimension and integrable.

In particular, dimM = 2n and g is of split signature (n, n).

Definition 2. A field of involutions on a manifold M with integrable eigen-dis-
tributions of the same dimension is called a para-complex structure.

A manifold endowed with a para-complex structure is called a para-complex man-
ifold.

A map φ : (M, J) → (M ′, J ′) between para-complex manifolds is called para-ho-
lomorphic if dφ ◦ J = J ′ ◦ dφ.

A para-holomorphic function is a para-holomorphic map f : (M, J) → C with
values in the ring of para-complex numbers C = R[e], e2 = 1.

For any p ∈ M there exists an open neighbourhood U and para-holomorphic
functions

zi : U → C, i = 1, . . . , n =
dimM

2
,

such that the map (z1, . . . , zn) : U → Cn = R
2n is a diffeomorphism on its image.

Such a system of para-holomorphic functions is called a system of para-holomorphic
coordinates.

1.2. Extrinsic construction of special para-Kähler manifolds. Consider
the free C-module V = C2n with its global linear para-holomorphic coordinates
(zi, wi), its standard para-holomorphic symplectic form

Ω =
∑

dzi ∧ dwi

and the standard anti-linear involution τ : V → V with the set of fixed points
V τ = R

2n. We define a constant para-Kähler metric by

gV (X, Y ) := Re(eΩ(X, τY )), X, Y ∈ V.

Definition 3. Let (M, J) be a para-complex manifold of real dimension 2n. A
para-holomorphic immersion φ : M → V = C2n is called para-Kählerian (respec-
tively, Lagrangian) if φ∗gV is non-degenerate (respectively, if φ∗Ω = 0).
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It is easy to see that the metric g = φ∗gV induced by a para-Kählerian im-
mersion is para-Kählerian. In the following, we will abbreviate para-Kählerian
Lagrangian immersion to PKLI.

Lemma 1. Let φ : M → V be a PKLI and ω = g(J ·, ·) the corresponding sym-
plectic structure. Then ω = 2

∑
dx̃i∧dỹi, where x̃i = xi ◦φ, ỹi = yi◦φ, xi = Re zi,

yi = Rewi.

By the lemma (x̃i, ỹi) defines a system of local coordinates. Therefore, there
exists a unique flat and torsion-free connection ∇ on M for which x̃i and ỹi are
affine functions.

Theorem 1. [CMMS1] Let φ : M → V be a PKLI with induced data (J, g,∇).
Then (M, J, g,∇) is a special para-Kähler manifold.

Conversely, any simply connected special para-Kähler manifold (M, J, g,∇) ad-
mits a PKLI φ : M → V with induced data (J, g,∇). Moreover, the PLKI φ is
unique up to an element of AffSp(R2n)(V ).

Proof of ”⇒”. Let φ : M → V be a PKLI with induced data (J, g,∇). We
have to show that (M, J, g,∇) is special para-Kähler. We know that (M, J, g) is
para-Kähler and that ∇ is flat and torsion-free. By the lemma, the symplectic
form ω has constants coefficients with respect to the ∇-affine coordinates (x̃i, ỹi).
Thus ∇ω = 0. It remains to show that ∇J is symmetric. For a ∇-parallel one-form
ξ and vector fields X, Y on M we calculate:

d(ξ ◦ J)(X, Y ) =
T∇=0

∇X(ξ ◦ J)Y −∇Y (ξ ◦ J)X

= ξ(∇X(J)Y −∇Y (J)X).

Therefore, it is sufficient to prove that ξ ◦ J is closed for ξ = dx̃i and ξ = dỹi.
Let us check this, for example, for ξ = dx̃i. The function x̃i is the real-part of the
para-holomorphic function z̃i = zi ◦ φ. So dz̃i = dx̃i + edx̃i ◦ J . Since dx̃i and dz̃i

are closed, this shows that dx̃i ◦ J is closed. �

Corollary 1. Let F : U → C be a para-holomorphic function defined on a open
set U ⊂ Cn satisfying the non-degeneracy condition det Im ∂2

∂zi∂zj F 	= 0.

Then φF = dF : U → C2n,

z = (z1, . . . , zn) 
→ (z,
∂F

∂z1
(z), . . . ,

∂F

∂zn
(z)),

is a PKLI and hence defines a special para-Kähler manifold MF .
Conversely, any special para-Kähler manifold is locally of this form.

2. Maps between special geometries from dimensional reduction

Dimensional reduction is a procedure for the construction of a field theory in d
space-time dimensions from one in d + 1 dimensions.

In the context of special geometry of Euclidian supersymmetry it is natural to
ask the following two questions:
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(i) Is it possible to construct N = 2 supersymmetric field theories with vec-
tor multiplets on 4-dimensional Euclidian space from field theories on 5-
dimensional Minkowski space?

(ii) Is it possible to construct Euclidian supersymmetric field theories in 3 di-
mensions out of N = 2 supersymmetric field theories with vector multiplets
in 4 dimensions?

The first question is given a detailed positive answers in [CMMS1], the second
in [CMMS2]. We describe the corresponding geometrical constructions in the
remaining two subsections.

2.1. Dimensional reduction from 5 to 4 dimensions. The allowed target ge-
ometry for the scalar fields in the relevant supersymmetric theories on 5-dimensional
Minkowski space is called (affine) very special, see [CMMS1].

It is defined by a real cubic polynomial h(x1, . . . , xn) with non-degenerate Hes-
sian ∂2h on some domain U ⊂ R

n.
We found that dimensional reduction of such a Minkowskian theory over time

yields a Euclidian N = 2 supersymmetric theory with vector multiplets such that
the target is special para-Kähler [CMMS1]. This means that we get a map:

{very special manifolds} r4+1
4+0−→ {special para-Kähler manifolds},

which we call the para-r-map.

Theorem 2. [CMMS1] There exists a map r4+1
4+0 which associates a special para-

Kähler structure on the domain Ũ = U + eR
n ⊂ Cn to any very special mani-

fold (U, ∂2h), U ⊂ R
n. The special para-Kähler structure is defined by the para-

holomorphic function

F : Ũ → C, F (z1, . . . zn) :=
1
2e

h(z1, . . . , zn),

which satisfies det Im ∂2F 	= 0.

This is the para-version of the r-map:

{very special manifolds} r4+1
3+1−→ {special pseudo-Kähler manifolds},

introduced by B. de Wit and A. Van Proeyen in [DV] in the context of supergravity.

2.2. Dimensional reduction from 4 to 3 dimensions. We found two ways of
constructing Euclidian supersymmetric field theories in 3 dimensions out of N = 2
theories with vector multiplets in 4 dimensions [CMMS2].

One can start either with a Minkowskian theory and reduce over time or with
a Euclidian theory. This gives us two maps:

{special pseudo-Kähler manifolds} c3+1
3+0−→ {para-hyper-Kähler manifolds},

{special para-Kähler manifolds} c4+0
3+0−→ {para-hyper-Kähler manifolds},

which we call the para-c-maps. They are para-variants of the c-map, worked out
by Cecotti, Ferrara and Girardello in [CFG].
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Para-hyper-Kähler manifolds.

Definition 4. A para-hyper-Kähler manifold is a pseudo-Riemannian manifold with
three pairwise anticommuting parallel skew-symmetric endomorphism fields J1, J2,
J3 = J1J2, such that J2

1 = J2
2 = −J2

3 = Id.

A pseudo-Riemannian manifold is para-hyper-Kähler if and only if its holonomy
group

Hol ⊂ Sp(R2n) = IdR2 ⊗ Sp(R2n)
⊂ SO(R2 ⊗ R

2n, ωR2 ⊗ ωR2n) = SO(2n, 2n).

Here ωR2n stands for the standard symplectic structure of R
2n. In particular, the

dimension of any para-hyper-Kähler manifold is divisible by 4.

The para-c-maps. Now I describe, for instance, the para-hyper-Kähler manifold
associated to a special para-Kähler manifold (M, J, g,∇) via the para-c-map c4+0

3+0.
Let N = T ∗M be the total space of the cotangent bundle π : N → M and

consider the decomposition TξN = H∇
ξ ⊕T v

ξ N , ξ ∈ N, into horizontal and vertical
subbundles with respect to the connection ∇.

This defines a canonical identification

TξN ∼= TxM ⊕ T ∗
xM, x = π(ξ).

With respect to the above identification, we define a pseudo-Riemannian metric
gN on N by

gN :=
(

g 0
0 g−1

)
and two involutions J1, J2 by

J1 :=
(

J 0
0 J∗

)
and J2 :=

(
0 ω−1

ω 0

)
.

Theorem 3. [CMMS2] For any special para-Kähler manifold (M, J, g,∇), (N, gN ,
J1, J2, J3 = J1J2) is a para-hyper-Kähler manifold.

Conclusion. The maps between special geometries induced by dimensional reduc-
tion are summarized in the following diagram:

{v. sp. mfs.}
p.-r-m.

r4+1
4+0���������������� r-map

r4+1
3+1 ����������������

{sp. para-K. mfs.}

p.-c-m.
c4+0
3+0

����������������
{sp. ps.-K. mfs.}

p.-c-m.
c3+1
3+0

����������������

{para-h.-K. mfs.}
The diagram is essentially commutative:

Theorem 4. [CMMS2] For any very special manifold L = (U, ∂2h) the para-hyper-
Kähler manifolds c4+0

3+0 ◦ r4+1
4+0(L) and c3+1

3+0 ◦ r4+1
3+1(L) are canonically isometric.
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