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Abstract

In a finite graph, an edge set Z is an element of the cycle space if and
only if every vertex has even degree in Z. We extend this basic result to
the topological cycle space, which allows infinite circuits, of locally finite
graphs. In order to do so, it becomes necessary to attribute a parity to
the ends of the graph.

1 Introduction

In a series of three papers [7, 8, 9], Diestel and Kühn introduced the topological
cycle space that allows to extend theorems about circuits and the cycle space in
finite graphs to an important class of infinite graphs, the class of locally finite
graphs. (A graph is locally finite if each vertex has finite degree.)

Previously, the cycle space of an infinite graph was often defined in the same
way as for finite graphs, namely as the set of (finite) mod 2 sum of circuits, the
edge sets of 2-regular connected subgraphs. With this naive definition many
results about circuits either become trivial are outright false in locally finite
graphs. Diestel and Kühn, on the other hand, define a circuit to be the edge
set of a homeomorphic image of the unit circle in the graph compactified by
its ends (an end is an equivalence class of rays; for precise definitions see next
section). This definition not only includes the traditional, finite circuits but also
allows infinite ones. As an example consider Figure 1. There the (edge set of
the) double ray D is a circuit, since both tails of D are in the same end to the
left. On the other hand, double ray D′ is not a circuit. Yet, the union of D′

and D′′ is a circuit.

D

D’

D’’

...

...

...

...

Figure 1: Circuits in the double ladder

The topological cycle space, which is defined to be the set of all (possibly
infinite but well defined) mod 2 sums of circuits, permits verbatim extensions of
many theorems to locally finite graphs. Among these are MacLane’s planarity
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criterion [3], Tutte’s generating theorem [1] and Gallai’s partition theorem [2].
Moreover, since the circuits of Diestel and Kühn may be infinite, it becomes
possible to consider Hamilton circuits in locally finite graphs, see for instance
Georgakopoulos [10] or Cui, Wang and Yu [5].

However, one of the most basic and simple results characterising the cycle
space of a finite graph did not so far have an analogue in locally finite graphs.
For an edge set Z let us call a vertex Z-even if it is incident with an even number
of edges in Z.

Proposition 1. Let G be a finite graph. Then an edge set Z ⊆ E(G) is an
element of the cycle space if and only if every vertex in G is Z-even.

Easy examples show that the proposition, as it is, cannot carry over to
infinite graphs. All the vertices in the double rays D and D′, for instance, have
degree 2, yet E(D) is a circuit but E(D′) is not.

The key difference between D and D′ obviously lies in their behaviour at the
ends of the double ladder. In [8] it was proposed to find a suitable definition for
the degree of an end that captures this behaviour. Such a definition has been
offered in [4], where the degree of an end is defined to be the maximal number
of edge-disjoint rays in the end. Should this degree be finite, we call an end even
if the end-degree is an even number, otherwise it is odd. For ends of infinite
degree it is still possible to assign a parity, even or odd; we defer the details to
Section 3. The concept of an end-degree allows to prove the following theorem,
the main result of Bruhn and Stein [4].

Theorem 2. [4] Let G be a locally finite graph. Then E(G) is an element of
the topological cycle space of G if and only if every vertex and every end of G
has even degree.

To see whether a subset Z of the egdes of a finite graph G = (V, E) is an
element of the cycle space, we evidently need to check the degree a given vertex
has in the subgraph (V, Z), whereas the degree in the whole graph is irrelevant.
In the same way, if we want to extend Proposition 1, we have to measure the
degree of an end with respect to Z. Such an end-degree, that classifies ends as
Z-even or as Z-odd, has been introduced in [4], which allowed to formulate the
following conjecture.

Conjecture 3. [4] Let G be a locally finite graph, and let Z ⊆ E(G). Then Z
is an element of the topological cycle space of G if and only if every vertex and
every end of G is Z-even.

The purpose of this paper is to give a proof of the conjecture, which will be
achieved over the course of Sections 4 and 5. In the next section we provide
a formal definition of the topological cycle space, and in Section 3 we briefly
discuss and define the notion of an end-degree.

2 Definitions

We refer the reader to Diestel [6] for general graph-theoretic definitions and
notation. Let G = (V,E) be a locally finite graph. We call a 1-way infinite
path in G a ray, a 2-way infinite path is a double ray. Two rays are said to be
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equivalent if they cannot be separated by finitely many vertices, or equivalently,
if there are infinitely many disjoint paths between them. The equivalence classes
of the rays in G are called the ends of G.

We define a topological space, denoted by |G|, on the space consisting of
G viewed as a 1-complex plus its ends. Thus, every edge is homeomorphic to
the unit interval and basic open neighbourhoods of vertices consists of a choice
of half-edges, one for each incident edge. For an end ω, each finite vertex set
S defines a basic open neighbourhood as follows. Denote by C(S, ω) the one
component of G − S that contains a ray in ω and then a subray of every ray
in ω. The basic open neighbourhood determined by S is the union of C(S, ω),
all edges between S and C(S, ω) minus their endvertices in S, and all ends that
have a ray in C(S, ω). The resulting topological space |G|, sometimes called the
Freudenthal compactification of G, is compact and Hausdorff.

The homeomorphic image of the unit interval in |G| is called an arc. For
S, T ⊆ V (G) ∪ Ω(G), we say that A is an S–T arc if the first point of A lies
in S, the last in T and no interior point in S ∪ T . For x ∈ V (G) ∪ Ω(G) we
simply speak of x–T arcs instead of {x}–T arcs, and proceed analogously for
other combinations of singeltons and sets.

As defined by Diestel and Kühn [7] we say that a circuit of G is the edge set
of a homeomorphic image of the unit circle in |G|; we remark that such a circle
in |G| contains every edge of which it contains an interior point.

We call a family (Fi)i∈I of subsets of E a thin family if every edge appears
in at most finitely many of the Fi. The sum of such a family is denoted by∑

i∈I Fi and defined to be the edge set consisting of those edges that appear in
exactly an odd number of the Fi. All sums of edge sets in this paper will be
considered to be sums of thin families. The topological cycle space C(G) of G is
the set of all sums of thin families of circuits. For more on the topological cycle
space and on |G| see [6]. For a more general concept of a cycle space in infinite
graphs we defer the reader to Vella and Richter [12].

The following theorem gives a combinatorial characterisation of the cycle
space.

Theorem 4 (Diestel and Kühn [7]). Let Z be a set of edges in a locally finite
graph G. Then Z ∈ C(G) if and only if Z meets every finite cut of G in an even
number of edges.

We call a subgraph R a region of G if there is a finite cut F of G so that R
is a component of G− F . In particular, R is induced and connected.

Let Z ⊆ E(G), and let C be some subgraph of G. We write ∂ZC for the
edges in Z with exactly one endvertex in C and exactly one endvertex outside C.
We write ∂GC for ∂E(G)C.

For an edge set Z ⊆ E, we say that a vertex is Z-even if it is incident with
an even number of edges in Z. We call a region R Z-even if |∂ZR| is even,
otherwise R is Z-odd.

3 End-degrees in subgraphs

In this section, let us first give the formal definition of the degree of an end with
respect to the whole graph. In a second step we then refine the definition, so
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that it applies to subgraphs as well. We follow here the exposition of [4], where
a more thorough discussion can be found.

Let ω be an end of a locally finite graph G. The end-degree of ω is then the
supremum (in fact, this is a maximum) over the cardinalities of sets of edge-
disjoint rays in ω, and we denote this (possibly infinite) number by deg(ω).

For Theorem 2 the numerical value deg(ω) is not important. Rather, it is
essential whether ω can be said to be even or odd. Provided deg(ω) is finite
then it is obvious that ω should be even if and only if the number deg(ω) is
even. That raises the question what parity we should assign to an end ω of
infinite degree. The graphs in Figure 2 demonstrate that we cannot call such
an end always even or always odd. In both graphs all the vertices have even
degree and all the ends have infinite degree. Yet, as can be easily checked with
the help of Theorem 4, the edge set of the infinite grid lies in the cycle space,
while for the graph H on the right, we have E(H) /∈ C(H). Consequently, for
Theorem 2 to become a true statement, the single end in the infinite grid has
to be even, but the two ends in H should be odd.

Figure 2: Even and odd ends of infinite degree

The example indicates that we need to distinguish between ends that have
infinite degree but are even and ends of odd-infinite degree. This is accomplished
by the following definition. We call an end ω even if there exists a finite vertex
set S ⊆ V (G) so that for all finite vertex sets S′ ⊇ S it holds that the maximal
number of edge-disjoint rays in ω starting in S′ is even. Otherwise, the end is
called odd.

Let us make two remarks, both of which are discussed in more detail in [4].
First, for an end ω of finite degree, the end is even according to this definition
if and only if deg(ω) is an even number. Second, the choice of quantifiers for S
and S′ might appear arbitrary. Indeed, defining an end to be even with reversed
quantifiers seems equally reasonable, i.e. an end ω would be even if for all finite
vertex sets S there exists a finite superset S′ such that the maximal number
of edge-disjoint rays in ω starting in S′ is even. While we suspect that such a
definition of weakly even ends would still lead to Theorem 2 and Conjecture 3
to be true, we unfortunately cannot prove much in that respect.

Going back to Figure 2, we see that a choice of S = ∅ is sufficient for the
single end of the infinite grid to be even. For any of the two ends of the graph
on the right, however, it is not hard to check that as long as S′ separates the
two ends, the maximal number of edge-disjoint rays in the end starting in S′ is
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odd, and hence the end itself is odd, as desired.
As outlined in the introduction, the degree of an end with respect to the

whole graph is not of much use to us. To be able to decide whether a given edge
set Z lies in the cycle space or not, we require a notion of an end-degree that
takes Z into account. The key to adapting the notions introduced above, lies
in substituting every occurrence of the word ‘ray’ by ‘arc’. For this, denote by
Z the closure of the point set

⋃
z∈Z z in |G|. We say that an end ω is Z-even

if there exists a finite vertex set S so that for all finite vertex sets S′ ⊇ S it
holds that the maximal number of edge-disjoint S′–ω arcs contained in Z is
even. If an end is not Z-even, it is Z-odd. This definition is consistent with the
definition of the end-degree in the whole graph, i.e. an end is E(G)-even if it is
even Moreover, if the maximal number N of edge-disjoint arcs contained in Z
and ending in ω is finite, then ω is Z-even if and only if N is even. For both
these facts, see [4].

Consider the double rays D and D′ in Figure 1 again. There are two (edge-
disjoint) arcs contained in E(D) that end in the end to the right, so that that
end is E(D)-even. So, all vertices and all ends are E(D)-even, and indeed E(D)
is a circuit. In contrast, E(D′) is not a circuit and we can easily check that
any two arcs contained in E(D′) terminating in the same end share an edge.
Consequently, the ends are E(D′)-odd and therefore a certificate for E(D′) /∈ C.

Let us now state our main result.

Theorem 5. Let G be a locally finite graph, and let Z ⊆ E(G). Then Z ∈ C(G)
if and only if every vertex and every end of G is Z-even.

The following lemma will be convenient when we check whether a given end
is even or odd. We say that an edge set F separates a vertex set S from an end
ω if every ray in ω with first vertex in S meets F .

Lemma 6. Let ω be an end of a locally finite graph G, let Z ⊆ E(G) and let
S ⊆ V (G) be a finite vertex set. Then the maximal number of edge-disjoint S–ω
arcs contained in Z equals the minimum of |F ∩ Z| over all finite cuts F of G
that separate S from ω.

While the proof of the lemma is not overly difficult, it is not very instructive,
and similar arguments have been given in [4]. We note that it can also be
obtained from a more general result by Thomassen and Vella [11], who prove a
Menger-type theorem for graph-like spaces.

With the help of Lemma 6 and Theorem 4 it becomes easy to prove the
forward direction of our main theorem.

Lemma 7. Let G be a locally finite graph, and let Z ⊆ E(G). If Z ∈ C(G) then
every vertex and every end of G is Z-even.

Proof. If Z ∈ C(G) then, by definition or by Theorem 4, every vertex of G is
Z-even. To see that any end ω is Z-even too, consider an arbitrary finite vertex
set S′. By Lemma 6, the maximal number of edge-disjoint S′–ω arcs contained
in Z equals the minimum |F ∩ Z| for all finite cuts F that separate S′ from ω.
Since Theorem 4 implies that for any finite cut F we have that F ∩Z is an even
set, we deduce that the number of S′–ω arcs is even, and consequently that ω
is Z-even.
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The rest of the paper will be spent on proving the backward direction. For
this, given an edge set Z in a locally finite graph G we assume that every vertex
is Z-even but that Z /∈ C(G). Hence, our aim is to find a Z-odd end, which we
shall achieve be showing that the conditions of the next lemma are met.

Lemma 8. Let G be a locally finite graph, and let Z be a subset of E(G).
Assume there exists a sequence C1, C2, . . . of regions of G with the following
properties:

(i) |∂ZCn| is odd for all n;

(ii) ∂GCn ∪ E(Cn) ⊆ E(Cn−1) for all n; and

(iii) for every region R of G with Ck ⊇ R ⊇ C` for some k ≤ ` it holds that
|∂ZR| ≥ |∂ZCk|.

Then, G contains a Z-odd end.

Proof. Denote by ω the end of a ray that meets every Cn (that such a ray exists
can be seen, for instance, by Lemma 8.2.2 in [6]), and let us show that ω is Z-
odd. First, observe that, by (ii), any arc that meets every Cn for large n contains
a subarc with ω as endpoint. Now, let a finite vertex set S be given. By (ii),
we may pick an N so that S is disjoint from CN . Put S′ := S ∪ N(G − CN )
and note that (iii) together with Lemma 6 imply that the maximal number of
edge-disjoint S′–ω arcs contained in Z equals |∂ZCN |, which is odd by (i). Thus,
ω is Z-odd.

Let us give a rough outline of the proof of Theorem 5. Lemma 8 provides
us with a recipe for proving the existence of a Z-odd end. But how do we
find Z-odd regions Cn as in the lemma? We first note that there is a natural
candidate for C1. By Theorem 4, there exists a finite cut of G that meets Z in
an odd number of edges. Now, among all finite cuts F so that |F ∩ Z| is odd
we choose one where |Z ∩ F | is minimal. Then, we take C1 to be a component
of G − F . This already ensures that for any Z-odd region R ⊆ C1 it holds
that |∂ZR| ≥ |∂ZC1|. Furthermore, since every vertex is Z-even the Z-odd
cut F = ∂GC1 propagates into C1, in the sense that C1 properly contains Z-
odd regions. Finding a suitable region C2 is more difficult. In a similar way
as for C1, it appears enticing to simply pick among all Z-odd regions C with
∂GC ∪ E(C) ⊆ E(C1) one so that |∂ZC| is minimal. However, since we chose
|∂ZC1| to be minimal among all Z-odd regions there still could exists a Z-even
region R sandwiched between C1 and C2 with smaller cut-size in Z than C1,
i.e. with |∂ZC1| > |∂ZR|.

In order to overcome this problem, we will eliminate all small Z-even cuts
before choosing C2. This will be achieve by contracting certain Z-even regions
and obtaining a minor all of whose infinite Z-even regions have large cut-size.
In that minor we then choose a region C∗2 so that ∂ZC∗2 has minimal odd size.
By uncontracting we obtain the region C2 in the original graph. We repeat
this procedure. Once again we eliminate all small Z-even cuts, choose C∗3 in
the resulting minor and so on. This way we can obtain regions C∗1 , C∗2 , . . . of
different minors of G. We will gain the regions Cn of G by uncontracting the
regions C∗n.

The next section will hand us a tool to eliminate infinite Z-even regions of
small cut-size. The main work of constructing a sequence of regions C1 ⊇ C2 ⊇
. . . will be achieved in Section 5.
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4 Elimination of regions with small cutsize

Before we can prove Lemma 11, the main tool to eliminate small Z-even cuts,
we state two lemmas. The first of which is a standard lemma, that asserts that
the function measuring the number of edges leaving a vertex set is submodular.

Lemma 9. Let G be a graph, and let X,Y ⊆ V (G). Then

|∂X|+ |∂Y | ≥ |∂(X ∩ Y )|+ |∂(X ∪ Y )|
and

|∂X|+ |∂Y | ≥ |∂(X − Y )|+ |∂(Y −X)|.
The next lemma is used in the inductive proof of Lemma 11. For an edge

set Z, we say that D is a (m,Z)-region if D is a region with |∂ZD| = m.

Lemma 10. Let G be a locally finite graph, and let Z ⊆ E(G). Let C be a
region of G, and denote by m the minimal integer k for which there is an infinite
(k, Z)-region R in G with R ⊆ C. Assume m to be even. Let R,S1, . . . , S` be
(m,Z)-regions, where S1, . . . , S` are pairwise disjoint and |R − ⋃`

i=1 Si| = ∞
Then there exist a subgraph K and an (m, Z)-region S satisfying

(i) the subgraph K is the union of components of R−⋃`
i=1 Si;

(ii) the region S is spanned by the union of K with some (possibly none) of
S1, . . . , S`;

(iii) S − Si is connected for every i = 1, . . . , `;

(iv) K is an infinite subgraph and |∂ZK| is even; and

(v) if m = 0 then each K is connected; and if m > 0 then each component of
K is incident with an edge in Z.

Proof. Define I to be the set of those Si among S1, . . . , S` for which Si − R
is infinite; denote by J the other ones. Consider an Si ∈ I. Observe that by
definition of m and since each of R − Si and Si − R is an infinite subgraph,
Lemma 9 implies that |∂Z(R−Si)| = |∂Z(Si−R)| = m. Hence, R−Si contains
an infinite (m,Z)-region. In a similar way, we see that for any Sj ∈ J , the
induced subgraph on R∪Sj contains an infinite (m,Z)-region. As the S1, . . . , S`

are pairwise disjoint it follows therefore that each infinite component of G[(R−⋃ I) ∪⋃J ] (and there is at least one) is is an infinite (m,Z)-region. For one
of these components, R′ say, the subgraph K ′ := R′ −⋃`

i=1 Si will be infinite,
so that K ′ satisfies (i), and (ii) holds for R′. Among all infinite subgraphs K of
G and (m,Z)-region S satisfying (i) and (ii), we choose S to be ⊆-minimal.

Let us now show that K satisfies (iv). Indeed, let T ⊆ {S1, . . . , S`} so that
S = G[K ∪⋃ T ]. Since the Si are pairwise disjoint it follows that

∂ZK = ∂Z(S −
⋃
T ) = ∂ZS +

∑

T∈T
∂ZT.

(Recall that we consider the sum of edge sets to be their symmetric difference.)
Since S as well as all the T ∈ T are (m, Z)-regions, we deduce that |∂ZK| is
even.
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Next, assume that m > 0 and suppose that K has a component L that is
not incident with any edge in Z. Since m > 0, L cannot be infinite, which
implies that K − L is still infinite. Moreover, as |∂Z(S − L)| = m, one of
the components of S − L is an infinite (m,Z)-region S′, which then together
with K ′ := S′−⋃`

i=1 Si constitutes a contradiction to the minimal choice of S.
If, on the other hand, m = 0 then K cannot be disconnected as each infinite
component K ′ of K would with S′ = K ′ contradict the choice of K and S.
Therefore, (v) is proved.

Finally, in order to prove (iii), suppose that there exists a k so that S − Sk

is not connected. Since K ⊆ S − ⋃`
i=1 Si is infinite one of the components of

S − Sk, X say, has therefore the property that K ′ := X −⋃`
i=1 Si is infinite as

well. Observe that it follows from (ii) that Sk ⊆ S. Setting Y := S − (Sk ∪X),
we see that

2m = |∂ZS|+ |∂ZSk| = |∂Z(Sk ∪X)|+ |∂Z(Sk ∪ Y )|.

As both Sk ∪ X and Sk ∪ Y are infinite, S′ := G[Sk ∪ X] ⊆ S is an infinite
(m,Z)-region. Again we have, with S′ and K ′, obtained a contradiction to the
minimal choice of S.

In the rough sketch of the proof of Theorem 5, we claimed we would con-
struct minors in order to eliminate infinite Z-even regions of small cutsize. This
is slightly incorrect. Unfortunately, and this will lead to some technical com-
plications, we are not able to force the contracted branch sets to be connected.
Rather, it will sometimes be necessary to contract a disconnected set to a sin-
gle vertex. Thus, we will not be working with minors but with what we call
pseudo-minors.

Let V be a partition of the vertex set of a graph G. We define a graph H
with vertex set V and edge set E(H) ⊆ E(G), so that e is an edge of H between
two distinct vertices U and U ′ of H if and only if e is an edge of G with one
endvertex in U and the other in U ′. In particular, we allow H to have parallel
edges but no loops. We call such a graph H a pseudo-minor of G, denoted by
H 4 G, and define K(H, G) to be the set of non-singletons in V.

Let D, K be subgraphs of G. We say that D splits K if neither V (K) ⊆ V (D)
nor V (D) ∩ V (K) = ∅.
Lemma 11. Let G be a locally finite graph, and let Z ⊆ E(G). Let C be a region
of G, and denote by m the minimal k for which there is an infinite (k, Z)-region
R in G with R ⊆ C. Assume m to be even. Then there exists a locally finite
pseudo-minor G′ of G and a set S of (m,Z)-regions of G so that the following
holds:

(i) K is infinite for each K ∈ K(G′, G) and |∂ZK| is even;

(ii) every region D of G splits at most finitely many K ∈ K(G′, G);

(iii) if D is an infinite (k, Z)-region of G′ with E(D) ⊆ E(C) then it follows
that k > m;

(iv) for every K ∈ K(G′, G) there is an S ∈ S with K ⊆ S ⊆ C;

(v) for every S ∈ S there is an L ⊆ K(G′, G) with S = G[
⋃

L∈L L]; and
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(vi) if m = 0 then each K ∈ K(G′, G) is connected; and if m > 0 then each
component of K, K ∈ K(G′, G), is incident with an edge in Z.

If the assertions of the lemma are satisfied for a graph G with pseudo-minor
G′, a region C and a set of regions S then we call the tuple (G′, G,C,S,m) a
legal contraction system.

Proof. We may restrict ourselves to the component of G that contains the re-
gion C, and therefore assume that G itself is connected. Let R1, R2, . . . be an
enumeration of all infinite (m,Z)-regions of G. (Since G is connected, these are
only countably many.)

We shall define inductively subgraphs K1,K2,K3, . . . and (m,Z)-regions
S1, S2, S3, . . . ⊆ C satisfying

• Ki is infinite for each i = 1, 2, 3, . . . and |∂ZKi| is even;

• For every i = 1, 2, 3, . . ., the region Si is spanned by the union of Ki with
some (possibly none) of S1, . . . , Si−1;

• The K1,K2,K3, . . . are pairwise disjoint;

• if m = 0 then each Ki is connected; and if m > 0 then each component of
each Ki is incident with an edge in Z.

We note that the second and third property imply that

for each j < i either Sj ⊆ Si or Sj ∩ Si = ∅. (1)

Taking S = {S1, S2, S3, . . .} and obtaining G′ from G by contracting the Ki,
we clearly have (i), (iv)–(vi). A further analysis of the process will yield (ii)
and (iii).

We start by setting K1 = S1 = R1. Now assume that K1, . . .K` and
S1, . . . , S` are constructed. We denote by n` the minimal n satisfying |Rn −⋃`

i=1 Si| = ∞. (If no such Rn exists, the process terminates.) We then ap-
ply Lemma 10 to Rn`

and the ⊆-maximal regions among S1, . . . , S`, which are,
by (1), pairwise disjoint. The resulting K and S found by the lemma will be
chosen as K`+1 and S`+1 respectively.

In order to see that (ii) is satisfied, let R be a region of G and let X =
(∂GR) ∩⋃∞

i=1 E(Si). Let {Si1 , Si2 , . . . , Sik
} be a set of minimal size with X ⊆⋃k

j=1 E(Sij ). We claim that R does not split any Ki with i > max(i1, . . . , ik).
To reach a contradiction, suppose that R splits Kn for some n > max(i1, . . . , ik).
Then, as Kn is disjoint from all the Sij , Kn must be disconnected, and have
at least one component inside R and at least one component outside R. Since
Kn ⊆ Sn and since Sn is connected, Sn must contain some edge from X. Hence
it meets some Sij , Si1 say. As n > i1, we have, by construction, that Si1 ⊆ Sn.

Let Sp be the ⊆-maximal region among S1, . . . Sn−1 containing Si1 . Recall
that we chose Sn and Kn using Lemma 10, which states that Sn − Sp is con-
nected. As, furthermore, Kn is disjoint from Sp because it is chosen later, it
follows that Sn − Sp contains an edge of X, and thus meets and then contains
one of Si2 , . . . , Sik

, say Si2 . We thus have Si2 ⊆ Sn − Sp ⊆ Sn − Si1 . This,
however, leads to X ⊆ E(Sn) ∪⋃k

j=3 E(Sij ), which contradicts the minimality
of k. This completes the proof of (ii).
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Let us finally prove (iii). Note that if n`+1 = n` then, by Lemma 10 (i),
Rn`

− ⋃`+1
i=1 Si will have less components than Rn`

− ⋃`
i=1 Si. This implies

lim`→∞ n` = ∞. Therefore, for every (m,Z)-region Rn it holds that |Rn −⋃`
i=1 Si| < ∞ for some `. Now, if D is an infinite (k, Z)-region of G′ with

E(D) ⊆ E(C) then by uncontracting and (ii) we find a (k′, Z)-region R of G
with R ⊆ C and k′ ≤ k so that E(R) ∩ E(G′) is infinite. By assumption,
we have that k′ ≥ m. If k′ = m then R = Rn for some n, and consequently
|Rn−

⋃`
i=1 Si| < ∞ for some `, contradicting that E(R)∩E(G′) is infinite. This

proves (iii).

5 Proof of main result

We restate and then prove our main result.

Theorem 5. Let G be a locally finite graph, and let Z ⊆ E(G). Then Z ∈ C(G)
if and only if every vertex and every end of G is Z-even.

Proof. In light of Lemma 7 we only need to prove the backward direction. In
order to do so, assume that every vertex of G is Z-even but that Z /∈ C(G). Our
task is to find a Z-odd end in G.

Since Z /∈ C(G) there exists a topologically connected component of Z whose
edge set is not an element of the cycle space (recall that Z is the closure of Z
as a subspace of |G|). An end of G that is odd with respect to some connected
component of Z is Z-odd, as each end of G lies in at most one connected
component. Thus, we may, by deleting all other edges from Z, assume that Z
is topologically connected. In particular, this means that

there exists no finite cut of G that avoids Z but separates two
edges in Z. (2)

Recall that in order to apply Lemma 8, we need to find a sequence of nested
Z-odd regions C1 ) C2 ) . . . of G so that for any region R of G with Ck ⊇
R ⊇ C` for some k ≤ ` it holds that |∂ZCk| ≤ |∂ZR|. We shall do this by first
defining a sequence of regions C∗1 , C∗2 , . . . in certain pseudo-minors of G. We
will obtain Cn from the C∗n by uncontracting.

Let us be more precise. Inductively, we will find Z-odd regions C∗1 , C∗2 . . . in
certain pseudo-minors G0 < G2 < . . . of G. We set mn := |∂ZC∗n| − 1 for all
n ≥ 1, and for convenience we put m0 = −2. We start the construction with
G−2 = G. Now, in each step, i.e. for each n ∈ N, we will first find a region C∗n
of Gmn−1 and then construct pseudo-minors Gmn−1+2 < . . . < Gmn of Gmn−1 .
We require that for all n ≥ 1 it holds that

(i) |∂ZC∗n| is odd; and

(ii) ∂Gmn−1 C∗n ∪ E(C∗n) ⊆ E(C∗n−1) if n ≥ 2.

Let us pause for a while before we give a third requirement. Recall that C∗n
is a region in the pseudo-minor Gmn−1 . It should be noted that there might be
values of m which are not equal to any mn, but we will still need to refer to a
region of Gm which is naturally obtained from the sequence C∗1 , C∗2 , C∗3 , . . .. For
this end, we introduce the following notation:
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Let ` > m ≥ −2 be two even numbers and let D be an induced subgraph
of Gm. Then πm,`(D) denotes the induced subgraph of G` on the vertex set
{Xv : v ∈ V (D) and v ∈ Xv ∈ V (G`)} (recall that, as G` is a pseudo-minor of
Gm, its vertex set is a partition of V (Gm)). We will also consider the inverse
of πm,`, which we denote by π`,m. Given an induced subgraph D′ of G` define
π`,m(D′) to be the induced subgraph of Gm on the vertex set

⋃
X∈V (D′) X.

Also for every induced subgraph D of Gm write πm,m(D) = D. Thus πm,`(D)
is defined for every m, ` ∈ {−2, 0, 2, 4, . . .} regardless of the order between them,
and for every induced subgraph D of Gm it assigns an induced subgraph of G`.

With this notation, put Cm
n := πmn−1,m(C∗n) for every m = −2, 0, 2, 4, . . .

and n = 1, 2, 3, . . .. In particular, this means that C∗n = C
mn−1
n .

We are now ready to state the third requirement. Alongside with the con-
struction of the pseudo-minors Gm and the regions C∗n we will construct, for
every m, sets Sm of (m,Z)-regions of Gm−2 so that

(iii) (Gm, Gm−2, Cm−2
n ,Sm, m) is a legal contraction system, where n is the

number satisfying mn−1 < m ≤ mn.

Thus, by Lemma 11 (i) each vertex in Gm remains Z-even. Since it is central
to the main idea of the proof we restate another implications of (iii):

if D ⊆ Cm
n is an infinite (k, Z)-region of Gm for 0 ≤ m ≤ mn

then k > m.
(3)

The statement follows from Lemma 11 (iii) either directly or by induction,
depending on whether mn−1 < m ≤ mn or not.

Furthermore, we note the following consequence of (iii) or, more specifically,
of Lemma 11 (iv).

C∗n does not split any K ∈ K(Gm, Gmn−1) for any even m ≥ mn−1. (4)

In particular, it follows that the cut ∂Gmn−1 C∗n lies in Gm for each even m ≥
mn−1 and thus is still a cut there.

Let us make one last observation before we finally start with the construction.
We claim that

if D′ is an infinite region of Gm for some m then there exists for
each even ` ≤ m an infinite region D of G` with ∂G`D ⊆ ∂GmD′

and π`,m(D) ⊆ D′.
(5)

Indeed, D̃ := πm,`(D′) is an induced subgraph of G` with ∂G`D̃ = ∂GmD′.
From (iii), resp. Lemma 11 (ii), it follows that D̃ has only finitely many com-
ponents. Hence, one of them is infinite, and this will be the desired region D.

We are now ready to start the construction. We begin with G−2 = G and let
C1 = C∗1 be a Z-odd region with the minimal possible value of |∂ZC1|. We know
that Z-odd regions exist by Theorem 4. Recall that we write m1 = |∂ZC1| − 1
We then construct G0, . . . , Gm1 and S0, . . . ,Sm1 using Lemma 11 in a way that
will be described in more details later on.

For n > 1, assume C∗1 , . . . , C∗n−1 and G−2, G0, . . . , Gmn−1 and the corre-
sponding Sm to be constructed. In order to find a suitable region C∗n, we first
claim that there exist Z-odd regions C satisfying (ii).

For n > 1, denote by F the edges in Gmn−1 incident with the vertices in
N(Gmn−1 − C

mn−1
n−1 ). Since C∗n−1 is a region, F is a finite set and thus |F ∩ Z|
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is even. Furthermore, ∂Gmn−1 C∗n−1 ⊆ F implies that the cut F \ ∂Gmn−1 C∗n−1

meets Z in an odd number of edges. One of the components of Gmn−1 − (F \
∂Gmn−1 C∗n−1) contained in C

mn−1
n−1 will thus be Z-odd and hence as desired. We

now pick C∗n among all Z-odd regions C of Gmn−1 satisfying (ii) so that |∂ZC∗n|
is minimal.

A consequence of the choice of C∗n is that for all n ∈ N:

if D is a (k, Z)-region of Gmn−1 so that k is odd and D ⊆ C∗n
then k ≥ mn + 1 = |∂ZC∗n|. (6)

In order to define Gm, for even m with mn−1 < m ≤ mn, assume G`

for ` = −2, 0, 2, 4, . . . , m − 2 to be already constructed. By (3), it holds that
the smallest k∗ for which there is an infinite (k∗, Z)-region R of Gm−2 with
R ⊆ Cm−2

n is at least m − 1. Now, (6) in conjunction with (5) shows that
k∗ ≥ m. Hence, we may apply Lemma 11 to Gm−2, Z, Cm−2

n ,m (in the roles
of G,Z,C, m respectively). With the resulting pseudo-minor Gm and set of
(m,Z)-regions Sm, the tuple (Gm, Gm−2, Cm−2

n ,Sm,m) is a legal contraction
system, i.e. (iii) is satisfied.

Assume the construction achieved for all n and corresponding m. Set Cn :=
πmn−1,−2(C∗n) = C−2

n , i.e. Cn is the induced subgraph of G obtained from C∗n
by uncontracting K(Gmn−1 , G). Observe that

|∂ZCn| is odd and ∂G(Cn) ∪ E(Cn) ⊆ E(Cn−1) for all n ∈ N. (7)

Recall that our aim is to find a sequence of regions Cn of G satisfying the
requirements of Lemma 8. As (7) means that already two of the conditions
hold we need only make sure that each Cn is indeed a region, i.e. a connected
subgraph, and that for all regions R with Ck ⊇ R ⊇ C` for some k ≤ ` it holds
that |∂ZR| ≥ |∂ZCk|. We shall deal with the latter condition first.

Observe that (4) implies that

Cn does not split any K ∈ K(Gmn , G). (8)

Next, we prove that for every n and 0 ≤ m ≤ mn it holds that

for every (k, Z)-region R of G with R ⊆ Cn and k ≤ m it follows
that π−2,m(R) is a finite subgraph of Gm. (9)

Assume the statement to be false for Gm, for some m. For even `, −2 ≤
` ≤ m, denote by D` the set of (k, Z)-regions D of G` with k ≤ m, D ⊆ C`

n

and so that π`,m(D) is infinite. Clearly, by assumption we have that D−2 6= ∅.
On the other hand, it holds that Dm = ∅. Indeed, any element in Dm would
contradict (3).

Now, choose ` ≤ m to be the maximal even integer so that D`−2 6= ∅, and
among the D ∈ D`−2 pick one, D̃ say, so that D̃ splits a minimum number of
elements in K(G`, G`−2). (Note that, by Lemma 11 (ii), every region splits only
finitely many sets in K(G`, G`−2).)

Now, since D` = ∅, the region D̃ of G`−2 must split some K ∈ K(G`, G`−2).
Let S ∈ S` be an (`, Z)-region with K ⊆ S of G`−2 (see Lemma 11 (iv)).

We distinguish two cases. Assume that S − D̃ is infinite. If |∂Z(D̃ − S)| >
|∂ZD̃| then, by Lemma 9, S− D̃ contains an infinite (`′, Z)-region of G`−2 with
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`′ < `, in contradiction to either (3) or (6) (together with (5)). Thus, D̃ − S
is a (k′, Z)-region with k′ ≤ |∂ZD̃| ≤ m. Observe that because π`−2,`(S) is
finite by Lemma 11 (iii), the subgraph π`−2,m(D̃−S) of Gm is still infinite. As,
moreover, by Lemma 11 (v), D̃ − S splits fewer elements in K(G`, G`−2), we
obtain a contradiction to the choice of D̃.

So, let S − D̃ be finite. Suppose that |∂Z(S ∪ D̃)| > |∂ZD̃|. Then, by
Lemma 9, S ∩ D̃ contains an infinite (`′, Z)-region of G`−2 with `′ < `, in
contradiction to either (3) or (6). Thus, G[S ∪ D̃] is an infinite (k′, Z)-region
with k′ ≤ |∂ZD̃| ≤ m. Since G[S ∪ D̃] splits fewer K ∈ K(G`, G`−2) than
D̃, we obtain again a contradiction to the choice of D̃—provided we can show
that S ∪ D̃ ⊆ C`−2

n . To do this, observe that, by Lemma 11 (v), there is a set
L ⊆ K(G`, G`−2) with S = G[

⋃
L∈L L]. Since S − D̃ is finite but all the L ∈ L

are infinite by Lemma 11 (i), it follows that D̃ meets every L ∈ L. Together
with the fact that Cn does not split any elements in K(G`, G`−2), by (8), and
D̃ ⊆ C`−2

n it follows that S ⊆ C`−2
n , and hence, S ∪ D̃ ⊆ C`−2

n . This finishes
the proof of (9).

In order to prove that the subgraphs C1, C2, . . . of G satisfy Condition (iii)
of Lemma 8 consider a region R with Ck ⊇ R ⊇ C` for some ` ≥ k. Observe
that Cmk

` is still an infinite subgraph of Gmk since ∂ZCmk

` is odd but every
vertex in Gmk is Z-even. Thus, π−2,mk

(R) ⊇ Cmk

` is infinite, which with (9)
implies that |∂ZR| ≥ mk + 1 = |∂ZCk|, as desired.

For Lemma 8 to apply, it remains to show that:

Cn is a region of G for all n ∈ N. (10)

For this, it suffices to prove that Cn is connected. If mn = 0 then, by
Lemma 11 (vi), G0 is a minor (rather than only a pseudo-minor) of G. As
C∗n is a region in Gmn−1 , which is either G0 or G−2 = G, we immediately see
that Cn is connected as well.

So, let mn > 0. Since Cn does not split any K ∈ K(Gmn , G) and since
∂GCn is odd, Cmn

n is infinite. Let C be a component of Cn so that π−2,mn(C)
is infinite, and suppose that R := Cn − C is non-empty. If ∂ZR 6= ∅ then
|∂ZC| ≤ mn in contradiction to (9). If, on the other hand, ∂ZR = ∅ then ∂GR
is a finite cut of G separating two edges in Z, which constitutes a contradiction
to that Z is topologically connected. Indeed, C contains an edge of Z since
∂ZC = ∂ZCn is an odd set but every vertex is Z-even. To see that E(R) meets
Z, recall that C∗n is a region of Gmn−1 . Thus, there exists an ` ≤ mn−1, so
that π−2,`−2(C) splits a K ∈ K(G`, G`−2). By (8), the subgraph K of G`−2

is contained in C`−2
n and then K has one component in π−2,`−2(C) and one in

π−2,`−2(R). Lemma 11 (vi) implies that both these components are incident
with an edge in Z. As ∂ZR = ∅, we obtain E(R) ∩ Z 6= ∅.

In conclusion, the regions Cn satisfy all conditions required in Lemma 8,
which therefore yields the desired Z-odd end in G.
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