Funktionentheorie Wintersemester 2009/10 Prof. C. Schweigert Dr. Michael Carl Department Mathematik Universität Hamburg

Aufgabenblatt 4

Aufgabe 1. Seien V_1, \ldots, V_n, W normierte Vektorräume über dem gleichen Körper mit Norm $|\cdot|$. Das Produkt $V_1 \times V_2 \times \ldots \times V_n$ versehen wir durch die Maximums-Norm

$$||(x_1, x_2, \dots x_n)|| := \max_i |x_i|$$

mit einer Topologie. Sei $f:V_1\times\cdots\times V_n\to W$ eine multilineare Abbildung, also eine Abbildung, die in jedem Faktor V_i linear ist. Zeigen Sie die Äquivalenz folgender Aussagen:

- a) f ist stetig.
- b) f ist stetig in 0.
- c) Es gibt eine reelle Zahl c(f) > 0, so dass

$$|f(x_1,\ldots,x_n)| \le c(f)|x_1|\cdots|x_n|.$$

(4 Punkte)

Aufgabe 2. Durch die stereographische Projektion haben wir $S^2 \subset \mathbb{R}^3$ mit der Riemannschen Zahlensphäre $\hat{\mathbb{C}}$ identifiziert.

- a) Bestimmen Sie die Selbstabbildungen von S^2 , die den Selbstabbildungen $z \mapsto \overline{z}$ und $z \mapsto \frac{1}{z}$ von $\hat{\mathbb{C}}$, also der komplexen Konjugation und der Inversenbildung, entsprechen.
- b) Von dem üblichen euklidischen Abstand auf \mathbb{R}^3 erbt S^2 eine Abstandsfunktion. Welche der oben untersuchten Selbstabbildungen von S^2 erhalten diesen Abstand?
- c) Zeigen Sie: zwei Punkte $p_1, p_2 \in S^2 \setminus \{N\}$ liegen genau dann symmetrisch zum Ursprung, wenn für ihre Bilder z_1, z_2 unter der stereographischen Projektion gilt $z_1 \cdot \overline{z}_2 = -1$.

(1+1 Punkte)

Aufgabe 3.

a) Zeigen Sie, dass eine Möbiustransformation Geraden und Kreise in Geraden und Kreise überführt.

b) Finde die Untergruppe der Möbiustranformationen, die $\mathbb{R} \cup \{\infty\}$ in sich überführt.

(2+2 Punkte)

Aufgabe 4. Eine zweimal stetig differenzierbare Funktion $\varphi: \mathbb{R}^2 \to \mathbb{R}$ heißt harmonisch, falls sie die Differentialgleichung $\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = 0$ erfüllt.

- a) Zeigen Sie: Real- und Imaginärteil einer zweimal stetig komplex differenzierbaren Funktion, aufgefasst als reellwertige Funktionen auf \mathbb{R}^2 sind harmonisch.
- b) Man kann zeigen, dass umgekehrt jede harmonische Funktion $\mathbb{C} \to \mathbb{R}$ Real- oder Imaginärteil einer komplex differenzierbaren Funktion ist. Diese Umkehrung gilt allerdings nicht, falls man \mathbb{C} durch $\mathbb{C}\setminus\{0\}$ ersetzt: Zeigen Sie, dass die Funktion $\mathbb{C}\setminus\{0\}\to\mathbb{R},\ z\mapsto \log|z|$ zwar harmonisch, aber nicht der Realteil einer komplex differenzierbaren Funktion ist.

(1+2 Punkte)

Abgabe: Am Montag, 16.11.2009 in Ihrer Übungsgruppe.