Open problems about infinite matroids - day I

1.1. Let \mathcal{C} and \mathcal{D} be sets of subsets of a set E satisfying (O 1), (O 2), (O 3) and ($\mathrm{O} 3^{*}$). Is there a matroid M with ground set E such that $\mathcal{C}(M) \subseteq \mathcal{C} \subseteq \mathcal{S}(M)$ and $\mathcal{C}\left(M^{*}\right) \subseteq \mathcal{D} \subseteq \mathcal{S}\left(M^{*}\right)$? What if we also require \mathcal{C} and \mathcal{D} to satisfy (T)? Motivation: This is true if E is countable.
1.2. Is every finitary matroid also k-nearly finitary for some k ? Motivation: similar to Halin's Theorem.
1.3. Is the class of nearly finitary matroids the largest class of matroids including all finitary matroids and closed under taking unions of matroids? Motivation: it is closed under these operations, and almost any other attempt to take a union of 2 matroids seems not to give a matroid.
1.4 Let M_{1} and M_{2} be matroids on the same ground set E. Must there exist a matroid M on a larger ground set $E \dot{\cup} P \dot{\cup} Q$ such that $M_{1}=M / P \backslash Q$ and $M_{2}=M \backslash P / Q$? Motivation: To be revealed later

