Matroid theory: exercise sheet 8

1. Let M and M^{\prime} be binary matroids on the same set E such that they have a common basis B and, for any element not in B, the fundamental circuits of that element with respect to B in M and M^{\prime} are the same. Show that $M=M^{\prime}$.
2. Let M be a binary matroid with a circuit C and a cocircuit D such that $|C \cap D|=4$. Prove that M has an $M\left(K^{4}\right)$-minor.
3. Prove that a matroid is binary if and only if it has the following property: for any two bases B_{1} and B_{2} and any $x \in B_{2}-B_{1}$ the set

$$
\left\{y \in B_{1}-B_{2} \mid B_{1}-y \cup x \text { und } B_{2}-x \cup y \text { are bases }\right\}
$$

has odd size.
4. Prove that a matroid is binary if and only if the set \mathcal{C} of its circuits satisfies the following stronger elimination axiom:
(C3) bin For any $C \in \mathcal{C}$, distinct elements z, x and y of \mathcal{C}, and $C_{x}, C_{y} \in \mathcal{C}$ such that $x \in C_{x}$ and $y \in C_{y}$ but z is neither in C_{x} nor C_{y}, there is $C^{\prime} \in \mathcal{C}$ with $z \in C^{\prime} \subseteq\left(C \cup C_{x} \cup C_{y}\right) \backslash\{x, y\}$.

