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AN INTRODUCTION TO SUPERSYMMETRY

VICENTE CORTÉS

Abstract. This is a short introduction to supersymmetry based on the first
of two lectures given at the II Workshop in Differential Geometry, La Falda,
Córdoba, 2005.

Outline

The aim of this note is to explain — in mathematical terms and based on
simple examples — some of the basic ideas involved in classical supersymmetric
field theories. It should provide some helpful background for the, more advanced,
discussion of geometrical aspects of supersymmetric field theories on Euclidian
space, which is the theme of a second paper in this volume. Supersymmetric field
theories on Minkowski space are discussed in great detail in the paper [DF], written
for mathematicians. We shall not attempt here to give a reasonably complete list
of papers written for physicists.

Our exposition starts with the simplest supersymmetric field theory on a pseudo-
Euclidian space: the free supersymmetric scalar field. A straightforward generali-
sation is the linear supersymmetric sigma-model, the target manifold of which is
flat. The generalisation to curved targets is non-trivial and leads to geometrical
constraints imposed by supersymmetry.

Acknowledgement I thank Lars Schäfer for his assistance in the preparation
of the computer presentation, which I gave at the II Workshop in Differential
Geometry, La Falda, Córdoba, 2005.

1. The free supersymmetric scalar field

The bosonic scalar field. Let M = V = (Rd, η =< ·, · >) be a pseudo-Euclidian
vector space, e.g. M = Minkowski space, the space-time of special relativity. A
scalar field on M is a function φ : M → R. The simplest Lagrangian for a scalar
field is

Lbos(φ) = 〈gradφ, gradφ〉 = η−1(dφ, dφ) =: |dφ|2.
It is invariant under any isometry ϕ ∈ Isom(M), since d(ϕ∗φ) = ϕ∗dφ. The
corresponding Euler-Lagrange equations are linear:

0 = div gradφ =: ∆φ.

∆ is the pseudo-Euclidian version of the Laplacian.
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The supersymmetry algebra. Suppose now that we have a non-degenerate
bilinear form β on the spinor module S of V such that there exist σ, τ ∈ {±1}
such that:

(i) β(s, s′) = σβ(s′, s) and
(ii) β(γvs, s′) = τβ(s, γvs′),

for all s, s′ ∈ S, v ∈ V , where γv : S → S is the Clifford multiplication by v ∈ V .
All such forms have been determined in [AC].

If στ = +1, which will be assumed from now on, we can define a symmetric
vector-valued bilinear form

Γ = Γβ : S × S → V

by the equation

〈Γ(s, s′), v〉 = β(γvs, s′) ∀s, s′ ∈ S, v ∈ V.

Γ is equivariant with respect to the connected spin group and defines an extension
of the Poincaré algebra

g0 = Lie Isom (M) = so(V ) + V

to a Lie superalgebra
g = g0 + g1 with g1 = S.

Such Lie superalgebras are called super-Poincaré algebras. (More generally, g1

could be a sum of spinor and semi-spinor modules.)

The supersymmetric scalar field. It turns out that the Lagrangian Lbos(φ)
for a scalar field φ can be extended to a Lagrangian L(φ, ψ) depending on the
additional spinor field ψ : M → S in such a way that the action of Isom0(M) =
SO0(V ) � V on scalar fields φ is extended to an action of its double covering
Spin0(V ) � V on fields (φ, ψ) preserving the Lagrangian L(φ, ψ). Moreover, the
infinitesimal action of g0 extends, roughly speaking, to an infinitesimal action of
g preserving L(φ, ψ) up to a divergence.

The formula for the Lagrangian is the following:

L(φ, ψ) = η−1(dφ, dφ) + β(ψ,Dψ),

where D is the Dirac operator

Dψ =
∑

γµ∂µψ, γµ =
∑

ηµνγν with γν = γ∂ν .

In this formula ψ has to be understood as an odd element of

ΓA(Σ) := Γ(Σ) ⊗A,

where Σ = M × S → M is the trivial spinor bundle and A = ΛE is the exterior
algebra of some auxiliary finite dimensional vector space E.

The bilinear form β : S×S → R extends as follows to an even C∞
A (M) -bilinear

form
β : ΓA(Σ) × ΓA(Σ) → C∞

A (M) = C∞(M) ⊗A.

Let (εa) be a basis of S, βab := β(εa, εb) and

ψ =
∑

εaψa , ψ
′ =

∑
εaψ

′
a ∈ ΓA(Σ) = Γ(Σ) ⊗A = S ⊗ C∞

A (M).
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Then on defines

β(ψ, ψ′) :=
∑

βabψaψ
′
b.

For homogeneous elements ψ, ψ′ of degree ψ̃, ψ̃′ ∈ {0, 1} we obtain

β(ψ, ψ′) = (−1)ψ̃ψ̃
′
σβ(ψ′, ψ). (1)

This implies

β(ψ,Dψ′) =
∑

β(ψ, γµ∂µψ′) = τ
∑

β(γµψ, ∂µψ′) ≡ −τβ(Dψ,ψ′) (mod div)

= − τσ︸︷︷︸
=+1

(−1)
gDψψ̃′
(=ψ̃ψ̃′)β(ψ′, Dψ) = −(−1)ψ̃ψ̃

′
β(ψ′, Dψ).

In particular,

β(ψ,Dψ) ≡ −(−1)ψ̃β(ψ,Dψ) (mod div).

Hence β(ψ,Dψ) is a divergence if ψ is even. The Euler-Lagrange equations are
again linear: {

∆φ = 0,
Dψ = 0.

This is why the classical field theory defined by the Lagrangian L(φ, ψ) for the
scalar field φ and its fermionic superpartner ψ is called free. It is easy to check
the Spin0(V ) � V -invariance of L(φ, ψ).

Verification of supersymmetry. We shall now define the supersymmetry trans-
formations and check the invariance of the Lagrangian L(φ, ψ) up to a divergence.

For any odd constant spinor

λ =
∑

εaλ
a ∈ S ⊗ ΛoddE ( ∼= g1 ⊗ ΛoddE ⊂ (g ⊗ ΛE)0)

we define a vector field X on the the infinite-dimensional vector space of fields.
The value X(φ,ψ) = (δφ, δψ) of X at (φ, ψ) is{

δφ := −β(ψ, λ) ∈ C∞
A (M)0

δψ := γgradφλ ∈ ΓA(Σ)1

Let us check that this infinitesimal transformation preserves the Lagrangian up to
a divergence:

δL(φ, ψ) ≡ 2η−1(dδφ, dφ) + 2β(δψ,Dψ) (mod div). (2)

Here we have used that, by (1):

β(ψ,Dδψ) ≡ −(−1)ψ̃fδψ︸ ︷︷ ︸
=+1

β(δψ,Dψ) (mod div) = β(δψ,Dψ).
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The calculation of the two terms in (2) yields:

η−1(dδφ, dφ) = −η−1(β(dψ, λ), dφ) = −
∑

ηµνβ(∂µψ, λ)∂νφ

β(δψ,Dψ) =
∑

β(γgradφλ, γ
µ∂µψ) = τ

∑
β(γµγgradφλ, ∂µψ)

= −τ
∑

ηµν(∂νφ)β(λ, ∂µψ) +
τ

2

∑
β((γµγgradφ − γgradφγ

µ)λ, ∂µψ)

(by the Clifford relation)

= +τσ
∑

ηµν(∂νφ)β(∂µψ, λ) +
τ

2

∑
(∂νφ)β([γµ, γν ]λ, ∂µψ)

≡
∑

ηµν(∂νφ)β(∂µψ, λ) − τ

2

∑
(∂µ∂νφ)︸ ︷︷ ︸
symm.

β( [γµ, γν ]︸ ︷︷ ︸
skew−symm.

λ, ψ) (mod div)

=
∑

ηµν(∂νφ)β(∂µψ, λ) = −η−1(dδφ, dφ).

This shows that δL(φ, ψ) ≡ 0 (mod div).

2. Sigma-models

The linear supersymmetric sigma-model. Instead of considering one scalar
field φ and its superpartner ψ we may consider n scalar fields φi and n spinor fields
ψi on M (i = 1, . . . , n). The following Lagrangian is supersymmetric:

L(φ1, . . . , φn, ψ1, . . . , ψn) =
n∑

i,j=1

gij(η−1(dφi, dφj) + β(ψi, Dψj)),

where gij is a constant symmetric matrix, which we assume to be non-degenerate.
The above Lagrangian is called the linear supersymmetric sigma-model. The Euler
Lagrange equations for the scalar fields imply that the map

φ = (φ1, . . . , φn) : M → R
n

is harmonic, where the target carries the flat metric g = (gij).

Non-linear supersymmetric sigma-models. Next we consider maps

φ : M → (M, g)

into a curved pseudo-Riemannian manifold (M, g). The Lagrangian

Lbos(φ) = |dφ|2 := (gφ ⊗ η−1)(dφ, dφ)

is called the non-linear bosonic sigma-model. The Euler-Lagrange equation of Lbos
is the harmonic map equation for φ.

It is natural to ask:
Does there exist a supersymmetric non-linear sigma-model, i.e. a supersymmetric
extension L(φ, ψ) of the bosonic sigma-model Lbos(φ)?

It turns out that one cannot expect a positive answer for arbitrary target (M, g).
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Restrictions on the target geometry. Supersymmetry imposes restrictions on
the target geometry, which depend on the dimension d of space-time and on the
signature of the space-time metric η. In the case of 4-dimensional Minkowski space
the restriction is that (M, g) is a (possibly indefinite) Kähler manifold [Z]. The
corresponding supersymmetric sigma-model is of the form

L(φ, ψ) = (gφ ⊗ η−1)(dφ, dφ) + (gφ ⊗ β)(ψ,Dφψ) +Q(φ, ψ),

where ψ ∈ ΓA(φ∗TM ⊗R Σ), ψ = ψ1,0 ⊕ ψ1,0, with ψ1,0 ∈ ΓA(φ∗TM1,0 ⊗C Σ)
and Dφ =

∑
γµ∇φ

∂µ
, where ∇φ is the natural connection in φ∗TM ⊗ Σ and Q is

a term quartic in the fermions constructed out of the curvature-tensor Rg of g,
using that (M, g) is Kähler and S = C2.

Extended supersymmetry, special geometry. The super-Poincaré algebra
g = gN=1 = g0 + g1 underlying the above non-linear supersymmetric sigma-model
on four-dimensional Minkowski space is minimal, in the sense that g1 = S is an
irreducible Spin(1, 3)-module. The real dimension of S is four.

There exists another super-Poincaré algebra g = gN=2 = g0 + g1 for which
g1 = S ⊗ R2 is a sum of two irreducible submodules. Note that gN=1 is not a
subalgebra of gN=2. In fact, the Spin(V )-submodules S⊗ v ⊂ S⊗R

2, v ∈ R
2, are

commutative subalgebras, i.e. [S ⊗ v, S ⊗ v] = 0.
Field theories admitting the extended super-Poincaré algebra gN=2 as super-

symmetry algebra are called N = 2 supersymmetric theories. The target geometry
of such theories is called special geometry. The geometry depends on the field con-
tent of the theory. There are two fundamental cases:

(i) Theories with vector multiplets: the target geometry is (affine) special Kähler
[DV], see [C] for a survey on special Kähler manifolds.

(ii) Theories with hypermultiplets: the target geometry is hyper-Kähler, as fol-
lows from results about two-dimensional sigma-models [AF].

There exists also a Euclidian version g′N=2 = g′0 +g′1 of the Minkowskian N = 2
super-Poincaré algebra gN=2, for which g′0 = so(4) + R4 is the Lie algebra of
Killing vector fields of the four-dimensional Euclidian space and g′N=2 ⊗ C ∼=
gN=2 ⊗ C. The special geometry associated with field theories admitting the Lie
superalgebra g′N=2 as supersymmetry algebra is discussed in a second contribution
to this volume.
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