## Matroidentheorie: Übungsblatt 3

1. Let $M$ be a matroid which is representable over the field $\mathbb{F}_{2}$ with two elements. Let $C$ be a circuit and $D$ a cocircuit of $M$. Prove that $|C \cap D|$ is even.
2. A signing of a matroid $M$ consists of functions $f_{C}: C \rightarrow\{ \pm 1\}$ for $C \in \mathcal{C}(M)$ and $g_{D}: D \rightarrow$ $\{ \pm 1\}$ for $D \in \mathcal{C}^{*}(M)$ such that for any $C \in \mathcal{C}(M)$ and $D \in \mathcal{C}^{*}(M)$ we have $\sum_{e \in C \cap D} f_{C}(e) g_{D}(e)=$ 0 . Let $M$ be a matroid which has a signing. Prove that $M$ is regular (representable over every field).
3. Let $E$ be a finite set and $V$ a subspace of $k^{E}$. Let $P$ and $Q$ be disjoint sets, and let $V / P \backslash Q$ be the subspace $\left\{v \upharpoonright_{E-P-Q}: v \in V\right.$ and $\left.\underline{v} \cap Q=\emptyset\right\}$ of $k^{E-P-Q}$. Prove that $M(V) / P \backslash Q=$ $M(V / P \backslash Q)$.
4.* (a) Let $P$ be a subset of the ground set $E$ of a matroid $M$ and let $B$ be a basis of $P$ in $M$. Prove that $M / P=M / B \backslash(P-B)$.
(b) Let $N$ be a minor of a matroid $M$. Prove that there are an independent set $P$ and a coindependent set $Q$ of $M$ with $N=M / P \backslash Q$.
