Matroidentheorie: Übungsblatt 3

- 1. Let M be a matroid which is representable over the field \mathbb{F}_2 with two elements. Let C be a circuit and D a cocircuit of M. Prove that $|C \cap D|$ is even.
- 2. A signing of a matroid M consists of functions $f_C: C \to \{\pm 1\}$ for $C \in \mathcal{C}(M)$ and $g_D: D \to \{\pm 1\}$ for $D \in \mathcal{C}^*(M)$ such that for any $C \in \mathcal{C}(M)$ and $D \in \mathcal{C}^*(M)$ we have $\sum_{e \in C \cap D} f_C(e)g_D(e) = 0$. Let M be a matroid which has a signing. Prove that M is regular (representable over every field).
- 3. Let *E* be a finite set and *V* a subspace of k^E . Let *P* and *Q* be disjoint sets, and let $V/P \setminus Q$ be the subspace $\{v \upharpoonright_{E-P-Q} : v \in V \text{ and } \underline{v} \cap Q = \emptyset\}$ of k^{E-P-Q} . Prove that $M(V)/P \setminus Q = M(V/P \setminus Q)$.
- 4.* (a) Let P be a subset of the ground set E of a matroid M and let B be a basis of P in M. Prove that $M/P = M/B \setminus (P - B)$.
 - (b) Let N be a minor of a matroid M. Prove that there are an independent set P and a coindependent set Q of M with $N = M/P \setminus Q$.