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Einleitung

Die vorliegende Bachelor-Arbeit basiert auf dem Paper [3] von Igor Frenkel und

Matvei Libine desselben Titels. In diesem werden einige Probleme der quaternion-

ischen Analysis unter einem darstellungstheoretischen Zugang behandelt. Ferner

werden Anwendungen einiger tieferer Resultate der quaternionischen Analysis auf

physikalische Probleme dargestellt.

Im größten Teil dieser Arbeit konzentriere ich mich auf analytische Aspekte

von Teilen des Papers, aber im zweiten Kapitel werde ich zumindest teilweise

auf darstellungstheoretische und physikalische Aspekte eingehen. In Kapitel 1

werde ich eine Einführung in einige grundlegenden Konzepte der quaternionischen

Analysis geben. Es ist in drei Abschnitte eingeteilt.

Im ersten Abschnitt werde ich die Notation einführen, die im Rest der Ar-

beit verwendet wird, die Quaternionen selbst konstruieren und einige einfache

Aussagen über sie beweisen.

Im zweiten Abschnitt werde ich hauptsächlich Änlichkeiten und Unterschiede

zwischen klassischer Funktionentheorie und quaternionischer Analysis darstellen.

Weiterhin werde ich eine Klasse von Funktionen definieren, die in der quater-

nionischen Analysis von einem ähnlichen Interesse sind wie die holomorphen

Funktionen in der Funktionentheorie. Das Hauptresultat dieses Abschnittes ist

eine quaternionische Version der Cauchyschen Integralformel, aus der man Ko-

rollare gewinnen kann, die ähnlich sind zu den bekannten Korollaren aus der

Cauchyschen Integralformel im komplexen Fall. Diese Darstellung basiert auf

den Abschnitten 2.1 und 2.2 des Papers [3].

Im dritten Abschnitt werde ich das Konzept der konformen Transformation

auf der Einpunkt-Kompaktifizierung Ĥ der Quaternionen einführen, welche eine

Untergruppe der Gruppe der Diffeomorphismen von Ĥ auf Ĥ ist. Die kon-

formen Transformationen stellen eine Verallgemeinerung der aus der Funktio-

nentheorie bekannten Möbius-Transformationen dar und haben ähnliche Eigen-

schaften. Wir werden sie als relativ natürliche Wirkung der allgemeinen linearen

Gruppe GL(2,H) auf quaternionische projektive Räume konstruieren, die wir

über einen Diffeomorphismus auf den Raum Ĥ übertragen. Das Hauptresultat
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dieses Abschnittes ist der Satz, dass konforme Transformationen Hyperebenen

und Sphären in Ĥ erhalten. Dieser Abschnitt ist hauptsächlich eine Erweiterung

der Ausführungen im ersten Teil des Abschnittes 2.4 im Paper [3]. Obwohl einige

– vor allem rechnerische – Resultate in diesem Abschnitt auf Resultaten aus dem

Buch [4] basieren, ist die Behandlung von quaternionischen projektiven Räumen

und die Konstruktion der Wirkungen π` und πr größtenteils originär.

Nach der Behandlung grundlegender Konzepte der quaternionischen Analy-

sis in Kapitel 1, fahre ich in Kapitel 2 mit Anwendungen der quaternionischen

Analysis fort.

Im ersten Abschnitt von Kapitel zwei folge ich dem Abschnitt 2.8 in [3] und

zeige eine quaternionische Version der vierdimensionalen Poisson-Formel für den

Einheitsball. Dieser Beweis wird Konzepte aus der Darstellungstheorie von Lie-

Gruppen benötigen und im Wesentlichen auf eine Anwendung des Schurschen

Lemmas heruntergebrochen. Unglücklicherweise habe ich es nicht geschafft, die

Einfachheit der dabei betrachteten Darstellung zu zeigen, auf deren Beweis die

Autoren von [3] auch nicht näher eingehen. Ferner werde ich nicht die Äquivarianz

einer gewissen linearen Abbildung bezüglich dieser Darstellung zeigen. Aus diesen

Gründen, ist das in dieser Arbeit dargestellte Argument kein vollständiger Beweis,

weshalb ich am Ende des Abschnittes eine Referenz für die Gültigkeit der Poisson-

Formel im betrachteten Fall angeben werde, um sie im nächsten Abschnitt sicher

nutzen zu können.

Im zweiten und letzten Abschnitt von Kapitel 2 gebe ich eine Anwendung

der quaternionischen Analysis zur Konstruktion von Eigenfunktionen und somit

auch Eigenwerten für den Hamilton-Operator des Wasserstoffatoms. Dieser Ab-

schnitt basiert hauptsächlich auf Abschnitt 2.9 in [3], obwohl es einen kleinen

Rechenfehler in diesem Paper gibt, sodass ich die Rechnung in einer korrigierten

Version in dieser Arbeit nachvollziehe. Die hierbei dargestellte Konstruktion

wird eine Anwendung der quaternionischen Poisson-Formel für den Einheitsball

aus dem vorherigen Abschnitt sein. Hierbei werde ich eine bestimmte Klasse

von konformen Transformationen, die Cayley-Transformationen, nutzen, um die

Poisson-Formel für den Einheitsball in eine Integralformel auf der oberen Halb-

Hyperebene in H umzuwandeln, wobei ich den Rand dieser Halb-Hyperebene mit

dem euklidischen Raum R3 identifiziere werde. Unter Verwendung der Fourier-

transformation und der Fourier-Kotransformation kann ich dann diese Integral-

formel in eine Lösung der Schrödingergleichung für das Coulumb-System umwan-

deln, was wiederum direkt Eigenwerte des Hamilton-Operators für das Wasser-

stoffatom liefert.



Introduction

This Bachelor Thesis is based on the paper [3] of the same titel by Igor Frenkel and

Matvei Libine, which elaborates on a representation theoretic access to quater-

nionic analysis. It also shows some applications of deeper results of quaternionic

analysis to problems in physics.

The biggest part of this thesis will mainly focus on analytic aspects of parts

of the paper, but in the second chapter I will also treat some representation

theoretic aspects as well as physical aspects. In chapter 1 of this thesis I will give

an introduction to main concepts of quaternionic analysis. It will be devised into

three sections.

In the first section I will introduce the notation used throughout this thesis,

construct the quaternions itself and show some simple results about them.

The second section will mostly treat the similarities and differences between

complex analysis and quaternionic analysis and define the classes of functions that

are mainly treated in quaternionic analysis. The main result of this section will

be a quaternionic version of the Cauchy integral formula, from which one could

derive corollaries similar to the corollaries from the Cauchy integral formula in

the complex case. This treatment is based on sections 2.1. and 2.2 of the paper

[3].

The third section will introduce the concept of conformal transformations on

the one-point compactification Ĥ of the quaternions, which form a subgroup of

the group of diffeomorphisms from Ĥ onto Ĥ. The conformal transformations

are generalizations of the Möbius transformations in the complex case and have

similar properties. We will construct them as relatively natural actions of the

general linear group GL(2,H) on certain quaternionic projective spaces which we

carry over to Ĥ. The main result of this section will be the proposition that con-

formal transformations preserve hyper-surfaces and spheres in Ĥ. This section

mainly is an extension of the first part of section 2.4. in the paper [3]. Although

some—mainly calculational—results in this chapter are based on results from the

book [4], the treatment of quaternionic projective spaces and the construction of

the actions π` and πr is mostly original work.
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After the treatment of basic concepts of quaternionic analysis in chapter 1 I

will proceed in chapter 2 with applications of quaternionic analysis.

In the first section of chapter two, I will follow section 2.8 in [3] to show a

quaternionic version of the four-dimensional Poisson formula for the unit ball.

This proof will rely on concepts from the representation theory of Lie groups and

will essentially be broken down to an application of Schur’s Lemma. Unfortu-

nately I was not able to show the simplicity of the involved representation, which

the authors of [3] just state, and I will not show the equivariance of a certain

linear map with respect to this representation. This means that the argument

presented in this thesis will not be a full proof. For this reason I will include a

reference for the validity of the Poisson formula in order to be safely able to use

it in the next section.

The second and last section of chapter two treats an application of the theory

developed to this point to construct eigenfunctions and therefore find eigenvalues

for the Hamiltonian operator of the Hydrogen atom. This treatment will mainly

be based on section 2.9 in [3], although there is a minor miscalculation in this

paper, which I will present in a repaired way in this thesis. The construction

we will present, will rely on the quaternionic Poisson formula for the unit ball,

which was treated in the section before. I will use a certain class of conformal

transformations, the Cayley transformations, to translate the Poisson formula on

the unit ball into an integral formula on an upper-half-hyperplane in H, where

I identify the boundary of this half-hyperplane with the euclidean space R3.

Using Fourier transformations and Fourier cotransformatons I can then translate

this integral formula into a solution of the Schrödinger equation for a Coloumb

system, from which one directly gets eigenvalues of the Hamiltonian operator of

the Hydrogen atom.



Chapter 1

Quaternionic Analysis and

Conformal Transformations

1.1 Basic Notations and Results

Before we are able to start the exposition of the subject of this thesis we first

have to define basic objects, fix basic notation and develop some very basic results

about the space of quaternions.

Definition 1.1.1 (Real and Complex Numbers, Matrix Groups)

1. Let R be a ring with ring-addition + and ring-multiplication · and let 1

denote the neutral element of multiplication. Then we call R a skew-field,

if and only if

∀ a ∈ R : ∃ b ∈ R : a · b = b · a = 1.

We call R a field, if and only if it is a skew-field and the multiplication is

commutative.

2. We will denote the field of real numbers by the letter R and the field of

complex numbers by the letter C. Furthermore we will denote the imaginary

unit of the complex numbers by i. The complex conjugate of an a ∈ C will

be denoted by ā.

3. Let K be a skew-field and n ∈ N. Then we denote by M(n,K) the asso-

ciative K-algebra of n× n-matrices over K and by GL(n,K) the group of

invertible n× n-matrices over K.
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4. By SU(n) we denote the group of unitary n×n-matrices with determinant

1. In particular we have

SU(2) =

{(
a b

−b a

)
∈M(2,C) | a, b ∈ C, |a|+ |b| = 1

}

There are different ways to define the skew-field of quaternions. We will

follow the way in [3, section 2.3] and define the quaternions as a real subalgebra

of M(2,C), while e.g. in [4] the quaternions are defined as a certain Clifford

algebra.

Definition 1.1.2 (Quaternions) We define the ring of quaternions H as the

following real subalgebra of M(2,C):

H :=

{
X ∈M(2,C) | ∃x0, x1, x2, x3 ∈ R : X =

(
x0 − ix3 −ix1 − x2

−ix1 + x2 x0 + ix3

)}

=

{
X ∈M(2,C) | ∃ a, b ∈ C : M =

(
a b

−b̄ ā

)}

Remark 1.1.3.

From the definition we see that a basis of H as a real vector space is given by

e0 :=

(
1 0

0 1

)
, e1 :=

(
0 −i
−i 0

)
, e2 :=

(
0 −1

1 0

)
, e3 :=

(
−i 0

0 i

)

From now on we will fix the names e0, e1, e2, e3 to denote exactly these elements

of H.

Theorem 1.1.4. (Quaternions as skew-field)

The ring of Quaternions H is a skew-field.

Proof:

At first we show that H is an R-subalgebra of M(2,C) and thus especially a

subring. It was mentioned in Definition 1.1.2 that H is a real subvectorspace of

M(2,C). Therefore only closedness under multiplication remains to be shown.

We can see that by considering X,Y ∈ H. Then there exist aX , bX , aY , bY ∈ H
such that

X =

(
aX bX
−bX aX

)
, Y =

(
aY bY
−bY aY

)
.
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We see now that

X · Y =

(
aX bX
−bX aX

)
·

(
aY bY
−bY aY

)

=

(
aXaY − bXbY aXbY + bXaY
−bXaY − aXbY −bXbY + aXaY

)

=

(
aXaY − bXbY aXbY + bXaY

−(aXbY + bXaY ) (aXaY − bXbY )

)
Comparing this to the definition of H we see that X · Y ∈ H and thus H is a

subring of M(2,C) and consequently a ring itself.

It remains to be shown that every non-zero element of H is invertible, i.e. H ⊆
GL(2,C). To show this we take an arbitrary element of H and consider its

determinant. For a, b ∈ C we have:

det

(
a b

−b a

)
= |a|2 + |b|2

Thus we have the following equivalence for all X ∈ H:

detX = 0 ⇔ X =

(
0 0

0 0

)
.

Since an element of M(2,C) is invertible if and only if its determinant does not

vanish, it is shown that every non-zero element of H is invertible. Consequently

H is a skew-field. �

Remark 1.1.5. (Multiplication table)

In explicit calculations we will use that the multiplication on the quaternions is

given as the bilinear extension of the multiplication rules on the distinguished

basis elements of H, which are written down in table 1.1.

Thus we get for arbitrary xi, yi ∈ R with i ∈ {0, 1, 2, 3}:

(x0e0 + x1e1 + x2e2 + x3e3) · (y0e0 + y1e1 + y2e2 + y3e3)

= (x0y0 − x1y1 − x2y2 − x3y3)e0 + (x1y0 + x0y1 − x3y2 + x2y3)e1

+ (x2y0 + x3y1 + x0y2 − x1y3)e2 + (x3y0 − x2y1 + x1y2 + x0y3)e3

Definition 1.1.6 (Operations on quaternions)

Given an element X ∈ H we consider the unique x0, x1, x2, x3 ∈ R such that

X = x0e0 + x1e1 + x2e2 + x3e3.
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· e0 e1 e2 e3

e0 e0 e1 e2 e3

e1 e1 −e0 e3 −e2

e2 e2 −e3 −e0 e1

e3 e3 e2 −e1 −e0

Table 1.1: Quaternionic multiplication

1. We define the quaternionic conjugate of X as

X+ := x0e0 − x1e1 − x2e2 − x3e3.

2. We define the real part of X as

<(X) :=
X +X+

2
= x0e0.

Analogously we define the imaginary part of X as

=(X) :=
X −X+

2
= x1e2 + x2e2 + x3e3.

3. We define for any two elements X,Y ∈ H

〈X,Y 〉 := <(XY +) = <(X+Y )

and furthermore for X ∈ H

N(X) := 〈X,X〉 = <(XX+) = XX+.

Thirdly we set for X ∈ H:

|X| :=
√
N(X) =

√
XX+

Remarks 1.1.7. Properties of the quaternions

1. We use the ring homomorphism

ι : R→ H, x 7→ x · e0

to embed the field of real numbers into the skew-field of quaternions. We will

usually suppress ι in our notation. With this convention we can consider

for any X ∈ H the real part <(X) as a real number.

2. We have to keep in mind that unlike in the complex case the imaginary part

of a quaternion cannot be treated as a real number.
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3. Consider the quaternions X,Y ∈ H. Since H is a four dimensional R-

vector space, we can identify X and Y with elements of R4 by using the

distinguished basis that was fixed in the last part of definition 1.1.2. An

evaluation of 〈X,Y 〉 in components shows us that the map

〈·, ·〉 : H×H→ R

coincides with the usual scalar product on R4. Thus 〈·, ·〉 endows H with

the structure of a real Hilbert space. Especially this implies that the map

|·| : H→ R

is a norm on H.

4. To actually calculate the inverse of a quaternion X ∈ H \ {0} we can use

the following formula

X−1 =
X+

N(X)
.

To see that this formula is true we just have to mind the uniqueness of the

inverse and the fact that

X ·X+

N(X)
=
N(X)

N(X)
= 1

5. We have the following relationship between norm and ring multiplication

for X,Y ∈ H:

|XY |2 = N(X · Y ) = (XY )(XY )+ = (XY )(Y +X+)

= X ·N(Y ) ·X+ = N(X) ·N(Y ) = |X|2 |Y |2 ,

where we used that quaternions commute with real numbers. Thus we have

|XY | = |X| |Y |

and thus H especially carries the structure of a Banach algebra. Further-

more we get for X ∈ H \ {0} the relation∣∣X−1
∣∣ = |X|−1

Proposition 1.1.8. (Quaternions and SU(2))

For any X ∈ H the following equality holds:

N(X) = det(X).

Therefore we have the identity

SU(2) = {X ∈ H | |X| = 1},

i.e. the group of quaternions with a norm of 1 is exactly the matrix group SU(2).
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Proof:

We choose the x0, x1, x2, x3 such that X = x0e0 + x1e1 + x2e2 + x3e3.

N(X) = (x0e0 + x1e1 + x2e2 + x3e3) · (x0e0 − x1e1 − x2e2 − x3e3)

= x2
0 + x2

1 + x2
2 + x2

3.

Here we used the multiplication rules for the basis elements e0, e1, e2, e3 as given

in table 1.1. On the right side we have

det(X) = det

(
x0 − ix3 −ix1 − x2

−ix1 + x2 x0 + ix3

)
= (x0 − ix3)(x0 + ix3)− (−ix1 − x2)(−ix1 + x2)

= x2
0 + x2

3 + x2
1 + x2

2

Thus we see that both sides are equal as proposed.

To see the second part of the proposition we first note that by definition of N

and |·| we have for all X ∈ H:

N(X) = 1 ⇔ |X| = 1.

Therefore we have by the definition of H

{X ∈ H | |X| = 1} =

{
X ∈M(2,C) | detX = 1 ∧ ∃ a, b ∈ C : X =

(
a b

−b a

)}
and this is exactly the definition of SU(2) ⊆M(2,C). �

After we have considered the basic properties we will now introduce some

notation from topology in order to be able to determine the continuity of basic

quaternionic functions.

Definition 1.1.9 (Interior, topological closure and boundary)

Let X be a topological space and S ⊆ X an arbitrary subset. Then we will

denote the interior of S by S̊ and the topological closure of S by S. Furthermore

we will denote the boundary of S by ∂S := S \ S̊.

Definition 1.1.10 (Spheres and Balls)

1. For closed balls in Rn we write

Bn
R(x) := {y ∈ Rn | 〈x− y, x− y〉 ≤ R2}

with n ∈ N, R ∈ R>0, x ∈ Rn and the usual scalar product 〈·, ·〉 on Rn.

Furthermore we set

SnR(x) := ∂Bn+1
R (x).
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2. For the sake of simplifying our notation we set Bn
R := Bn

R(0) and SnR :=

SnR(0).

In the following we will prove the continuity of basic quaternionic functions

that have been defined in this section.

Proposition 1.1.11. (Continuity of basic operations) The following functions

are continuous:

1.

·+ : H −→ H
X 7−→ X+

2.

N : H −→ R≥0

X 7−→ N(X)

3.

·−1 : H \ {0} −→ H \ {0}
X 7−→ X−1

4.

· : H×H −→ H
(X,Y ) 7−→ X · Y

Proof:

1. At first we see the following identity for X,Y ∈ H:

N(X − Y ) = (X − Y )(X − Y )+ = (X − Y )(X+ − Y +) = N(X+ − Y +).

With this we get for arbitrary ε ∈ R>0 and X ∈ H:(
·+
)−1

(B̊4
ε (X)) = {Y + ∈ H | N(Y −X) < ε2}

= {Y + ∈ H | N(Y + −X+) < ε2}
= B̊4

ε (X+).

This proves the continuity of ·+.
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2. As mentioned in the definition of N we have for any X ∈ H the identity

N(X) = 〈X,X〉. And since H endowed with the scalar product 〈·, ·〉 is a

Hilbert space, the map

N : H→ R≥0, X 7→ 〈X,X〉

is continuous.

3. For any X ∈ H \ {0} we have the identity

X−1 =
X+

N(X)
.

Since H is a topological real vector space, the multiplication with real scalars

is continuous. By this and parts 1 and 2 of this proof we see that the map

·+ is a composition of continuous functions and thus continuous itself.

4. As mentioned before, H carries the structure of a Banach algebra and thus

its algebra multiplication is continuous.

�

Now we will introduce some analytic notions we will need to develop concepts

of quaternionic analysis. Here we mainly follow the notation of [1].

Definition 1.1.12 (Standard analytic notions)

1. Let S and S′ be two arbitrary sets. Then we denote by Map(S, S′) the set

of all functions from S to S′.

2. Let U be an open subset of a Banach space and V a Banach space, then

we denote by Cn(U, V ) with n ∈ N∪{∞} the space of n-times continuously

differentiable functions from U to V .

3. Analogously for two manifolds M,N of class Cn for n ∈ N∪{∞} we denote

with Cn(M,N) the space of n-times continuously differentiable functions

from M to N .

In the case that M and N are diffeomorphic manifolds of class C∞ we denote

with Diff(M,N) the group of diffeomorphisms from M onto N of class C∞.

4. Let m ∈ N, n ∈ N ∪ {∞}, U ⊆ Rm an open subset and V a finite-

dimensional Banach space. For f ∈ Cn(U, V ) we denote the `-th partial

derivative of f for ` ∈ {1, . . . ,m} by ∂`f .

5. Let V be a vector space. Then we denote by Λ•(V ) :=
⊕

n∈N Λn V the

graded exterior algebra of V .
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6. For M a manifold of class Cn with n ∈ N∗ ∪ {∞} we have the bundles

TM :=
⋃
x∈M

TxM

T ∗M :=
⋃
x∈M

T ∗xM

Λp(T ∗M) :=
⋃
x∈M

Λp(T ∗xM)

of class (n− 1) for p ∈ N.

7. Let M be a manifold of class Cn with n ∈ N ∪ {∞} and (E, π) a bundle of

class Cn over M . Then we denote by Γ(E) the set of sections of class Cn of

(E, π).

8. Let M be a manifold of class C1 then we denote by Ln(M,C) the space of

functions f : M → C such that the surface integral∫
M
|f |n dS

is finite.

In the next lemma we will state the smoothness of basic quaternionic func-

tions.

Lemma 1.1.13. (Smoothness of basic operations) The following functions are of

class C∞:

1.

·+ : H −→ H
X 7−→ X+

2.

N : H −→ R≥0

X 7−→ N(X)

3.

·−1 : H \ {0} −→ H \ {0}
X 7−→ X−1

4.

· : H×H −→ H
(X,Y ) 7−→ X · Y
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Proof:

1. Considering this map in components we get:

·+ : R4 −→ R4(
x0
x1
x2
x3

)
7−→

( x0
−x1
−x2
−x3

)
This map is in every component just a monomial and therefore of class C∞.

2. The map

N : R4 −→ R≥0(
x0
x1
x2
x3

)
7−→ x2

0 + x2
1 + x2

2 + x2
3

is a polynomial map and therefore of class C∞.

3. The map ·−1 is a composition of functions of class C∞ with the same argu-

ment as in proposition 1.1.11 and thus itself of class C∞.

4. The function

· : R8 −→ R4

(x0, x1, x2, x3, y1, y2, y3)T 7−→

(
x0y0−x1y1−x2y2−x3y3
x1y0+x0y1−x3y2+x2y3
x2y0+x3y1+x0y2−x1y3
x2y0−x2y1+x1y2+x0y3

)
is in every component a polynomial function and thus of class C∞.

�

1.2 Basic Quaternionic Analysis

In this section we will work out the basic principles and theorems of quaternionic

analysis in comparison to the well-known complex analysis. To be able to even

talk about analysis we first have to define a suitable concept of differentiability

for a distinguished class of quaternionic-valued functions on open subsets of the

quaternions. Since the quaternions are inherently non-commutative, it is natural

to consider two concepts of differentiability, one from the right and one from the

left.

Furthermore it is true that the naive approach to differentiability via differential

quotients as for real- and complex-valued functions does not lead to a satis-

fying class of differentiable functions, since it only leads us to affine H-linear
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functions, as is shown for example in [4, Satz 5.8]. Instead we choose to define

differentiability in analogy to complex holomorphy. For that we will use two four-

dimensional analogs of the Cauchy-Riemann differential equations to distinguish

the two suitable classes of quaternionic-valued functions that should be consid-

ered by quaternionic analysis. This leads to the following definition, which is

taken directly from the paper [3]:

Definition 1.2.1 (Left-regularity and right-regularity)

Let U ⊂ H be open in H.

1. We define

∇+. : C1(U,H)→ C0(U,H), f 7→ ∇+ f :=
3∑
`=0

e` · ∂`f

and

.∇+ : C1(U,H)→ C0(U,H), f 7→ f ∇+ :=
3∑
`=0

∂`f · e`

2. Let f ∈ C1(U,H) then we call f left-regular, if and only if ∇+ f = 0. We

call f right-regular, if and only if f ∇+ = 0.

Now we will introduce an important regular function, we will need later on.

To make the proof of its regularity a bit easier, we introduce two new notions

first:

Definition 1.2.2

1. We set

∇. : C1(U,H)→ C0(U,H), f 7→ ∇ f := (∇+ f)+

and

.∇ : C1(U,H)→ C0(U,H), f 7→ f ∇ := (f ∇+)+

2. We introduce the four-dimensional Laplacian as

�. : C2(U,H)→ C0(U,H), f 7→ � f := ∇∇+f = ∇+∇f.

Explicitly we have for f ∈ C2(U,H):

� f =

3∑
`=0

∂`∂`f

3. We call a function f ∈ C2(U,H) harmonic if and only if � f = 0.
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Remark 1.2.3. 1. If we consider the operator

.� = C2(U,H)→ C0(U,H), f 7→ � f := f.∇∇+ = f.∇+∇,

then we see that again we explicitly get for f ∈ C2(U,H):

f� =
3∑
`=0

∂`∂`f.

Thus we see that the Laplacian formally commutes with twice differentiable

functions on the quaternions, i.e. right-Laplacian and left-Laplacian are

identic.

2. From the explicit formula for the Laplacian we see that it coincides with

the standard Laplacian for subsets of R4, if we identify R4 with H using the

distinguished basis of H.

An important insight in complex analysis with many applications is that the

function k : C \ {0} → C, z 7→ 1
z is holomorphic on C \ {0}. For the theory of

quaternionic analysis we need an analog of this function, but we have to take

into account that the quaternions are four-dimensional over R. This leads to the

following definition and proposition:

Proposition 1.2.4.

The function

k : H \ {0} → H, X 7→ X−1

N(X)

is both left- and right-regular on H \ {0}.

Proof:

First we define the auxiliary function

k0 : H \ {0} → H, X 7→ 1

N(X)
.

With elementary calculus one can check that this function is harmonic on H\{0},
i.e.

� k0 = 0.



1.2. BASIC QUATERNIONIC ANALYSIS 19

Furthermore we have by the well-known rules for partial differentials:

∇ k0(X) = ∇ 1

N(X)

= ∇ (−N(X)) · 1

N(X)2

= − 2X+

N(X)2

= −2
X−1

N(X)

= −2 k(X)

The same calculation works for an application of ∇ from the right, too. Hence

we get the identity

k = −1

2
(∇ k0) = −1

2
(k0∇).

In summary we get:

∇+k = −1

2
(∇+∇ k0) = −1

2
(� k0) = 0

and

k∇+ = −1

2
(k0∇∇+) = −1

2
(� k0) = 0.

For the second equality we invoked the remark after the definition of �. This

shows the claim. �

Although at the first glance the two notions of regularity look very similar to

the notion of holomorphy, there is a crucial difference from an algebraic point of

view. Sets of left- or right-regular functions in general can’t be endowed with the

algebraic structure one would expect from comparison with the ring of holomor-

phic functions in the complex case.

Proposition 1.2.5.

1. The identity function idH : H → H, X 7→ X is neither right- nor left-

regular.

2. Let U ⊂ H be open and non-empty, then the set of left-regular functions

from U to H together with point-wise addition and multiplication does not

form a ring. The same statement is true for right-regular functions.
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Proof:

1. Let X ∈ H. Then we have:

∇+ idH(X) =

3∑
`=0

e` · ∂`idH(X) =

3∑
`=0

(e`)
2 = 1− 3 = −2 6= 0

Hence idH is not left-regular. A similar calculation shows that idH is also

not right-regular.

2. Consider the maps

f : H→ H,
3∑
`=0

x`e` 7→ x0 e0 + x1 e1

and

g : H→ H,
3∑
`=0

x`e` 7→ x1 e1 − x2 e2.

One can check that then f and g are both left- and right-regular on H, but

for the product

f · g : H→ H,
3∑
`=0

x`e` 7→ −(x1)2 e0 + x0x1 e1 + x0x2 e2 + x1x2 e1e2

we find

(f · g)∇+

(
3∑
`=0

x`e`

)
= −2x0e0 − 2x1e1 + 2x2e2.

This is not identically zero and hence f · g is not right-regular. A similar

calculation shows that g · f is not left-regular.

�

Although there seems to be a huge difference between complex holomorphy

and the quaternionic regularity concepts, it is possible to transfer some very ba-

sic results of complex analysis to the quaternionic case. In the following we will

show that two analogs of the Cauchy integral formula are true for the quater-

nionic setting. As we know from complex analysis, this leads to a rich amount of

corollaries. We will start with some definitions we will need in the following:
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Definition 1.2.6 (Quaternionic differential forms)

1. We define for p ∈ N now quaternionic-valued differential forms on R4 in

the usual way as

Ωp(R4;H) := Γ(H⊗ Λp T ∗R4)

Thereby we denote

Xω := X ⊗ ω

for X ∈ H, ω ∈ ΛpT ∗R4.

2. The maps

dn : Ωn(R4;H) −→ Ωn+1(R4;H)

are the standard de Rham differentials. In general we will omit the index.

3. Ω1(R4,H) 3 dX := e0dx0 + e1dx1 + e2dx2 + e3dx3

4. Since R4 with the standard scalar product is a finite-dimensional oriented

euclidean vector space, we have for every ω ∈ Ωp(R4;H) with p ∈ {0, 1, 2, 3, 4}
a Hodge dual ∗(ω) ∈ Ω4−p(R4;H). In particular we set

Ω3(R4,H) 3 Dx := ∗(dX) =

e0dx1 ∧ dx2 ∧ dx3 − e1dx0 ∧ dx2 ∧ dx3 + e2dx0 ∧ dx1 ∧ dx3 − e3dx0 ∧ dx1 ∧ dx2

5. Ω4(R4,H) 3 dV := dx0 ∧ dx1 ∧ dx2 ∧ dx3

6. With dS we will denote the standard euclidean volume form on the three-

dimensional Sphere S3
1 ⊂ H with orientation as a boundary of the open ball

B4
1 .

Now we have to collect some lemmas about these differential forms:

Lemma 1.2.7.

Let f ∈ C1(U,H). Then d(Dx · f) = (∇+f)dV and d(f ·Dx) = (f∇+)dV .

Proof:

We will prove the proposition by straightforward calculation. We see that for

pairwise different `,m, n, o ∈ N the following holds:

d((e`dxm ∧ dxn ∧ dxo) · f) = d((e` · f)dxm ∧ dxn ∧ dxo)

= ∂`(e` · f)dx` ∧ dxm ∧ dxn ∧ dxo

= e` · ∂`fdx` ∧ dxm ∧ dxn ∧ dxo
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Combining this with the definition of Dx we get:

d(Dx · f) =

 3∑
j=0

ej · ∂jf

 dx0 ∧ dx1 ∧ dx2 ∧ dx3

= (∇+f)dV

This shows the first part of the lemma. The second part follows analogously. �

Corollary 1.2.8.

For f, g ∈ C(U,H) we have:

d(g ·Dx · f) = ((g∇+)f + g(∇+f))dV

Proof:

Using the Leibniz rule for the de Rham differential and Lemma 1.2.7, we get

d(g ·Dx · f) = d(g ·Dx) · f + g · d(Dx · f)

= ((g∇+)f + g(∇+f))dV.

�

Proposition 1.2.9.

Let U ⊂ H be an open, bounded subset with piecewise C1-boundary ∂U and f, g ∈
C1(O,H) with O ⊃ Ū open. Then the following equality holds:∫

∂U
g ·Dx · f =

∫
U

((g∇+)f + g(∇+f))dV

Proof:

We just use a version of Stokes’ Theorem together with corollary 1.2.8:∫
∂U

g ·Dx · f =

∫
U

d(g ·Dx · f) =

∫
U

((g∇+)f + g(∇+f))dV

�

At this point we are ready to formulate and prove a quaternionic analog of

the Cauchy integral theorem:

Corollary 1.2.10. (Cauchy integral theorem)

Let U ⊂ H be an open bounded subset with piecewise C1-boundary ∂U . Let f ∈
C1(O,H) be left-regular and g ∈ C1(O,H) right-regular with O ⊃ Ū open. Then

we have: ∫
∂U

g ·Dx · f = 0.
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Proof:

This follows directly from the definition of left- and right-regularity and proposi-

tion 1.2.9. �

Now we are ready to prove the quaternionic analogs for the Cauchy integral

formula in complex analysis. The following proof is inspired by the proof in [4,

Satz 7.12].

Theorem 1.2.11. (Cauchy-Fueter formulas)

Let U ⊂ H be open and bounded with piecewise C1-boundary ∂U . Then we have

for an open subset O with Ū ⊂ O, f ∈ C(O,H) and X0 ∈ H \ ∂U :

1. If f is right-regular on O, then

1

2π2

∫
∂U

k(X −X0) ·Dx · f(X) =

{
f(X0), X0 ∈ U
0, X0 /∈ U.

2. If f is left-regular on O, then

1

2π2

∫
∂U

f(X) ·Dx · k(X −X0) =

{
f(X0), X0 ∈ U
0, X0 /∈ U.

Proof:

Again we will only prove the first part of the proposition, since the second part

follows in the same way.

First let X0 /∈ U . Then there is an open neighborhood Õ of Ū such that the

function k′ : Õ → H, X 7→ k(X − X0) is left-regular. Then by corollary 1.2.10

this part of the proposition is shown by restricting f and k′ to O ∩ Õ.

Let now X0 ∈ U . Then we choose an ε ∈ R>0 and Uε = U \ Bε(X0) 6= ∅
with boundary ∂Uε t (−Sε(X0)), where we denote by Sε the sphere with center

X0 and radius ε with outwards orientation and with −Sε the same with inward

orientation.

Then we have by proposition 1.2.9 and the regularity of k(X −X0) on Uε:∫
∂U

k(X −X0) ·Dx · f(X)−
∫
Sε

k(X −X0) ·Dx · f(X)

=

∫
∂Uε

k(X −X0) ·Dx · f(X)

=

∫
Uε

k(X −X0) · (∇+f)(X)dV

= 0
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This shows that∫
∂U

k(X −X0) ·Dx · f(X) =

∫
Sε

k(X −X0) ·Dx · f(X).

Furthermore we have that Dx |Sε(X0)=
X−X0
ε dS and thus∫

Sε(X0)
k(X −X0) ·Dx |Sε(X0) f(X) =

∫
Sε(X0)

(X −X0)+

ε4
· X −X0

ε
f(X) dS

=

∫
Sε(X0)

ε−3 f(X) dS.

To solve this integral we consider the following transformation

T : Sε(X0) −→ S1(0)

P 7−→ 1

ε
· (P −X0)

with inverse

T−1 : S1(0) −→ Sε(X0)

P 7−→ ε · P +X0

This is a diffeomorphism and so we can apply the transformation formula to get:∫
Sε(X0)

k(X −X0) ·Dx |Sε f(X) =

∫
S1(0)

f(X0 + ε ·X) dS

We know that S1(X0) is compact and f continuous. So as long as ε is sufficiently

small that for a given X ∈ S1(0) we have X0+ε·X ∈ S1(X0), there is a c ∈ S1(X0)

such that |f(X0 − ε ·X)| ≤ |f(c)|. Then by Lebesgue’s Theorem of majorized

convergence we can calculate:

lim
ε→0

∫
S1(0)

f(X0 + ε ·X) dS =

∫
S1(0)

lim
ε→0

f(X0 + ε ·X) dS

=

∫
S1(0)

f(X0) dS

= 2π2 · f(X0)

So we finally get:

1

2π2

∫
∂U

k(X −X0) ·Dx · f(X) = f(X0).

This was the claim. �
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1.3 Quaternionic projective spaces and conformal trans-

formations

In this section we want to introduce conformal transformations as the quater-

nionic analogue of the Möbius transformations known from complex analysis.

Especially we want to show that conformal transformations similar to Möbius

transformations preserve certain geometric structures in the one-point compact-

ification of the quaternions. In order to motivate the definition of conformal

transformations we will firstly consider quaternionic projective spaces. Because

of the lack of multiplicative commutativity of the quaternions there are two pro-

jective spaces of the lowest dimension that will be introduced together with the

one-point compactification of the quaternions in the next definitions. We should

note here that the quaternions itself form a normed space with the norm intro-

duced in section 1.

Definition 1.3.1 (Projective Spaces)

We define binary relations ∼` and ∼r on H2 in the following way for arbitrary

v, w ∈ H2

v ∼` w ⇔ ∃ a ∈ H \ {0} : w = v · a,
v ∼` w ⇔ ∃ a ∈ H \ {0} : w = a · v,

where · denotes component-wise multiplication from the left, respectively from

the right. Now we define the quaternionic right-projective space as the quotient

space

P 1H` := (H2 \ {0})/ ∼`

and the quaternionic left-projective space as the quotient space

P 1Hr := (H2 \ {0})/ ∼r .

Remark 1.3.2. The relations ∼` and ∼r are indeed equivalence relations. Re-

flexivity and transitivity are directly visible and symmetry follows from the fact

that H contains inverses.

In the following we will denote for any v ∈ H2 \ {0} its equivalence class in P 1H`

by [v]` and its equivalence class in P 1Hr by [v]r.

Definition 1.3.3 (One-Point compactification of H)

Consider the sets Ĥ := H ∪ {∞} and

OĤ := {O ∈ P(Ĥ) | O open in H ∨ Ĥ \O is compact in H}.
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We will prove in the next proposition that (H,OH̄) is a topological space and call

it the one-point compactification of H. If we do not state it differently, Ĥ will

always carry the topology OĤ.

We go on with showing that the one-point compactification as just defined is

indeed a compact topological space.

Proposition 1.3.4. (Topological Properties of the One-Point compactification of H)

1. The set OĤ is a topology on Ĥ.

2. The topological space OĤ is compact.

Proof:

1. We know that ∅ is open in H and therefore ∅ ∈ OĤ.

Furthermore ∅ is compact in H and therefore Ĥ \ ∅ = Ĥ ∈ OĤ.

We now consider binary intersections of elements of OĤ and conduct a case-

by-case analysis. At first we see that the intersection of two open subsets

of H is again an open subset of H. Let now O,U ∈ OĤ be such that O is

an open subset of H and Ĥ \U is compact in H. Since a compact subset of

H is also closed, we see that H \ (Ĥ \ U) = U \ {∞} is open in H. We also

know that ∞ /∈ O and therefore

O ∩ U = O ∩ (U \ {∞})

is open in H and consequently O ∩U ∈ OĤ. The third possible case is that

U1, U2 ∈ OĤ are both complements of compact sets. Then we have:

Ĥ \ (U1 ∩ U2) = (Ĥ \ U1) ∪ (Ĥ \ U2).

The union of two compact sets is again compact and therefore we have that

U1∩U2 ∈ OĤ. By complete induction we can now deduce that OĤ is closed

under finite intersections.

We now consider arbitrary unions of elements ofOĤ. Set union is associative

so for every such union V we can find two index sets I, J and families of sets

(Oi)i∈I , (Uj)j∈J , where every Oi is open in H and every Uj is a complement

of a compact set, such that

V =
⋃
i∈I

Oi ∪
⋃
j∈J

Uj .

We see that
⋃
i∈I

Oi is as a union of open subsets of H itself an open subset

of H. For the second union we see:

Ĥ \

⋃
j∈J

Uj

 =
⋂
j∈J

(Ĥ \ Uj).
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We know that an arbitrary intersection of compact subsets of H is again

compact.

Therefore it is only left to show that the binary union of any two O,U ∈ OĤ
with O open in H and Ĥ \ U compact in H is again an element of OĤ. We

have that

Ĥ \ (O ∪ U) = (Ĥ \O) ∩ (Ĥ \ U) = (H \O) ∩ (Ĥ \ U).

The set H\O is a closed subset of H and the intersection of a closed subset

with a compact subset of H is again compact. Therefore we get that

Ĥ \ (O ∪ U) ∈ OĤ.

By that we have proved that OĤ is a topology on Ĥ.

2. Let U be an arbitrary open covering of Ĥ. There is a set U ∈ U such that

∞ ∈ U . By the definition of OĤ we have that Ĥ \ U is compact in H.

Furthermore U \ {U} is an open covering of Ĥ \U . By compactness we can

find a finite open covering {O1, . . . , On} ⊆ U \ {U} of Ĥ \ U and therefore

the set {U,O1, . . . , On} ⊆ U is a finite open sub-covering of Ĥ. Hence Ĥ is

compact.

�

Since this thesis is about quaternionic analysis, we want to consider differential

structures on the spaces just defined. For this reason we will go on with showing

that both the one-point compactification and the projective spaces are manifolds

of class C∞.

In the following two propositions we will silently identify H with R4 as a vector

space using the distinguished basis of H.

Proposition 1.3.5. (One-Point compactification as smooth manifold)

Consider the maps

ϕ1 : H −→ H,
X 7−→ X

and

ϕ2 : Ĥ \ {0} −→ H,

X 7−→

{
X−1 forX 6=∞,
0 else.

Then the set {ϕ1, ϕ2} is an atlas for Ĥ that endows Ĥ with the structure of a

4-manifold of class C∞.
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Proof:

Firstly we state that Ĥ is second-countable and Hausdorff. This follows directly

from the definition of its topology.

Now we have to check that ϕ1 and ϕ2 are charts. We see that H is open in H
and therefore also in Ĥ. Furthermore ϕ1 is just the identity on H and therefore

a homeomorphism onto R4. Therefore ϕ1 is a chart. For ϕ2 we see that the set

{0} is compact in H and therefore the set Ĥ\{0} is open in Ĥ as its complement.

Furthermore ϕ2 is bijective. On the domain H \ {0} it is inverse to itself and

continuous as was shown in proposition 1.1.11. Therefore the restriction of ϕ2

on H \ {0} is a homeomorphism onto H \ {0}. Next we consider for an arbitrary

ε ∈ R>0 the open ball B̊4
ε and get

ϕ−1
2

(
B̊4
ε

)
= {∞} ∪

{
Y ∈ H \ {0} |

∣∣Y −1
∣∣ < ε

}
= {∞} ∪

{
Y ∈ H | |Y | > 1

ε

}
,

where we used that |Y | =
∣∣Y −1

∣∣−1
for all Y ∈ H \ {0} as we noted in remark

1.1.7. We see now that

Ĥ \ ϕ−1
2

(
B̊4
ε

)
=

{
X ∈ H | |X| ≤ 1

ε

}
= B4

1/ε

is a compact subset of H and therefore ϕ−1
2

(
B̊4
ε

)
is open in Ĥ. This shows

the continuity of ϕ2. For the openness we consider an arbitrary compact subset

C ⊂ H such that 0 ∈ C and get by using the bijectivity of ϕ2

ϕ2

(
Ĥ \ C

)
= ϕ2

(
(Ĥ \ {0}) \ C

)
= ϕ2

(
Ĥ \ {0}

)
\ ϕ2(C)

= H \ ϕ2(C).

Since p2 is continuous we see that p2(C) is compact and therefore also closed in

H. This implies that ϕ2

(
Ĥ \ C

)
is open in H as the complement of a closed set.

This shows the openness of ϕ2. Therefore both maps are charts and the fact that

H ∪ (Ĥ \ {0}) = Ĥ shows that the set {ϕ1, ϕ2} is an atlas.

It remains to be shown that the one transition map is of class C∞. For that we

have to consider the map

ϕ1 ◦ ϕ−1
2 : H \ {0} −→ H \ {0}

X 7−→ X−1.

We saw in lemma 1.1.13 that this map is of class C∞ and thus the proposition is

shown. �
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Proposition 1.3.6. (Projective Spaces as smooth manifolds)

1. Consider the maps

ψ1 : P 1H` \
{

[( 1
0 )]`

}
−→ H,[(

X1
X2

)]
`
7−→ X1X

−1
2

and

ψ2 : P 1H` \
{

[( 0
1 )]`

}
−→ H,[(

X1
X2

)]
`
7−→ X2X

−1
1

Then the set {ψ1, ψ2} is an atlas for P 1H` that endows P 1H` with the

structure of a 4-manifold of class C∞.

2. Consider the maps

χ1 : P 1Hr \
{

[( 1
0 )]r

}
−→ H,[(

X1
X2

)]
r
7−→ X−1

2 X1

and

χ2 : P 1H` \
{

[( 0
1 )]r

}
−→ H,[(

X1
X2

)]
r
7−→ X−1

1 X2

Then the set {χ1, χ2} is an atlas for P 1Hr that endows P 1Hr with the

structure of a 4-manifold of class C∞.

Proof:

The proof of this proposition is very similar to the proof of proposition 1.3.5 with

the addition that we have to show well-definedness of the charts. We will only

show the first part of the proposition, since one can get the proof of the second

part by reversion of the multiplication orders. Again we simply state, but do not

show that P 1H` and P 1H` are second-countable Hausdorff spaces.

Firstly we will show that the maps ψ1 and ψ2 are well-defined. Let
(
X1
X2

)
,
(
Y1
Y2

)
∈

H2 such that X2 6= 0, Y2 6= 0 and(
X1
X2

)
∼`
(
Y1
Y2

)
.

Then there exists an a ∈ H \ {0} such that(
Y1
Y2

)
=
(
X1·a
X2·a

)
.
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But then we also have the equality:

Y1 · Y −1
2 = (X1 · a) · (X2 · a)−1 = X1 · a · a−1X−1

2 = X1 ·X−1
2 .

Therefore we have shown the implication

∀ v, w ∈ H2 : [v]` = [w]` ⇒ ψ1([v]`) = ψ1([w]`)

and thus the well-definedness of ψ1. The well-definedness of ψ2 is shown in the

same way.

We see that ψ1 and ψ2 are bijections onto H as we can see by giving its both-sided

inverses as

ψ−1
1 : H −→ P 1H` \

{
[( 1

0 )]`
}

X 7−→
[(

X
1

)]
`

and

ψ−1
2 : H −→ P 1H` \

{
[( 1

0 )]`
}

X 7−→
[(

1
X

)]
`
.

Furthermore let pr` : H2 \ {0} → P 1H` be the canonical projection, then we

see that ψ1 ◦ pr` and ψ2 ◦ pr` are continuous as composition of continuous maps

and thus by the universal property of the quotient we get that ψ1 and ψ2 are

continuous. Furthermore also the maps ψ−1
1 and ψ−1

2 are continuous and thus

they are homeomorphisms. Now we consider the transition map between ψ1 and

ψ2:

ϕ1 ◦ ϕ−1
2 : H \ {0} −→ H \ {0}

X 7−→ X−1.

This is a map of class C∞ as stated in lemma 1.1.13 and together with the fact

that

P 1H` = P 1H` \
{

[( 1
0 )]`

}
∪ P 1H` \

{
[( 0

1 )]`
}

we get that the set {ψ1, ψ2} is indeed an atlas of P 1H`. �

Conformal transformations on Ĥ will be defined as an action of GL(2,H) on

Ĥ. Therefore we will give a characterization of the group GL(2,H) now. After

that we will give explicit forms for inverses of elements of GL(2,H).

Lemma 1.3.7. (Invertible quaternionic matrices)

Let A,B,C,D ∈ H. Then the following equivalence holds:(
A B

C D

)
∈ GL(2,H)

⇔ (C = 0⇒ AD 6= 0) ∧ (C 6= 0⇒ AC−1D −B 6= 0)
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Proof:

We begin with showing the forward direction. Let
(
A B
C D

)
∈ GL(2,H) ∈ GL(2,H).

Then the set
{(

A
B

)
,
(
C
D

)}
⊂ H2 is linearly independent over H. We distinguish

two cases now:

Firstly let C = 0. Then we consider the subcase that D = 0. Then
(
C
D

)
= ( 0

0 )

and thus trivially the set
{(

A
B

)
,
(
C
D

)}
is linearly dependent over H, which would

lead to a contradiction. Now we consider the subcase that D 6= 0 but A = 0.

Then we have that(
A

B

)
=

(
0

B

)
= BD−1 ·

(
0

D

)
= BD−1 ·

(
C

D

)
.

This proves linear dependence over H and again leads to a contradiction.

Now we consider the case that C 6= 0. Furthermore we assume that AC−1D−B =

0. Then we get the following equality:(
A

B

)
=

(
A

AC−1D

)
= AC−1 ·

(
C

D

)
.

This is again a contradiction. In summary the forward direction of the lemma is

shown.

For the backward direction we see first that if C = 0 and both A 6= 0 and D 6= 0

then the two vectors
(
A
B

)
,
(
C
D

)
cannot be linearly dependent. Secondly if C 6= 0

and AC−1D 6= B and the elements
(
A
B

)
,
(
C
D

)
∈ H2 are linearly dependent over

H, then there is a λ ∈ H such that(
A

B

)
= λ ·

(
C

D

)
.

From this equation we get that λ = AC−1 and λ ·D = B and thus AC−1D = B.

This is a contradiction and thus the backward direction of the lemma is shown. �

Lemma 1.3.8. (Inverses of quaternionic matrices)

Let M :=

(
A B

C D

)
∈ GL(2,H).

If C = 0 we have

M−1 =

(
A−1 −A−1BD−1

0 D−1

)
.

If C 6= 0 we have with the abbreviation H := CAC−1D − CB

M−1 =

(
C−1DH−1C C−1 − C−1DH−1CAC−1

−H−1C H−1CAC−1

)
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Proof:

First let C = 0. Then we get(
A−1 −A−1BD−1

0 D−1

)
·

(
A B

0 D

)
=

(
A−1A A−1B −A−1B

0 D−1D

)

=

(
1 0

0 1

)
.

This shows the first part of the lemma.

Now let C 6= 0. We note first that lemma 1.3.7 ensures that H is well-defined.

Then we can calculate:(
C−1DH−1C C−1−C−1DH−1CAC−1

−H−1C H−1CAC−1

)
·
(
A B
C D

)
=
(
C−1DH−1CA+(C−1−C−1DH−1CAC−1)C C−1DH−1CB+(C−1−C−1DH−1CAC−1)D

−H−1CA+H−1CAC−1C −H−1CB+H−1CAC−1D

)
=
(
C−1DH−1CA+1−C−1DH−1CA C−1D(H−1CB+1−H−1CAC−1D)

−H−1CA+H−1CA −H−1(CB−CAC−1D)

)
=
(

1 C−1D(1+H−1(CB−CAC−1D))

0 H−1H

)
= ( 1 0

0 1 )

This finishes the proof of the proposition. �

Now we are nearly ready to define conformal transformations. Before we

consider conformal transformations on Ĥ as we will need them later on, we will

first consider natural actions of GL(2,H) on the projective spaces, which will later

naturally induce the conformal transformations. We will construct this actions in

a way such that the action on the quaternionic left-projective space and the action

on the quaternionic right-projective space induce actions on Ĥ that coincide and

thus give us exactly one group of conformal transformations. In order to do that

we have to modify the action on the quaternionic right-projective space. In the

next definition we introduce the map we will use for this purpose and in the

lemma after that we will prove that it is indeed a group homomorphism.

Definition 1.3.9 (Pinch map)

We refer to the map

τ : GL(2,H) −→ GL(2,H)(
A B

C D

)
7−→

(
A −B
−C D

)

as the pinch map on GL(2,H).
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Remark 1.3.10. The pinch map is indeed well-defined. We see this by checking

the equations from lemma 1.3.7. Let M =
(
A B
C D

)
∈ GL(2,H).

In the case that C = 0 we have that A ·D 6= 0 and thus also
(
A −B
0 D

)
∈ GL(2,H).

In the case that C 6= 0 we have that AC−1D −B 6= 0. This implies that

A(−C)−1D − (−B) = −(AC−1D −B) 6= 0

and thus that τ(M) ∈ GL(2,H).

Lemma 1.3.11. (Properties of the pinch map)

The pinch map is a group automorphism of GL(2,H).

Proof:

Let
(
A B
C D

)
,
(
A′ B′

C′ D′

)
∈ GL(2,H). Then we have

τ

(
A B

C D

)
· τ

(
A′ B′

C ′ D′

)
=

(
A −B
−C D

)
·

(
A′ −B′

−C ′ D′

)

=

(
AA′ +BC ′ −AB′ −BD′

−CA′ −DC ′ CB′ +DD′

)

= τ

(
AA′ +BC ′ AB′ +BD′

CA′ +DC ′ CB′ +DD′

)

= τ

((
A B

C D

)
·

(
A′ B′

C ′ D′

))

The consideration that τ is an involution finishes the proof. �

Now we introduce the actions of GL(2,H) on the projective spaces we men-

tioned before.

Lemma 1.3.12. (Actions of GL(2,H) on projective spaces)

1. The map

π̄` : GL(2,H) −→ Diff(P 1H`, P
1H`)

defined by

π̄`(M).[v]` := [M−1v]`

for M ∈ GL(2,H) and v ∈ H2 \ {0} is a group homomorphism.

2. Furthermore the map

π̄r : GL(2,H) −→ Diff(P 1Hr, P
1Hr)



34
CHAPTER 1. QUATERNIONIC ANALYSIS AND CONFORMAL

TRANSFORMATIONS

defined by

π̄r(M).[v]r := [(vT τ(M))T ]r

for M ∈ GL(2,H) and v ∈ H2 \ {0} is a group homomorphism.

Proof:

Let M =
(
A′ B′

C′ D′

)
∈ GL(2,H) with inverse M−1 =

(
A B
C D

)
∈ GL(2,H) and v =(

X1
X2

)
∈ H2 \ {0}.

1. We have the following equality:

M−1v =

(
A B

C D

)
·

(
X1

X2

)
=

(
AX1 +BX2

CX1 +DX2

)

Furthermore we have for a ∈ H \ {0}:

M−1(v · a) =

(
A B

C D

)
·

(
X1a

X2a

)
=

(
AX1a+BX2a

CX1a+DX2a

)

=

(
AX1 +BX2

CX1 +DX2

)
· a = (M−1v) · a.

Therefore we get that for all v, w ∈ H \ {0},M ∈ GL(2,H):

[v]` = [w]` ⇒ [M−1v]` = [M−1w]`

Thus the map π̄`(M) : P 1H` → P1H` is well-defined. Now we have to show

that this map is a diffeomorphism of class C∞. Since M−1 ∈ GL(2,H), we

see directly that π̄`(M) is bijective and its inverse is given by the map

π̄`(M
−1) : P 1H` → P 1H`, [v]` 7→ [Mv]`.

The map π̄`(M) is continuous for every M ∈ GL(2,H) and thus a homeo-

morphism.

Now we are going to show that π̄`(M) is of class C∞. For this we see that

for any open subset U ⊆ H \ {0} we have that with the notation from

proposition 1.3.6 the maps

ψ1 ◦ π̄`(M) ◦ ψ−1
1 : U → H, u 7→ (Au+ C) · (Bu+D)−1,

ψ1 ◦ π̄`(M) ◦ ψ−1
2 : U → H, u 7→ (Bu+D) · (Au+ C)−1,

ψ2 ◦ π̄`(M) ◦ ψ−1
1 : U → H, u 7→ (A+ Cu) · (B +Du)−1,

ψ2 ◦ π̄`(M) ◦ ψ−1
2 : U → H, u 7→ (B +Du) · (A+ Cu)−1

are of class C∞ as concatenations of smooth maps regarding to lemma

1.1.13. Together with the fact that π̄`(M) is continuous this shows that
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π̄`(M) is of class C∞. Since M ∈ GL(2,H) is arbitrary and π̄`(M)−1 =

π̄`(M
−1) this shows that π̄`(M) is a diffeomorphism of class C∞. Thus the

map π̄` is well-defined.

The last point that remains to be shown is that π̄` is a group homomor-

phism. Consider M,N ∈ GL(2,H). Then we have for v ∈ H2 \ {0}:

π̄`(M ·N).[v]` = [(M ·N)−1v]` = [N−1 ·M−1v]`

= π̄`(N) ◦ π̄`(M).[v]`.

Taking into account that the group multiplication in Diff(P 1H`) is given as

· : Diff(P 1H`)×Diff(P 1H`)→ Diff(P 1H`), (f, g) 7→ g ◦ f

we thus see that π̄` is a group homomorphism and have finished the proof

for π̄`.

2. The proof for π̄r is very similar to the proof for π̄`. For this reason we will

present it in less detail.

Firstly we note the following equality:

(vT τ(M))T =

[(
X1 X2

)
·

(
A′ −B′

−C ′ D′

)]T
=

(
X1A

′ −X2C
′

−X1B
′ +X2D

′

)
Furthermore we have for a ∈ H \ {0}:

((a · v)T τ(M))T =

[(
aX1 aX2

)
·

(
A′ −B′

−C ′ D′

)]T

=

(
aX1A

′ − aX2C
′

−aX1B
′ + aX2D

′

)
= a · (vT τ(M))T

Therefore we get that for all v, w ∈ H \ {0},M ∈ GL(2,H):

[v]r = [w]r ⇒ [(vT τ(M))T ]r = [(wT τ(M))T ]r

Thus the map π̄r(M) : P 1Hr → P1Hr is well-defined. Again we see that

for every M ∈ GL(2,H) the map π̄r(M) is bijective by seeing that the map

π̄r(M
−1) is its both-sided inverse. We show that π̄r(M) is of class C∞ in

the same way we showed that π̄`(M) is of class C∞ by showing continuity

and using the atlas of PH
r given in proposition 1.3.6. Lastly we will check

that π̄r is a group homomorphism. We consider M,N ∈ GL(2,H) then we

have for v ∈ H2 \ {0}:

π̄r(M ·N).[v]r = [(vT τ(M ·N))T ] = [(vT τ(M) · τ(N))T ]

= [(((vT τ(M))T )T · τ(N))T ] = π̄r(N) ◦ ψ̄r(M).[v]r.

With this equality we see that π̄r is a group homomorphism and thus we

have finished the proof.
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Now we prove that the space Ĥ and the two quaternionic projective spaces

are diffeomorphic by giving suitable diffeomorphisms. These diffeomorphism can

then be used to define the actions of GL(2,H) on Ĥ which give us the conformal

transformations.

Lemma 1.3.13. (Diffeomorphisms between Ĥ and projective spaces)

The maps

I` : P 1H` −→ Ĥ,[(
X1
X2

)]
7−→

{
X1 ·X−1

2 for X2 6= 0

∞ else

and

Ir : P 1Hr −→ Ĥ,[(
X1
X2

)]
7−→

{
X−1

1 ·X2 for X1 6= 0

∞ else

are diffeomorphisms of class C∞ with inverses

I−1
` : Ĥ −→ P 1H`,

H 3 X 7−→
[(

X
1

)]
`
,

∞ 7−→ [( 1
0 )]` .

and

I−1
r : Ĥ −→ P 1Hr,

H 3 X 7−→
[(

1
X

)]
r
,

∞ 7−→ [( 0
1 )]r .

Proof:

We will just show that I` is a diffeomorphism. The case of Ir follows analogously.

At first we see that I` is a bijection by noting that its both-sided inverse is indeed

given by I−1
` . To show that I` is of class C∞ we again consider the atlases given

in proposition 1.3.5 and proposition 1.3.6. Now we note first that by definition

I`(P
1H` \ {[( 1

0 )]}) = H and that furthermore for any X ∈ H \ {0}:

ϕ1 ◦ I` ◦ ψ−1
1 (X) = ϕ1 ◦ I`

([(
X
1

)]
`

)
= ϕ1(X) = X

and thus

ψ1 ◦ I` ◦ ϕ−1
1 = idH\{0}.
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The identity on an open subset of a Banach space is of class C∞. Furthermore

we see that again by definition I`(P
1H` \

{
[( 1

0 )]`
}

) = Ĥ \ {0} and that for any

X ∈ H \ {0}:

ϕ2 ◦ I` ◦ ψ−1
2 (X) = ϕ2 ◦ I`

([(
1
X

)]
`

)
= ϕ2(X−1) = X

and thus

ψ2 ◦ I` ◦ ϕ−1
2 = idH\{0}.

Again this is a C∞ function and since P 1H` = P 1H` \{[( 1
0 )]}∪P 1H` \{[( 0

1 )]} it is

shown that I` is of class C∞. The same calculation for I−1
` also leads to identities

on the atlases and thus I` is a diffeomorphism of class C∞. �

Definition 1.3.14 (Conformal Transformations)

With the notation of lemma 1.3.13 we define two group homomorphism from

GL(2,H) to Diff(Ĥ, Ĥ) as

π` : GL(2,H) −→ Diff(Ĥ, Ĥ)

M 7−→ I` ◦ π̄`(M) ◦ I−1
`

and

πr : GL(2,H) −→ Diff(Ĥ, Ĥ)

M 7−→ Ir ◦ π̄r(M) ◦ I−1
r

We call the group π`(GL(2,H)) the group of conformal transformations.

In the next proposition we give the explicit form of the conformal transfor-

mations on Ĥ. In order to shorten our notation we define on Ĥ that from now

on 0−1 =∞ and that Y · ∞ =∞ · Y =∞ for any Y ∈ Ĥ \ {0}.

Proposition 1.3.15. (Evaluation of the conformal transformations)

Let M =
(
A′ B′

C′ D′

)
∈ GL(2,H) with inverse M−1 =

(
A B
C D

)
∈ GL(2,H). Then we

have for X ∈ H:

π`(M).X = (AX +B)(CX +D)−1,

πr(M).X = (A′ −XC ′)−1(−B′ +XD′).

Furthermore we get

π`(M).∞ = AC−1,

πr(M).∞ = −(C ′)−1D′.
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Proof:

Let X ∈ H. Then we get

π`(M).X = I` ◦ π̄`(M) ◦ I−1
` (X) = I` ◦ π̄`(M).

[(
X
1

)]
`

= I`

([(
AX+B
CX+D

)]
`

)
= (AX +B)(CX +D)−1.

Furthermore we get

πr(M).X = Ir ◦ π̄r(M) ◦ I−1
r (X) = Ir ◦ π̄r(M).

[(
1
X

)]
r

= Ir

([(
A′−XC′
−B′+XD′

)]
r

)
= (A′ −XC ′)−1(−B′ +XD′).

For the remaining two cases we consider ∞ ∈ Ĥ. Then we get

π`(M).∞ = I` ◦ π̄`(M) ◦ I−1
` (∞) = I` ◦ π̄`(M). [( 1

0 )]` = I`
([(

A
C

)]
`

)
= AC−1

and

πr(M).∞ = Ir ◦ π̄r(M) ◦ I−1
r (∞) = Ir ◦ π̄r(M). [( 0

1 )]r = Ir

([(
−C′
D′

)]
r

)
= −(C ′)−1D′

This finishes the proof. �

Next we are going to prove that in fact we have not defined two different

actions π` and πr on Ĥ, but that these maps actually are just two presentations

of the same map and therefore that we can use them indiscriminately. The

following proof is taken from the book [4].

Lemma 1.3.16. (Coincidence of π` and πr)

For every M ∈ GL(2,H) it is true that

π`(M) = πr(M).

Thus in particular the groups π`(GL(2,H)) and πr(GL(2,H)) are equal.

Proof:

At first, let M ∈ GL(2,H) be given with M−1 =
(
A B
0 D

)
. Then we have that

A 6= 0, since else M 6= GL(2,H) by lemma 1.3.7. In this case we thus get for

every X ∈ H:

π`(M).X = (AX +B)D−1 = AXD−1 +BD−1

= (A−1)−1(A−1BD−1 +XD−1) = πr

(
A−1 −A−1BD−1

0 D−1

)
.X.
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Furthermore we get

π`(M).∞ =∞ = πr

(
A−1 −A−1BD−1

0 D−1

)
.∞.

From lemma 1.3.8 we know that

M = (M−1)−1 =

(
A−1 −A−1BD−1

0 D−1

)

and thus we have π`(M) = πr(M) for M as above.

Now we consider M ∈ GL(2,H) with M−1 =

(
A B

C D

)
, where C 6= 0. Then we

calculate for X ∈ H:

π`(M).X = (AX +B)(CX +D)−1

= (A(X + C−1D) +B −AC−1D)(X + C−1D)−1C−1

= A(X + C−1D)(X + C−1D)−1C−1 + (B −AC−1D)(X + C−1D)−1C−1

= AC−1 − C−1(CAC−1D − CB)(X + C−1D)−1C−1

With the abbreviation H := CAC−1D − CB we get from this by using the fact

that H 6= 0 by lemma 1.3.7:

π`(M).X = AC−1 − C−1H(X + C−1D)−1C−1

= AC−1 − [(X + C−1D)H−1C]−1C−1

= (XH−1C + C−1DH−1C)−1(XH−1CAC−1 + C−1DH−1CAC−1 − C−1)

= (C−1DH−1C +XH−1C)−1(C−1DH−1CAC−1 − C−1 +XH−1CAC−1)

= πr

(
C−1DH−1C C−1 − C−1DH−1CAC−1

−H−1C H−1CAC−1

)
.X.

Furthermore we get

π`(M).∞ = AC−1

= (H−1C)−1(H−1CAC−1)

= πr

(
C−1DH−1C C−1 − C−1DH−1CAC−1

−H−1C H−1CAC−1

)
.∞.

From lemma 1.3.8 we know that

M = (M−1)−1 =

(
C−1DH−1C C−1 − C−1DH−1CAC−1

−H−1C H−1CAC−1

)

and thus we have π`(M) = πr(M) for M as above. This finishes the proof. �
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Our main goal for the rest of this chapter will be to show that conformal

transformations on Ĥ in analogy to Möbius transformations on the one-point

compactification Ĉ of the complex numbers preserve hyper-surfaces and spheres.

For this reason we will define first these geometric structures in Ĥ and then

introduce a standard form to describe them:

Definition 1.3.17 (Hyper-surfaces and Spheres in H and Ĥ)

We call a subset S ⊂ Ĥ a sphere in Ĥ, if and only if there are R ∈ R>0 and

X ∈ H such that S = S3
R(X), i.e. spheres in Ĥ are exactly spheres in H.

We call a subset S ⊂ H a hyper-surface, if and only if there exist c ∈ R and

B ∈ H \ {0} such that

S = {X ∈ H | 〈X,B〉 = c}.

We call a subset S ⊂ H a hyper-surface in Ĥ, if and only if there exists a hyper-

surface S′ ⊂ H such that S = S′ ∪ {∞}.

Proposition 1.3.18. (Hyper-surfaces and Spheres in H)

A subset S ⊆ H is a hyper surface or a sphere, if and only if there are a, c ∈ R,

B ∈ H with N(B)− ac > 0 such that

S := {X ∈ H | aXX+ +XB+ +X+B + c = 0}.

Furthermore S is a sphere, if and only if a 6= 0 and S is a hyperspace if and only

if a = 0.

Proof:

We firstly define for B ∈ H\{0} and c ∈ R the set HB,c := {s ∈ R4 | 〈s,B〉 = c}.
We know by the definition that every hyper-surface is of this form. By using

the algebra structure of the quaternions we can characterize hyper-surfaces and

spheres in the following way with B ∈ H and k ∈ R

HB,k = {X ∈ H | <(X+B) = k} = {X ∈ H | X+B +XB+ = 2k} and

S3
r (−B) = {X ∈ H | <((X +B)(X +B)+) = r2}

= {X ∈ H | XX+ +BX+ +XB+ +N(B) = r2}
= {X ∈ H | XX+ +BX+ +XB+ = r2 −N(B)}
= {X ∈ H | XX+ + 2 · <(XB+) = r2 −N(B)}
= {X ∈ H | XX+ + 2 · <(X+B) = r2 −N(B)}
= {X ∈ H | XX+ +X+B +XB+ = r2 −N(B)}

We see that HB,c is of the form given in the proposition by setting a = 0 and

c = −2k. Similarly S3
r (−B) can be written in this form by setting a = 1 and
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c = −r2 +N(B). Furthermore we see that in both cases the proposed inequality

N(B)− ac > 0 holds.

In the other direction let a, c ∈ R, B ∈ H with N(B) − ac > 0 be given and

consider the set

S = {X ∈ H | aXX+ +XB+ +X+B + c = 0}.

If a = 0 we see in the notation from above that

S = {X ∈ H | XB+ +X+B + c = 0}

= {X ∈ H | 〈X,B〉 = − c
2
}

= HB,− c
2
.

This is valid because by assumption N(B) > 0 and therefore B ∈ H \ {0}.
If a 6= 0 we get

S = {X ∈ H | XX+ + a−1XB+ + a−1X+B = −a−1c}
= {X ∈ H | XX+ + a−1XB+ + a−1X+B + a−2 ·N(B) = −a−1c+ a−2 ·N(B)}

= {X ∈ H | (X + a−1B)(X + a−1B)
+

=
N(B)− ac

a2
}

= {X ∈ H |
〈
X + a−1B,X + a−1B

〉
=
N(B)− ac

a2
}

= S3
N(B)−ac

a2

(−a−1B).

This is valid, because by assumption (N(B) − AC) ∈ R>0 and thus N(B)−ac
a2

∈
R>0. Hence we have shown the proposition. �

Corollary 1.3.19.

Let S, S′ ⊂ H be hyper-surfaces or spheres in H. If there exist six points si with

i ∈ {1, 2, 3, 4, 5, 6} such that si ∈ S and si ∈ S′, then we have S = S′.

Proof:

Let a, c ∈ R and B =
3∑

n=0
bnen ∈ H. Then we have in components

aXX+ +XB+ +X+B + c = a ·N(X) + 2 ·
3∑

n=0

bnxn + c.

Fixing six different values for (x0, x1, x2, x3) induces a system of six inhomoge-

neous real linear equations, which determines the values for a, B and c, if it is

solvable. The characterisation given in proposition 1.3.18 for spheres and hyper-

planes in H now implies the corollary. �
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Now we are going to show that conformal transformations map any sphere or

hyper-surface in Ĥ to either a sphere or a hyper-surface in Ĥ. At first we give

generators of the group of conformal transformations in order to be able to split

up the proof for this preservation into small pieces.

Definition 1.3.20 (Translation, rotation scaling and inversion)

1. Let A ∈ H. Then we call a conformal transformation of the form

TA : Ĥ −→ Ĥ
H 3 X 7−→ X +A

∞ 7−→ ∞

a translation map.

2. Let A,B ∈ H \ {0}. Then we call a map of the form

RS(A,B) : Ĥ −→ Ĥ
X 7−→ AXB

∞ 7−→ ∞

a rotational scaling.

3. We call the map

I : Ĥ −→ Ĥ

X 7−→


1
X for X ∈ H \ {0}
0 for X =∞
∞ for X = 0

the inversion map.

Remark 1.3.21. The maps given in definition 1.3.20 are indeed conformal trans-

formations. Explicitly we have for A ∈ H:

TA = π`

(
1 −A
0 1

)
.

For A,B ∈ H \ {0} we have:

RS(A,B) = π`

(
A−1 0

0 B

)
Finally we have

I = π`

(
0 1

1 0

)
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Lemma 1.3.22. (Generators of conformal transformations)

The group π`(GL(2,H)) of conformal transformations is generated by the set

{TA | A ∈ H} ∪ {RS(A,B) | A,B ∈ H \ {0}} ∪ {I} ⊆ π`(GL(2,H)).

Proof:

Let M ∈ GL(2,H) with M−1 =
(
A B
C D

)
∈ GL(2,H). In the case that C 6= 0

we have the following equality that was shown in the proof of lemma 1.3.16 for

X ∈ H (let again be H := CAC−1 − CB):

π`(M).X = AC−1 − C−1H(X + C−1D)−1C−1

= TAC−1(−C−1H(X + C−1D)−1C−1)

= TAC−1 ◦RS(−C−1H,C−1) ◦ I(X + C−1D)

= TAC−1 ◦RS(−C−1H,C−1) ◦ I ◦ TC−1D(X)

For ∞ ∈ Ĥ we also have:

π`(M).∞ = AC−1 = TAC−1(0)

= TAC−1 ◦RS(−C−1H,C−1)(0)

= TAC−1 ◦RS(−C−1H,C−1) ◦ I(∞)

= TAC−1 ◦RS(−C−1H,C−1) ◦ I ◦ TC−1D(∞)

Therefore we have:

π`(M) = TAC−1 ◦RS−C−1H,C−1 ◦ I ◦ TC−1D.

In the case that C = 0 we have for all X ∈ H:

π`(M).X = A−1(−B +XD) = RS(A−1,1) ◦ T−B ◦RS(1,D)(X)

and for ∞ ∈ Ĥ:

π`(M).∞ =∞ = RS(A−1,1) ◦ T−B ◦RS(1,D)(∞)

and thus

π`(M) = RS(A−1,1) ◦ T−B ◦RS(1,D).

This shows that every element of π`(GL(2,H)) can be written as composition of

translations, rotation scalings and inversions. This finishes the proof. �

Now we are nearly ready to present the proof that conformal transformations

preserve spheres and hyper-surfaces, but we will first show a small lemma that

we will need.
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Lemma 1.3.23. (Orthogonality of rotations)

The maps RS(A,B) with A,B ∈ SU(2) ⊂ H are orthogonal with respect to the

scalar product 〈·, ·〉 on H.

Proof:

For X,Y ∈ H we have〈
RS(A,B)(X), RS(A,B)(Y )

〉
= 〈AXB,AY B〉
= <((AXB)+(AY B))

=
1

2

(
(AXB)+(AY B) + (AY B)+(AXB)

)
=

1

2

(
B+X+A+AY B +B+Y +A+AXB

)
=

1

2

(
B+X+N(A)Y B +B+Y +N(A)XB

)
=

1

2

(
B+X+Y B +B+Y +XB

)
| N(a) = 1

=
1

2
B+

(
X+Y + Y +X

)
B

= B+ 〈X,Y 〉B
= 〈X,Y 〉 ·N(b) | 〈X,Y 〉 ∈ R
= 〈X,Y 〉 | N(b) = 1

This finishes the proof. �

Proposition 1.3.24. (Preservation of spheres and hyper-surfaces)

Let S ⊂ Ĥ be a hyper-surface or a sphere in Ĥ. Then for every M ∈ GL(2,H)

the image π`(M)(S) = πr(M)(S) is a hyper-surface or a sphere in Ĥ.

Proof:

By lemma 1.3.22 we only have to show that translations, rotation scalings and

inversions preserve the set of hyper-surfaces and spheres. Let thus S′ ⊆ H be a

hyper-surface or a sphere. By proposition 1.3.18 we know that there are a, c ∈ R,

B ∈ H with N(B)− ac > 0 such that

S′ := {s ∈ H | aXX+ +XB+ +X+B + c = 0}

and furthermore S′ is also a sphere in Ĥ, if a 6= 0 and the set S = S′ ∪ {∞} is

a hypersurface in Ĥ, if a = 0. Taking this into account we see that for arbitrary
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translations with A ∈ H we have

TA(S′) = {X +A ∈ H | aXX+ +XB+ +X+B + c = 0}
= {X ∈ H | a(X −A)(X −A)+ + (X −A)B+ + (X −A)+B + c = 0}
= {X ∈ H |

a(XX+ −AX+ −XA+ +AA) +XB −AB +XB −AB + c = 0}
= {X ∈ H | a(XX+ − 2 〈A,X〉+AA) + 2 〈X,B〉 − 2 〈A,B〉+ c = 0}
= {X ∈ H | aXX+ − 2 〈X, aA−B〉+ (a ·N(A)− 2 〈A,B〉+ c) = 0}
= {X ∈ H |
aXX+ +X(B − aA)+ +X+(B − aA) + (a ·N(A)− 2 〈A,B〉+ c) = 0}

We have (B − aA) ∈ H and (aN(A)− 2 〈A,B〉+ c) ∈ R and furthermore

N(B − aA)− a · (aN(A)− 2 〈A,B〉+ c)

= 〈B − aA,B − aA〉 − a2N(A) + 2 〈aA,B〉 − ac
= N(B)− 2 〈aA,B〉+ a2N(A)− a2N(A) + 2 〈aA,B〉 − ac
= N(B)− ac > 0

Considering the coefficient of XX in the expression for TA(S′) we thus see that in

H spheres get mapped to spheres and hypersurfaces to hypersurfaces under the

map TA. Considering the fact that TA(∞) = ∞ this also holds true for spheres

and hypersurfaces in Ĥ.

For rotation scaling with arbitrary A,C ∈ H \ {0} we calculate

RS(A,C)(S
′)

= {AXC ∈ H | aXX+ +XB+ +X+B + c = 0}
= {X ∈ H |

a(A−1XC−1)(A−1XC−1)
+

+ (A−1XC−1)B+ + (A−1XC−1)
+
B + c = 0}

= {X ∈ H | a(A−1XC−1)(A−1XC−1)
+

+ 2
〈
A−1XC−1, B

〉
+ c = 0}

=

{
X ∈ H | aN(A−1XC−1) + 2

∣∣A−1
∣∣ ∣∣C−1

∣∣ ·〈 A−1

|A−1|
X
C−1

|C−1|
, B

〉
+ c = 0

}
=

{
X ∈ H | aN(A−1XC−1) + 2

〈
RS(|A|·A−1,|C|·C−1)(X),

B

|A · C|

〉
+ c = 0

}
=

{
X ∈ H | aN(A−1XC−1) + 2

〈
X,RS(|A|·A−1,|C|·C−1)

(
ABC

|A · C|

)〉
+ c = 0

}
= {X ∈ H | aN(A−1)N(C−1)N(X) + 2

〈
X,

ABC

N(A) ·N(C)

〉
+ c = 0}

= {X ∈ H |
a

N(A)N(C)
XX+ +X ·

(
ABC

N(A) ·N(C)

)+

+X+

(
ABC

N(A) ·N(C)

)
+ c = 0}
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Here we used the orthogonality of the map RS(A,B) as shown in lemma 1.3.23.

By calculating

N

(
ABC

N(A) ·N(C)

)
− a

N(A)N(C)
· c

=
N(A)N(B)N(C)

N(A)2N(C)2
− ac

N(A)N(C)

=
1

N(A)N(C)
· (N(B)− ac) > 0 | N(A)N(B) > 0

we see that RS(A,C)(S
′) is again a hypersurface or a sphere. More precisely we

see again that, since a = 0 if and only if a
N(A)N(C) hypersurfaces in H get mapped

to hypersurfaces in H and spheres in H to spheres in H by the map RS(A,C).

Together with the fact that RS(A,C)(∞) = ∞ we see that rotation scaling maps

indeed preserve spheres and surfaces in Ĥ.

Next we consider the inversion map. In this case more care is necessary than in

the cases before, because I(H) 6= H, since I(0) = ∞. But instead we can use

the fact that I(H \ {0}) = H \ {0}. Thus we consider first the set S′ \ {0} and

calculate:

I(S′ \ {0}) =
{
X−1 ∈ H \ {0} | aXX+ +XB+ +X+B + c = 0

}
=
{
X ∈ H \ {0} | aX−1(X−1)

+
+X−1B+ + (X−1)

+
B + c = 0

}
=

{
X ∈ H \ {0} | a

N(X)
+

X+

N(X)
B+ +

X

N(X)
B + c = 0

}
=
{
X ∈ H \ {0} | a+X+B+ +XB + cN(X) = 0

}
=
{
X ∈ H \ {0} | cXX+ +XB +X+B+ + a = 0

}
Furthermore we see that

N(B)− ca = N(B)− ac > 0

and thus the set I(S′ \ {0}) is a subset of a sphere or hypersurface in H.

Furthermore it is I(∞) = 0 and thus by the bijectivity of I for any S ⊂ Ĥ we

have that 0 ∈ I(S) if and only if ∞ ∈ S. If S is a sphere or a hypersurface in Ĥ
this assumption implies that S is a hypersurface in Ĥ, i.e. a = 0 in the definition

of S \ {∞}. But in this case 0 is indeed a solution of the equation

cXX+ +XB +X+B+ + a = 0

and therefore we have

I(S \ {0}) =
{
X ∈ H | cXX+ +XB +X+B+ = 0

}
.

This is a hypersurface or a sphere.

Next we see that I(0) = ∞ and thus for any S′ ⊂ Ĥ we have that ∞ ∈ I(S) if
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and only if 0 ∈ S. If S is a sphere or a hypersurface in Ĥ this implies that 0 has

to be a solution of the equation

aXX+ +XB+ +X+B + c = 0.

This is true if and only if c = 0, but in this case we have that the equation

cXX+ +XB +X+B+ + aN(X) = 0

for X ∈ H defines a hypersurface in H. Using the result for the case that 0 ∈ S
we can thus deduce that if S is a sphere or hypersurface in Ĥ with 0 ∈ S, the

image I(S) is a hypersurface in Ĥ.

This finishes the proof. �





Chapter 2

Applications of Quaternionic

Analysis

2.1 The quaternionic Poisson formula

In this section we want to apply methods of quaternionic analysis and represen-

tation theory of a certain subgroup of the group GL(2,H) in order to prove a

four dimensional Poisson formula for complex-valued harmonic functions that are

defined on B4
1 ⊂ H. Before we can state it, we have to give a definition:

Definition 2.1.1 (Degree operator)

Let S ⊆ H be a connected subset. For ϕ ∈ Ĥ(S) we define its shifted degree on

S̊ by

d̃egϕ : S̊ −→ C

X =

3∑
j=0

xnen 7−→ ϕ (X) +

3∑
j=0

xj · ∂jϕ(X)

and extend d̃egϕ to a function on S by considering the continuous extension of

the above definition to ∂S, when this is defined.

Before we can state the quaternionic Poisson formula we will first introduce

a suitable space of harmonic functions for the formulation of the formula as well

as a linear operator on this space that will represent the integral on one side of

the Poisson formula:

49
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Definition 2.1.2

1. Let S ⊂ H be a connected subset. Then we define

Ĥ(S) :=
{
ϕ ∈ C(S,C) | ϕharmonic on S̊ ∧

sup
X∈B̊4

1

∣∣∣∣∣
3∑
i=0

Diϕ(X)

∣∣∣∣∣+ sup
X∈B̊4

1

∣∣∣∣∣∣
3∑
i=0

3∑
j=0

DiDjϕ(X)

∣∣∣∣∣∣ <∞
}
.

2. To simplify our notation we set Ĥ := Ĥ(B4
1).

3. We define the map

Harm : Ĥ → Ĥ

by setting

Harm(ϕ)(Y ) =
1

2π2
·
∫
X∈S3

1

1−N(Y )

N(X − Y )2
· ϕ(X) dS(X)

for all Y ∈ B̊4
1 and

Harm(ϕ)(Y ) = ϕ(Y )

for all Y ∈ S3
1 .

Now we will collect some results from harmonic analysis, which will be nec-

essary in the following.

Remark 2.1.3. (Harmonic Analysis)

Let S ⊆ H be a connected subset with connected interior.

1. The map Harm is well-defined by Theorem II.1.10 in [7], i.e. for all ϕ ∈
Harm we have that for any Y ∈ B̊4

1 :

lim
X→Y

Harm(ϕ)(X) = Harm(ϕ)(Y ).

2. Every harmonic function ϕ : S → C is of class C∞ (cf. [7, Theorems II.1.1

and II.1.7]) and real analytic (cf. [7, Result IV.5.5]).

With the differential operator from definition 2.1.1 we can now give the quater-

nionic Poisson formula in the following way:
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Theorem 2.1.4. (Quaternionic Poisson formula)

Let R ∈ R>0 and ϕ : B4
R → C a continuous function that is harmonic on B̊4

R.

Then for all Y ∈ B̊4
R the chain of equalities

ϕ(Y ) =
1

2π2

∫
S3
R

R2 −N(Y )

N(X − Y )2
· ϕ(X)

R
dS(X)

= − 1

2π2

∫
S3
R

(
d̃egX

1

N(X − Y )

)
· ϕ(X)

R
dS(X)

=
1

2π2

∫
S3
R

1

N(X − Y )
· 1

R
d̃egϕ(X) dS(X)

holds.

For this proof of theorem 2.1.4 we will mainly follow [3, section 2.8]. Unfortu-

nately I was not able to prove the irreducibility of a certain representation that

is crucial in that proof. Furthermore I will not be able to show that the linear

endomorphism Harm is equivariant with respect to this representation. Never-

theless I will give the main steps of the proof as far as possible and then give a

reference for the validity of the Poisson formula, since we will rely on this result

in the next section.

For the proof of the Poisson formula we rely on the representation theory of

Lie groups and thus we will fix our notation for the treatment of Lie theory in

the next definition. Note that with the term Lie group we will always refer to

finite-dimensional real Lie groups.

Definition 2.1.5 (Lie groups and Lie algebras)

1. Let G be a Lie group. Then we denote the Lie algebra associated to G by

Lie(G).

2. LetG be a Lie group andH a subgroup of G. Then we callH a Lie subgroup

of G, if and only if H is a submanifold of class C∞ that is embedded into

G.

3. Let K ∈ {R,C,H}. Then we will denote by gl(n,K) the Lie algebra of

n× n-matrices over K together with the commutator as Lie bracket.

4. We will denote by su(2) the Lie algebra{(
−ix3 −ix1 − x2

−ix1 − x2 ix3

)
∈ gl(2,C) | x1, x2, x3 ∈ R

}
= {X ∈ H | <(X) = 0}

together with the commutator as Lie bracket.
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5. On gl(2,C) we define the exponential map

exp : gl(2,C)→ GL(2,H), X 7→
∞∑
j=0

1

j!
·Xj

In the next proposition we sum up the results about Lie groups and Lie

algebras and their interrelation that we will need for the arguments that will

follow.

Proposition 2.1.6. (Lie theory)

1. The group GL(2,C) is a Lie group with gl(2,C) as associated Lie algebra.

2. The group SU(2) is a Lie group with su(2,C) as associated Lie algebra.

3. Let G and H be Lie groups. Then G×H with the induced group structure

is also a Lie group and its Lie algebra is given as

Lie(G×H) = Lie(G)⊕ Lie(H).

4. Let G be a Lie group and h ⊆ Lie(G) a Lie subalgebra. Then there is a

unique connected Lie subgroup of H ⊆ G such that Lie(H) = h.

5. Let h ⊆ gl(n,C) be a one-dimensional Lie subalgebra. Then the group given

by

H =
{
eh | h ∈ h

}
⊆ GL(n,C)

together with matrix multiplication is connected and has the property that

Lie(H) = h.

Proof:

The first two statements can be found in [5, Chapter 1, 1]. The next statement

can be found in [5, (A.121), Appendix A]. The last two statements follow from

Theorem 20.13 and Example 20.5 in [6]. �

Now we will start by showing that the group GL(2,H) that we encountered

in section 1.3 is a Lie group.

Lemma 2.1.7. (GL(2,H) as a Lie group)

The group GL(2,H) can be endowed with the structure of an 8-dimensional Lie

group and we have

Lie(GL(2,H)) = gl(2,H)
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Proof:

First we consider the map

det
H

: M(2,H) −→ H(
A B

C D

)
7−→

{
A ·D forC = 0

CAC−1D − CB forC 6= 0

We see that this map is continuous and by lemma 1.3.7 in chapter 1 we have that

for all M ∈M(2,H):

M ∈ GL(2,H) ⇔ det
H

(M) ∈ H \ {0}.

Since H\{0} is open in H we see that GL(2,H) is open in M(2,H) and is therefore

endowed with the structure of a submanifold of class C∞ by the identity chart.

By recalling that H together with its multiplication is a subgroup of GL(2,C) we

see that GL(2,H) is a subgroup of GL(4,C). We can now use the isomorphy be-

tween the Lie algebra corresponding to a Lie group and the tangent space of the

same Lie group to construct a Lie algebra isomorphism α : gl(2,H) → gl(4,C).

Since this needs a better understanding of Lie algebras and Lie groups than given

in this thesis until now, we refer to the proof of [6, Proposition 8.40]. One gets

the explicit argument for our case by just replacing C by H and R by C in this

proof. �

For the purpose of this section the group GL(2,H) is too big. In the next

lemma we will treat a Lie subgroup of GL(2,H) that preserves the unit sphere,

when acting on Ĥ via conformal transformations (cf. section 3 in chapter 1 of

this thesis).

Lemma 2.1.8. (Group of sphere-preserving matrices)

Let G ⊆ GL(2,H) be the maximal subgroup of GL(2,H) such that for all g ∈ G
we have:

π`(g).S3
1 = S3

1 .

Then

Lie(G) =

{(
A B

B+ D

)
∈ gl(2,H) | <(A) = <(D)

}
.

Proof:

Let M ∈ gl(2,H). In the proof for lemma 2.1.7 we showed that GL(2,H) is open

in gl(2,H). This implies that there is an interval (−ε, ε) ∈ R such that the curve

γM : (−ε, ε) −→ GL(2,H)

t 7−→

(
1 0

0 1

)
+ t ·M
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is well-defined. Using this map we can now define a curve in Ĥ in the following

way for M ∈ gl(2,H) and X ∈ H:

ωM,X : (−ε, ε) −→ Ĥ
t 7−→ π`(γ(t)).X .

We see that ωM,X(0) = X. And thus by differentiating the curve at t = 0 we get

d

dt
ωM,X(t) |t=0∈ TXĤ.

Now we note that by the definition of G we have M ∈ Lie(G) if and only if it

preserves the tangential space of the sphere, i.e.

∀X ∈ S3
1 :

d

dt
ωM,X(t) |t=0∈ TX(S3

1).

Evaluating this expression we get for M =
(
A B
C D

)
∈ gl(2,H) and X ∈ S3

1 by using

that ϕ` = ϕr as maps on GL(2,H):

d

dt
ωM,X(t) |t=0

=
d

dt
((1 + tA)− tXC)−1 · (−tB +X(1 + tD)) |t=0

=
d

dt

X + t · (D −B + (A+ − C+X+)X) + t2 · (A+ − C+X+)(XD −B)

N(1 + t(A−XC))
|t=0

=
d

dt
N(1 + t(A−XC))−1 |t=0 ·X

+
d

dt
(X + t · (D −B + (A+ − C+X+)X) + t2 · (A+ − C+X+)(XD −B)) |t=0

= −2<(A−XC) ·X +D −B +A+X − C+X+X

= (XC −A+ C+X+ −A+) ·X +D −B +A+X − C+X+X

= XCX −AX +XD −B.

From this equation we get for X ∈ S3
1 the equivalence

d

dt
ωM,X(t) |t=0∈ Tx(S3

1)

⇔ 〈XCX −AX +XD −B,X〉 = 0.

But for X ∈ S3
1 we have

〈XCX −AX +XD −B,X〉
= 〈XCX,X〉 − 〈AX,X〉+ 〈XD,X〉 − 〈B,X〉
= <(XCXX+)−<(AXX+) + <(X+XD)−<(BX+)

= <((D −A) + (BX+ −XC)).
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Here we used that for X ∈ S3
1 the equality N(X) = 1 holds. By successively

inserting e0,−e0, e1, e2 and e3 for X into the above equation we can determine

that

〈XCX −AX +XD −B,X〉 = 0 ⇔ <(A) = <(D) ∧ C = B+.

This implies that

Lie(G) =

{(
A B

B+ D

)
∈ gl(2,H) | <(A) = <(D)

}
.

�

Now we are ready to define the Lie group that will be of highest significance

in this section and then single out its generators.

Definition 2.1.9 (The Lie group G0)

Let G0 ⊆ GL(2,H) be the unique connected Lie-subgroup of GL(2,H) such that

g0 := Lie(G0) =

{(
A B

B+ D

)
∈ gl(2,H) | <(A) = <(D) = 0

}
.

Lemma 2.1.10. (Generators of G0)

The group G0 is generated by the subgroup SU(2)× SU(2) ⊂ GL(2,H) realized

as the group of diagonal matrices
(
A 0
0 B

)
∈ gl(2,H) with |A| = |B| = 1, and the

one-parameter group

G′0 :=

{(
cosh t sinh t

sinh t cosh t

)
∈ gl(2,H) | t ∈ R

}
.

Proof:

We show that the Lie algebra g0 is generated by the lie algebras

su(2)⊕ su(2) =

{(
A 0

0 D

)
∈ gl(2,H) | <(A) = <(D) = 0

}

and

g′0 :=

{(
0 t

t 0

)
∈ gl(2,H) | t ∈ R

}
.

To see that consider an arbitrary
(
A B
B+ D

)
∈ g0. Then we see that

(
A 0
0 D

)
∈

su(2) ⊕ su(2),
(
=(B) 0

0 0

)
∈ su(2) ⊕ su(2) and

(
0 <(B)
<(B) 0

)
∈ g′0. Using these
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matrices we get:(
A 0

0 D

)
+

[(
=(B) 0

0 0

)
,

(
0 1

1 0

)]
+

(
0 <(B)

<(B) 0

)

=

(
A 0

0 D

)
+

(
0 =(B)

−=(B) 0

)
+

(
0 <(B)

<(B) 0

)

=

(
A B

B+ D

)

Since g′0 and su(2)⊕ su(2) are Lie sub-algebras of g0, this already implies that g0

is indeed generated by the Lie algebras su(2)⊕ su(2) and g′0.

Next we see that SU(2) × SU(2) as given in the statement of the lemma is

the connected Lie subgroup of GL(2,H) with Lie(SU(2) × SU(2)) = su(2) ⊕
su(2), where su(2) ⊕ su(2) is embedded into gl(2,H) in the way given above.

Furthermore we get the one-parameter subgroup generated by g′0 by applying the

matrix exponential to it. This is possible since g′0 is a subalgebra of gl(4,C) and

we calculate: {
exp

((
0 t

t 0

))
| t ∈ R

}

=

{
exp

((
0 t

t 0

))
| t ∈ R

}

=

{ ∞∑
n=0

tn ·

(
0 t

t 0

)n
| t ∈ R

}

=

{(
cosh(t) sinh(t)

sinh(t) cosh(t)

)
| t ∈ R

}
| (∗)

= G′0

For the equality (∗) we used that ( 0 1
1 0 )

2
= ( 1 0

0 1 ) and the Taylor series expansion

of cosh and sinh around the point 0 ∈ R. Since G′0 is a one-parameter group, it

is connected.

Therefore G0 is the smallest connected subgroup of GL(2,H) that contains the

connected Lie subgroups SU(2)×SU(2) and G′0 and hence the lemma is shown. �

Corollary 2.1.11.

The subgroup π`(G0) of the conformal group π`(GL(2,H)) preserves the unit

sphere S3
1 the unit ball B̊4

1 and its complement Ĥ \ B̊4
1 .
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Proof:

Since G0 is by definition a subgroup of G, lemma 2.1.8 directly implies that

π`(G0) preserves S3
1 .

Now consider any
(
A 0
0 B

)
∈ SU(2)× SU(2). Then we get

π`

(
A 0

0 B

)
.0 = πr

(
A 0

0 B

)
.0

= A · 0 ·B = 0.

Since π`
((

A 0
0 B

))
is a homeomorphism and 0 ∈ B̊4

1 we have shown that π`(SU(2)×
SU(2)) preserves B̊4

1 .

Analogously we get for every t ∈ R:

π`

(
cosh(t) sinh(t)

sinh(t) cosh(t)

)
.0 = πr

(
cosh(t) sinh(t)

sinh(t) cosh(t)

)
.0

= (cosh(t)− sinh(t) · 0)−1 · (− sinh(t) + cosh(t) · 0)

= − sinh(t)

cosh(t)

= − tanh(t).

But we know that |tanh(t)| < 1 for every t ∈ R and thus (− tanh(t)) ∈ B̊4
1 for all

t ∈ R. By the same argument as for SU(2)×SU(2) the one-parameter subgroup{(
cosh(t) sinh(t)
sinh(t) cosh(t)

)
| t ∈ R

}
preserves B̊4

1 .

To finish the proof we now invoke that by lemma 2.1.10 G0 is generated by the

two Lie groups just considered and that π` is a group homomorphism. �

Next we will recall some basic notions of representation theory.

Definition 2.1.12 (Representation Theory)

Let V be an arbitrary complex vector space and H a group.

1. We denote by Aut(V ) the space of linear automorphisms of V . This space

is endowed with the structure of a group by compositon of maps.

2. A representation of H on V is a group homomorphism

ρ : H → Aut(V ).

3. Let ρ be a representation of H on V . Then we call V simple as represen-

tation of H via ρ if and only if there is no linear subspace W of V such

that

∀h ∈ H : ∀w ∈W : ρ(h).w ∈W.
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4. Let ρ be a representation of H on V and L : V → V a linear map. Then

we call L equivariant with respect to ρ if and only if

∀h ∈ H : ∀ v ∈ V : ρ(h).L(v) = L(ρ(h).v).

Now we define an action of G0 on the space Ĥ, defined in definition 2.1.2,

that is induced by the action of G0 on Ĥ via conformal transformation. The

well-definedness of the map we are about to define will be shown as part of the

next two propositions.

Definition 2.1.13

For ϕ ∈ Ĥ and M ∈ G0 with M−1 =
(
A B
C D

)
∈ G0 we define

π0
` (g) : Ĥ −→ Ĥ

ϕ 7−→
[
X 7→ 1

N(CX +D)
· ϕ(π`(g).X)

]

Lemma 2.1.14.

Let g ∈ GL(2,H) with g−1 :=

(
A B

C D

)
and with this notation

F : GL(2,H)×B4
1 → R≥0, (g,X) 7→ N(CX +D).

Then we have for all g, g′ ∈ G and X ∈ B4
1 :

F (g · g′, X) = F (g,X) · F (g′, π`(g).X).

Furthermore we have for all g ∈ G0 and X ∈ B4
1 :

F (g,X) 6= 0.

Proof:

Let first g, g′ ∈ G0 with g−1 =
(
A B
C D

)
and (g′)−1 =

(
A′ B′

C′ D′

)
. Then we have

(g · g′)−1 = (g′)−1 · g−1 =

(
A′A+B′C A′B +B′D

C ′A+D′C C ′B +D′D

)

and thus we get for any X ∈ B4
1 :

F (g · g′, X) = N((C ′A+D′C)X + (C ′B +D′D)).
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On the other hand we also get for any X ∈ B4
1 :

F (g,X) · F (g′, π`(g).X) = N(CX +D) ·N(C ′ · π`(g).X +D′)

= N(CX +D) ·N(C ′(AX +B)(CX +D)−1 +D′)

= N(C ′(AX +B)(CX +D)−1 +D′) ·N(CX +D)

= N(C ′(AX +B) +D′(CX +D))

= N((C ′A+D′C)X + (C ′B +D′D))

This shows the first part of the lemma.

For the second part we note that by lemma 2.1.10 the group G0 is generated by

its subgroups G′0 and SU(2)× SU(2). Thus we can show the claim by induction

over products of elements of G′0 and SU(2) × SU(2). First we note that for

e := ( 1 0
0 1 ) ∈ G0 and for any X ∈ B4

1 we get:

F (e,X) = N(1) = 1.

Now we consider a g ∈ G0 with (g)−1 =
(
A B
C D

)
such that F (g,X) 6= 0 for all

X ∈ B4
1 , i.e.

∀X ∈ B1
4 : CX +D 6= 0 (∗).

Now we consider an arbitrary g′ ∈ SU(2)×SU(2). Then there are A′, D′ ∈ H with

|A| = |B| = 1 such that g′ =

(
A′ 0

0 D′

)
and therefore (g′)−1 =

(
(A′)−1 0

0 (D′)−1

)
.

Using this we get for any X ∈ B1
4 :

F (g · g′, X) = N((D′)−1CX +D′
−1
D)

=
N(CX +D)

N(D)

= N(CX +D).

Thus F (g · g′, X) = 0 if and only if CX +D = 0. This is not possible because of

(∗) and therefore

∀X ∈ B4
1 : f(g · g′, X) 6= 0.

Now let g ∈ G0 be given as before and consider an arbitrary g′ ∈ G′0. Then there is

a t ∈ R such that g′ =
(

cosh(t) sinh(t)
sinh(t) cosh(t)

)
and therefore (g′)−1 =

(
cosh(t) − sinh(t)
− sinh(t) cosh(t)

)
.

Now we get for any X ∈ B1
4 :

F (g · g′, X) = F (g,X) · F (g′, π`(g).X) (∗∗)

We know from (∗), that F (g,X) 6= 0 for all X ∈ B1
4 . Furthermore we know from

lemma 2.1.8 that for X ∈ B1
4 we also have π`(g).X ∈ B1

4 . Now we calculate for

arbitrary X ∈ B1
4 :

F (g′, X) = N(− sinh(t) ·X + cosh(t)).
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This term is zero if and only if sinh(t) 6= 0 andX = 1
tanh(t) . But since |tanh(t)| < 1

for any t ∈ R we have that X = 1
tanh(t) /∈ B

4
1 for any t ∈ R. This shows that

∀X ∈ B4
1 : F (g′, X) 6= 0.

Inserting this into (∗∗) we finally get:

∀X ∈ B4
1 : F (g · g′, X) 6= 0.

Since every element of G0 can be written as product of elements of SU(2)×SU(2)

and G′0, we have thus shown by induction that

∀ g ∈ G0 : ∀X ∈ B4
1 : F (g,X) 6= 0.

�

Lemma 2.1.15. (Ĥ as representation of G0)

The map

π0
` : G0 −→ Aut(Ĥ)

g 7−→ π0
` (g)

is a representation of G0 on the vector space Ĥ.

Proof:

We have to show that for every g ∈ G0 we have π0
` (g) ∈ Aut(Ĥ) and that π0

` (g)

is a group homomorphism. First we note that for X ∈ B4
0 we have by lemma

2.1.8 that also π`(g).X ∈ B4
0 , which implies that for every f ∈ Map(B4

0 ,C) we

also have that f ◦ π`(g) ∈ Map(B4
0 ,C).

Now we show that for ϕ ∈ Ĥ the map π0
` (g).ϕ does not have any singularity in

B4
0 . With the notation of lemma 2.1.14 we have for any X ∈ B4

0 :

π0
` (g).ϕ(X) =

1

F (g,X)
· ϕ(π`(g).X).

Since by lemma 2.1.14 for any g ∈ G0 and X ∈ B4
1 we have F (g,X) 6= 0, it is thus

clear, that π0
` (g).ϕ is defined on B4

1 for all g ∈ G0 and all ϕ ∈ Ĥ. We see now that

π0
` is a well-defined map from G0 to the space End(Ĥ) of linear endomorphisms

of Ĥ.

Now it remains to be shown that π0
` is a group homomorphism. By invoking
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lemma 2.1.14 we see that for any two g, g′ ∈ G0 and for ϕ ∈ Ĥ, X ∈ B4
1 :

π0
` (gg

′).ϕ(X) =
1

F (gg′, X)
· ϕ(π`(gg

′).X)

=
1

F (g,X)
· 1

F (g′, π`(g).X)
· ϕ(π`(g

′) ◦ π`(g).X)

=
1

F (g′, π`(g).X)
· 1

F (g,X)
· ϕ(π`(g

′) ◦ π`(g).X)

= π0
` (g
′).

[
1

F (g,X)
· ϕ(π`(g).X)

]
= π0

` (g
′) ◦ π0

` (g).ϕ(X).

This shows that π0
` is a group homomorphism and therefore its image is contained

in Aut(Ĥ). This finishes the proof. �

The next result we want to obtain is that Harm is equivariant with respect to

the action of G0 on Ĥ we just defined. The idea of the proof for this proposition

given in the paper [3] is to check equivariance with respect to the actions of the

Lie subgroups SU(2)×SU(2) ⊆ G0 and G′0 ⊆ G0 as given in lemma 2.1.10. This

suffices since by the same lemma these two groups generate G0. The equivariance

of Harm with respect to the SU(2)×SU(2)-action on Ĥ can be calculated directly,

but for the proof of the equivariance of Harm with respect to the G′0-action on Ĥ
we consider a corresponding action of the Lie algebra Lie(G0) on Ĥ and deduce

from the equivariance of this Lie algebra action the equivariance of the original

Lie group action. To make this last step precise we need methods from infinite-

dimensional representation theory of Lie groups and Lie algebras, which I am

not going to present here. For this reason we just assume the result without any

proof.

Assumption 2.1.16. (Equivariance of Harm)

The map Harm is equivariant with respect to the π0
` -action of G0 on Ĥ.

The proof of the Poisson formula via representation theory will rely on Schur’s

Lemma, which we will recall now:

Lemma 2.1.17. (Schur)

Let H be a group, V a complex vector space and

ρ : H → Aut(V )

a representation of H on V such that V is simple as representation of H. Then

every linear map L : V → V that is equivariant with respect to ρ is of the form

µz : V → V, v 7→ z · v

for a z ∈ C.
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Proof:

The Proof of this lemma is given in [2, Theorem 1.10.(ii)]. �

The next result we are going to state is the simplicity of Ĥ as a representation

of the non-compact Lie group G0. In [3] it this is simply stated as true and this

statement is significant, since we are about to use Schur’s Lemma to prove that

Harm is just the identity map on Ĥ, but I was not able to prove the result in

the following paragraph. For this reason we will simply assume it as true at this

point in order to follow the rest of the argument. Of course we note that because

of the lack of proof for the assumptions 2.1.16 and 2.1.18 our argument for the

validity of theorem 2.1.4 in this thesis is not a complete proof.

Assumption 2.1.18. (Simplicity of Ĥ)

The space Ĥ, viewed as a representation of G0 via π0
` is simple.

Now we are ready to follow the argument for a version of the Poisson formula

on the unit ball.

Proposition 2.1.19. (Poisson formula on S1
3)

The map Harm is equal to the identity on Ĥ, i.e. for all Y ∈ B̊4
1 :

ϕ(Y ) =
1

2π2
·
∫
S3
1

1−N(Y )

N(X − Y )2
· ϕ(X) dS(X)

Proof:

As stated in assumption 2.1.18, we assume that Ĥ is irreducible viewed as a

representation of G0 via π0
` . Furthermore we assume by assumption 2.1.16 that

the linear map Harm : Ĥ → Ĥ is equivariant with respect to π0
` . Since Ĥ is a

complex vector space we can apply lemma 2.1.17 and thus there exists a z ∈ C
such that

∀ϕ ∈ Ĥ : Harm(ϕ) = z · ϕ.

But we can see that z = 1, since we defined Harm in a way that for every X ∈ S3
1

we have

∀ϕ ∈ Ĥ : Harm(ϕ)(X) = ϕ(X).

�

Now we are going to prove that the shifted degree operator is a injective

endomorphism of Ĥ.
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Lemma 2.1.20. (Injectivity of the Degree operator)

The map

d̃eg : Ĥ → Ĥ, ϕ 7→ d̃egϕ

is well-defined, C-linear and injective.

Proof:

We know from remark 2.1.3 that every element of Ĥ is real-analytic. This implies

that linear combinations of its partial derivatives are also real-analytic and thus

continuous. Now we just have to check that for a ϕ ∈ Ĥ the map d̃egϕ is harmonic

on B̊4
1 . For this we calculate for j ∈ {0, 1, 2, 3} and X =

3∑
n=0

xnen ∈ B̊4
1 :

∂j∂j d̃egϕ(X) = ∂j∂jϕ(X) + ∂j∂j

(
3∑

n=0

xn∂nϕ(X)

)
= ∂j∂jϕ(X) + ∂j∂j(xj∂jϕ(X)) +

∑
n∈{0,1,2,3}\{j}

xn · ∂j∂j∂nϕ(X)

= ∂j∂jϕ(X) + ∂j(∂jϕ(X) + xj∂j∂jϕ(X))

+
∑

n∈{0,1,2,3}\{j}

xn · ∂j∂j∂nϕ(X)

= ∂j∂jϕ(X) + ∂j∂jϕ(X) + ∂j∂jϕ(X) + xj · ∂j∂j∂jϕ(X)

+
∑

n∈{0,1,2,3}\{j}

xn · ∂j∂j∂nϕ(X)

= 3 · ∂j∂jϕ(X) + xj · ∂j∂j∂jϕ(X) +
∑

n∈{0,1,2,3}\{j}

xn · ∂n∂j∂jϕ(X)

= 3 · ∂j∂jϕ(X) +
3∑

n=1

xn · ∂n∂j∂jϕ(X)

Therefore we get:

� d̃egϕ(X) = 3 ·�ϕ(X) +
3∑

n=0

xn · ∂n�ϕ(X) = 0

Therefore d̃eg is well-defined. From the linearity of the involved differential oper-

ators we can also readily see that d̃eg is C-linear. To show the injectivity of d̃eg

we characterize its kernel. To do this we consider solutions ϕ ∈ Ĥ of the partial

differential equation

∀X ∈ B̊4
1 : d̃egϕ(X) = 0

⇔ ∀X ∈ B̊4
1 : ϕ(X) = −

3∑
n=0

xn∂nϕ(X). (∗)
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Now we want to give a general form for solutions of this partial differential equa-

tion. For this we first consider xj ∈ (−1, 1) ⊂ R and get by equation (∗) for fixed

j ∈ {0, 1, 2, 3}:

∀xj ∈ (−1, 1) : ϕ(xjej) = −xj∂jϕ(xjej).

We know that a simultaneous solution of these equations for all j ∈ {0, 1, 2, 3} is

given by a function of the form

ϕ(X) = c0 · exp(−x0) + c1 · exp(−x1) + c2 · exp(−x2) + c3 · exp(−x3) + d

with c0, c1, c2, c3, d ∈ C. Therefore every solution of the partial differential equa-

tion (∗) has to be of this form. But now we see that:

�ϕ(x0e0 + x1e1) = 0

⇔ c0 = −c1

Analogous arguments show that c0 = −c1 and c1 = −c2. But this implies that

c0 = 0. Proceeding in this way, we get that c0 = c1 = c2 = c3 = 0. Furthermore

we see that the equality

∀X ∈ B̊4
1 : ϕ(X) = −

3∑
n=0

xn∂nϕ(X)

already implies that ϕ(0) = 0 and thus we get that for all ϕ ∈ Ĥ:

d̃egϕ = 0 ⇔ ϕ = 0

and this finishes the proof for injectivity of d̃eg. �

Now we are going to complete the argument for theorem 2.1.4:

Proof of Theorem 2.1.4:

We proof the equalities in the theorem separately.

First equality:

For fixed R ∈ R>0 we define a function

ϕ′ : B4
1 → C, X 7→ ϕ(R ·X).

By the chain rule we can deduce that this function is harmonic on B̊4
1 , because ϕ

is harmonic on B̊4
R. Furthermore ϕ is continuous as a composition of continuous

maps. This implies that ϕ′ ∈ Ĥ and thus we can apply proposition 2.1.19 to get
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the following equality for all Y ′ ∈ B̊4
1 :

ϕ(R · Y ′) = ϕ′(Y ′)

=
1

2π2
·
∫
S3
1

1−N(Y ′)

N(X ′ − Y ′)2
· ϕ′(X ′) dS(X ′)

=
1

2π2
·
∫
S3
1

1−N(Y ′)

N(X ′ − Y ′)2
· ϕ(R ·X ′) dS(X ′)

=
1

2π2
·
∫
S3
1

1−N(Y ′)

N
(
X
R − Y ′

)2 · ϕ(X)

R3
dS(X)

Here we used the transformation theorem to make the substitution X ′ = X
R .

From this we can see the following equality for all Y ∈ B̊4
1 :

ϕ(Y ) =
1

2π2
·
∫
S3
1

1−N
(
Y
R

)
N
(
X
R −

Y
R

)2 · ϕ(X)

R3
dS(X)

=
1

2π2
·
∫
S3
1

R2 −N (Y )

N (X − Y )2 ·
ϕ(X)

R
dS(X).

Second equality:

Let Y =
3∑

n=0
ynen ∈ B̊4

R and consider the function

kY : B4
R \ {Y } −→ R

X 7−→ 1

N(X − Y )
.

Then we have for X =
3∑

n=0
xnen ∈ B4

R \ {Y } and j ∈ {0, 1, 2, 3}:

∂jkY (X) = ∂j

( 3∑
n=0

(xn − yn)2

)−1


= −1 ·

(
3∑

n=0

(xn − yn)2

)−2

· 2(xj − yj)

= − 2(xj − yj)
N(X − Y )2
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And so we get:

d̃egkY (X) = kY (X) +

3∑
j=0

xj · ∂jkY (X)

=
1

N(X − Y )
− 2 ·N(X)− 2 〈X,Y 〉

N(X − Y )2

=
N(X − Y )− 2 ·N(X) + 2 〈X,Y 〉

N(X − Y )2

=
N(X)− 2 〈X,Y 〉+N(Y )− 2 ·N(X) + 2 〈X,Y 〉

N(X − Y )2

= −N(X)−N(Y )

N(X − Y )2

In particular for X ∈ S3
R we get:

d̃egkY (X) = −R
2 −N(Y )

N(X − Y )2

This shows the second equality.

Third equality:

First we consider the linear operator Harm′ : Ĥ → Ĥ that is defined in the

following way for ϕ ∈ Ĥ and Y ∈ B̊4
1 :

Harm′ϕ(Y ) :=

∫
S3
1

1

N(X − Y )
· ϕ(X) · dS

On S3
1 we define Harm′ϕ by its continuous extension. By differentiation under

the integral we can show that Harm′ is well-defined. Now we see that for all

X,Y ∈ B̊4
0 with X 6= Y we have

d̃egkY (X) = −d̃egkX(Y ).

And with this equality and proposition 2.1.19 we get for any Y ∈ B̊4
1 :

ϕ(Y ) =
1

2π2
·
∫
S3
1

1−N(Y )

N(X − Y )2
· ϕ(X) dS(X)

= − 1

2π2
·
∫
S3
1

d̃eg kY (X) · ϕ(X) dS(X)

=
1

2π2
·
∫
S3
1

d̃eg kX(Y ) · ϕ(X) dS(X)

= d̃egY

(
1

2π2
·
∫
S3
1

1

N(X − Y )
· ϕ(X) dS(X)

)
.

This implies the equality

idĤ = Harm = d̃eg ◦Harm′.
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But from lemma 2.1.20 we know that d̃eg : Ĥ → Ĥ is injective and therefore we

see now that it is bijective and its two-sided inverse is given by Harm′. Thus we

have

Harm′ ◦ d̃eg = d̃eg ◦Harm′.

From which we get for any Y ∈ B̊4
1 :

d̃egY

(
1

2π2
·
∫
S3
1

1

N(X − Y )
· ϕ(X) dS(X)

)

= − 1

2π2
·
∫
S3
1

d̃eg kY (X) · ϕ(X) dS(X)

=
1

2π2
·
∫
S3
1

kY (X) · d̃egϕ(X) dS(X)

This nearly proves the last equality except for the fact that we have only treated

the special case for ϕ ∈ Ĥ here. By passing to functions ϕ′ ∈ Ĥ(B4
R) as defined

in the proof for the first equality, we can infer the last equality in the generality

in which it is stated in theorem 2.1.4. �

As already mentioned, we did not prove assumptions 2.1.16 and 2.1.18 which

are essential for the proof of proposition 2.1.19. But since we will need theo-

rem 2.1.4, which we deduced as a consequence of proposition 2.1.19, in the next

section, we will give a reference for its validity:

Remark 2.1.21. (Reference for the Poisson formula)

The Poisson formula in proposition 2.1.19 follows from Corollary II.1.11. in

combination with Corollary II.1.4 in the book [7].

2.2 The discrete spectrum of the Hydrogen Atom

In this section we follow section 2.9 of [3], in which the authors calculate the

discrete spectrum of the Hydrogen atom using the quaternionic Poisson formula

in order to give a physical application of quaternionic analysis. Their calculation

contains a little mistake, which we will repair in this section.

But first we will discuss the physical concepts behind the result and how we can

formalize them mathematically.

The Hydrogen atom is a quantum mechanical analogue of the classical Coloumb

system. Our main goal in this chapter is to calculate possible energy levels that

an electron in the electromagnetic potential of the Hydrogen nucleus, which we

model as a point charge, can occupy. The energy of a system is governed by its

Hamiltonian operator. In order to be able to analytically calculate the energy

levels for the Hydrogen atom, we choose to represent the quantum mechanical
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states on a space of square-integrable functions and consider a linear operator of

the following form:

Definition 2.2.1

We consider C∞(R3 \ {0},C)∩L2(R3 \ {0},C) as subspace of L2(R3 \ {0},C) and

define for arbitrary κ ∈ R>0 the linear operator

Hκ : C∞(R3 \ {0},C) ∩ L2(R3 \ {0},C) −→ C∞(R3 \ {0},C) ∩ L2(R3 \ {0},C)

ψ 7−→ Hκ.ψ,

which is for any ξ ∈ R3 \ {0} defined by

Hκ.ψ(ξ) = −1

2
∆ψ(ξ) +

κ

|ξ|
ψ(ξ),

where ∆ denotes the Laplace operator in three dimensions.

This is indeed the Hamiltonian for the Hydrogen atom, when we set the mass

of the electron to 1 and choose the fine-structure constant for κ. The discrete

spectrum of the Hydrogen atom is given by the discrete spectrum of Hκ in a

functional analytic sense, i.e. by its eigenvalues. The main theorem in this

section gives a characterization of some eigenvalues of this operator:

Theorem 2.2.2. (Discrete spectrum of the hydrogen atom)

Let κ ∈ R>0 and let σd(Hκ) denote the set of eigenvalues of Hκ. Then we have

that for all k ∈ N
κ2

2(k + 1)2
∈ σd(Hκ).

In fact it is true that σd(Hκ) =
{

κ2

2(k+1)2
| k ∈ N

}
for all κ ∈ R>0 as is shown

for example in [8, Section 5.1], but we will only show the weaker statement of

theorem 2.2.2. The idea of the proof will be to use tools of quaternionic analysis

to explicitly calculate eigenfunctions for Hκ. The main tool will be the Poisson

formula we encountered in section 2.1.

To be able to follow the argument given in [3] for the validity of theorem 2.2.2,

we have to prove some apparently unrelated lemmas. We begin with the defini-

tion of a class of conformal transformations, the Cayley transformations, which

interrelate the unit sphere in H and the space of quaternions with a vanishing real

part. Before we define the Cayley transformations itself, we first define geometric

structures that will play a significant role in the following.

Definition 2.2.3 (Upper half-spaces)

Let t ∈ R≥0 then we define

H4
t := {X ∈ H | <(X) ≥ t}
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Remarks 2.2.4. 1. From the definition above it is evident that for t ∈ R≥0:

∂H4
t = {X ∈ H | <(X) = t}

and

H̊4
t = {X ∈ H | <(X) > t}.

2. Consider the map

λ : ∂H4
t → R3, (te0 + x1e1 + x2e2 + x3e3) 7→

(
x1
x2
x3

)
.

Then the set {λ} is an atlas that endows ∂H4
t with the structure of a man-

ifold of class C∞. We will refer to λ as the standard chart for ∂H4
t . Fur-

thermore we see that ∂H4
t is a hyper-plane.

Now we are ready do define the Cayley transformation and to state and prove

the geometric properties we are going to use.

Definition 2.2.5 (Cayley transformations)

Let ρ ∈ R>0 then we call the map

Cρ := π`

(
ρ ρ

−1 1

)
: Ĥ→ Ĥ

the Cayley transform with coefficient ρ.

Remark 2.2.6. (Presentation of the Cayley transformations)

Let ρ ∈ R>0. Then we have(
ρ ρ

−1 1

)−1

=
1

2ρ
·

(
1 −ρ
1 ρ

)
=

(
1
2ρ −1

2
1
2ρ

1
2

)
.

and thus we get for every X ∈ H:

Cρ(X) = π`

(
ρ ρ

−1 1

)
.X =

(
1

2ρ
X − 1

2

)
·
(

1

2ρ
X +

1

2

)−1

= (X − ρ) · (X + ρ)−1 .

On the other hand because π`
( ρ ρ
−1 1

)
and πr

( ρ ρ
−1 1

)
agree on H we also have

Cρ(X) = πr

(
ρ ρ

−1 1

)
.X = (ρ+X)−1(−ρ+X) = (X + ρ)−1 · (X − ρ)

Thus we get the following equality for all X ∈ H:

(X − ρ) · (X + ρ)−1 = (X + ρ)−1 · (X − ρ).
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This non-trivial result justifies the notation

Cρ(X) =
X − ρ
X + ρ

for X ∈ H that is used in section 2.9 of [3].

Lemma 2.2.7. (Geometric property of the Cayley transformations)

For every ρ ∈ R>0 we have

Cρ(∂H
4
0 ∪ {∞}) = S3

1

and

Cρ(H
4
0 ∪ {∞}) = B4

1 .

Proof:

From proposition 1.3.24 we know that the set Cρ(∂H
4
0 ∪ {∞}) is either a sphere

or a hyper-surface in Ĥ. Furthermore we saw in corollary 1.3.19 in chapter 1 that

a sphere or hyper-surface in H is determined by six points. Thus we consider now

the images of elements of ∂H4
0 ∪ {∞} under Cρ. For i ∈ {1, 2, 3} we have

N(Cρ(ei)) = N

[
(ei − ρ)(−ei + ρ)

N(ei + ρ)

]
=
N((1− ρ2) + 2ρe1)

N(ei + ρ)2

=
1− 2ρ2 + ρ4 + 4ρ2

1 + 2ρ2 + ρ4
= 1

and

N(Cρ(−ei)) = N

[
(−ei − ρ)(ei + ρ)

N(−ei + ρ)

]
=
N((1− ρ2)− 2ρe1)

N(−ei + ρ)2

=
1− 2ρ2 + ρ4 + 4ρ2

1 + 2ρ2 + ρ4
= 1.

This proves that Cρ(∂H
4
0 ∪ {∞}) = S3

1 , since S3
1 = {X ∈ H | N(X) = 1}. To

prove the second part of the lemma we first infer that because of the fact that Cρ
is a homeomorphism from Ĥ onto Ĥ we see that one of the following cases must

be true:

Cρ(H
4
0 ∪ {∞}) = B4

1 or Cρ(H
4
0 ∪ {∞}) = Ĥ \ B̊4

1 .

Now we note that for the element ρ ∈ H4
0 we have

Cρ(ρ) = 0 ∈ B4
1 .

Thus the first alternative is true and the lemma is shown. �

Next we will prove a proposition about the integrability of a class of composed

functions we are going to use:
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Lemma 2.2.8.

Let ϕ ∈ C0(B4
1 ,C), c ∈ R>0 and ρ ∈ R>0. Then the function

ψ : H4
0 −→ C

Z 7−→ 1

(N(Z) + c)2
· ϕ ◦ Cρ(Z)

is absolutely integrable and square-integrable on H4
0 .

Proof:

By lemma 2.2.7 we have

Cρ(H
4
0 ) ⊂ Cρ(H4

0 ∪ {∞}) = B4
1 .

Furthermore we know that B4
1 is compact in H and because of the continuity of

ϕ therefore there exists an M ∈ R≥0 such that |ϕ(X)| ≤ M for every X ∈ B4
1 .

In particular this implies

∀Z ∈ H4
0 : |ϕ ◦ Cρ(Z)| ≤M.

This in turn implies for all Z ∈ H4
0 :

|ψ(Z)| =
∣∣∣∣ 1

(N(Z) + c)2
· ϕ ◦ Cρ(Z)

∣∣∣∣ ≤ M

(N(Z) + c)2

and ∣∣ψ(Z)2
∣∣ = |ψ(Z)|2 ≤ M

(N(Z) + c)4
.

Now we note that the functions

χ1 : H4
0 → R>0, (N(Z) + c)−2

χ2 : H4
0 → R>0, (N(Z) + c)−4

are integrable on H4
0 and thus we have found majorizing integrable functions for

ψ and ψ2, which finishes the proof. �

To continue the argument for 2.2.2 we have to collect some results about the

Fourier transformation and the Fourier cotransformation. First we will define the

following two notions:
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Definition 2.2.9 (Fourier)

1. Let ψ ∈ L1(Rn,C). Then we call the complex-valued function

F .ψ : Rn −→ C

ξ 7−→ 1

(2π)n
·
∫
Rn

ψ(x) · e−i〈ξ,x〉 dx

the Fourier transform of ψ.

Furthermore we call the complex-valued function

F̃ .ψ : Rn −→ C

ξ 7−→
∫
Rn

ψ(x) · ei〈ξ,x〉 dx

the Fourier cotransform of ψ.

2. We call the map

F : L1(Rn,C)→ Map(Rn,C), ψ 7→ F .ψ

the Fourier transformation.

Furthermore we call the map

F̃ : L1(Rn,C)→ Map(Rn,C), ψ 7→ F̃ .ψ

the Fourier cotransformation.

Proposition 2.2.10. (Properties of Fourier transformation and cotransformation)

1. Fourier transformation and Fourier cotransformation are linear operators.

2. There is a unique unitary extension of F |L1(Rn,C)∩L2(Rn,C) to L2(Rn,C).

We will also denote it by F .

Furthermore there is a unique unitary extension of F̃ |L1(Rn,C)∩L2(Rn,C) to

L2(Rn,C). We will also denote it by F̃ .

3. For ψ ∈ L2(Rn,C) we have for all ξ ∈ Rn:

F .ψ(ξ) = lim
R→∞

1

(2π)n

∫
BnR

ψ(x) · ei〈ξ,x〉 dx,

F̃ .ψ(ξ) = lim
R→∞

∫
BnR

ψ(x) · e−i〈ξ,x〉 dx.

Furthermore for all ψ ∈ L2(Rn,C) we have

F̃ .F .ψ = ψ = F .F̃ .ψ
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4. For ψ ∈ C2(Rn,C) ∩ L2(Rn,C) we have for every ξ ∈ Rn:

F .

 n∑
j=0

∂j∂jψ

 (ξ) = −
n∑
j=0

ξ2
j · F .ψ(ξ),

F̃ .

 n∑
j=0

∂j∂jψ

 (ξ) = −
n∑
j=0

ξ2
j · F̃ .ψ(ξ).

Proof:

1. This follows directly from the definition of F and F̃ as integral operators.

2. This is Plancherel’s Theorem as it is stated in [1, Theorem X.9.23].

3. The first part is stated in [1, Satz X.9.24] and the second part follows from

[9, Satz V.2.8] and the density of the Schwartz space in L2(R).

4. The first part is a special case of [9, Lemma V.2.11] and the second part is

proven analogously.

�

In the following we will prove a lemma about the relationship between Fourier

transformations and Fourier cotransformations that are defined for functions on

hyper-surfaces.

Lemma 2.2.11. (Inverse Fourier transformation)

Let ψ ∈ L1(H4
0 ,C) ∩ L2(H4

0 ,C) and let for t ∈ R≥0:

ψ̂t : H −→ C

ξ 7−→ 1

(2π)3
·
∫
∂H4

t

ψ(Z) · e−i〈ξ,Z〉 dx1 ∧ dx2 ∧ dx3(Z).

Then we have for all W ∈ H4
0 the equality:

ψ(W ) = lim
R→∞

∫
B4
R∩∂H

4
0

ψ̂<(W )(ξ) · ei〈ξ,=(W )〉 dx1 ∧ dx2 ∧ dx3(ξ).

Proof:

First we note that for every W = W0e0 +W1e1 +W2e2 +W3e3 ∈ H4
0 we have

lim
R→∞

∫
B4
R∩∂H

4
0

ψ̂<(W )(ξ) · ei〈ξ,=(W )〉 dx1 ∧ dx2 ∧ dx3(ξ)

= lim
R→∞

∫
B3
R

ψ̂<(W )

((
0
ξ1
ξ2
ξ3

))
· ei(ξ1W1+ξ2W2+ξ3W3)d(ξ1, ξ2, ξ3)



74 CHAPTER 2. APPLICATIONS OF QUATERNIONIC ANALYSIS

Furthermore we have for every ξ =

(
0
ξ1
ξ2
ξ3

)
∈ H4

0:

ψ̂<(W )

((
0
ξ1
ξ2
ξ3

))
=

1

(2π)3
·
∫
∂H4
<(W )

ψ(Z) · e−i〈ξ,Z〉 dx1 ∧ dx2 ∧ dx3(Z)

=
1

(2π)3
·
∫
R3

ψ

((
<(W )
Z1
Z2
Z3

))
· e−i(ξ1Z1+ξ2Z2+ξ3Z3) d(Z1, Z2, Z3)

Let λ−1 : R3 → ∂H<(W ) denote the inverse of the standard chart as defined in

remark 2.2.4. Then we get form the equalities above:

lim
R→∞

∫
B4
R∩∂H

4
0

ψ̂<(W )(ξ) · ei〈ξ,=(W )〉 dx1 ∧ dx2 ∧ dx3(ξ)

= lim
R→∞

∫
B3
R

F̃ .ψ ◦ λ−1

((
ξ1
ξ2
ξ3

))
· ei(ξ1W1+ξ2W2+ξ3W3)d(ξ1, ξ2, ξ3)

= F .F̃ .ψ ◦ λ−1

((
W1
W2
W3

))
= F .F̃ .ψ (<(W )e0 +W1e2 +W2e2 +W3e3)

= ψ(W )

Here we used the forms of F and F̃ for R3 as given in proposition 2.2.10. In

the last step we used the fact that the Fourier transformation is inverse to the

Fourier cotransformation for an element of L1(H,C) ∩ L2(H,C). �

Before we can start the actual proof of theorem 2.2.2 we need to show one

last result which relies on two definitions we will give now:

Definition 2.2.12 (Homogeneous functions)

For n ∈ N we call a function ϕ : H → C homogeneous of degree n if and only if

for every r ∈ R and X ∈ H we have

ϕ(r ·X) = rn · ϕ(X).

Lemma 2.2.13. (Existence and Properties of homogeneous functions)

1. For every n ∈ N there exist a function ϕ ∈ C2(H,C) that is harmonic and

homogeneous of degree n.

2. For a function ϕ ∈ C1(H,C) that is homogeneous of degree n we have

d̃egϕ = (n+ 1)ϕ
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Proof:

1. Consider the function

ϕ : H −→ C
n∑
j=0

xjej 7−→ <((x0 + x1 · i)n).

Now we use that we know from complex analysis that the real part of every

holomorphic function is harmonic in 2 dimensions and that in particular

complex polynomials are holomorphic. Since for the function ϕ the sec-

ond differentials ∂2∂2ϕ and ∂3∂3ϕ vanish this proves that the function is

also harmonic as a function on H. Furthermore we see directly from the

definition that ϕ is harmonic of degree n.

2. By the definition of homogeneous functions we have for all X ∈ H and

c ∈ R:

ϕ(c ·X) = cn · ϕ(X). (∗)

Differentiating the right hand side of (∗) by c we get

d

dc
(cn · ϕ(X)) |c=1= n · ϕ(X).

Differentiating the left hand side of (∗) by c we get by considering ϕ as a

complex-valued map on R4:

d

dc
ϕ(c ·X) |c=1=

3∑
j=0

xj · ∂jϕ(X).

Thus by differentiating both sides of (∗) we get the equality

3∑
j=0

xj · ∂jϕ(X) = n · ϕ(X).

Using this we now calculate:

d̃egϕ(X) = ϕ(X) +
3∑
j=0

xj · ∂jϕ(X)

= ϕ(X) + n · ϕ(X)

= (n+ 1) · ϕ(X).
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�

Now we give three last calculations regarding quaternions and functions on

the quaternions. The first lemma we are going to present now looks slightly

different from the result presented in [3, Lemma 40]. The reason for this is that

the authors of [3] made a minor mistake in their statement, which we will present

in the correct form here.

Lemma 2.2.14. (Cayley transformation and squared norm)

Let Z ∈ ∂H4
0 and W ∈ H̊4

0 . Then the following equality holds for every ρ ∈ R>0:

N(Cρ(Z)− Cρ(W )) =
4ρ2 ·N(Z −W )

(N(Z) + ρ2)(N(W ) + 2ρ · <(W ) + ρ2)
.

Proof:

We calculate (for the order of multiplication compare remark 2.2.6):

N(Cρ(Z)− Cρ(W )) = N
(
(Z + ρ)−1 · (Z − ρ)− (W − ρ)(W + ρ)−1

)
= N((Z + ρ)−1 · ((Z − ρ)(W + ρ)

− (Z + ρ)(W − ρ)) · (W + ρ)−1)

=
N(ZW − ρW + ρZ − ρ2 − ZW − ρW + ρZ + ρ2)

N(Z + ρ)N(W + ρ)

=
N(2ρ · (Z −W ))

N(Z + ρ)N(W + ρ)

=
4ρ2N(Z −W )

N(Z + ρ)N(W + ρ)

Now we note that

N(W + ρ) = (W + ρ)(W + ρ)+ = (W + ρ)(W+ + ρ)

= N(W ) + ρ(W +W+) + ρ2 = N(W ) + 2ρ<(W ) + ρ2.

Furthermore we get by considering the fact that <(Z) = 0:

N(Z + ρ) = N(Z) + ρ2

�

Lemma 2.2.15. (Pull-back of the surface form of S3
1 along Cayley transformations)

Let ρ ∈ R>0 and let dS denote the surface form of S3
1 ⊂ H with outward orien-

tation. Then we have for Z ∈ H4
0 :

(Cρ)
∗(dS)(Z) = − 8ρ3

(N(Z) + ρ2)3
dx1 ∧ dx2 ∧ dx3 |∂H4

0
(Z)
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Proof:

We have to explicitly calculate the pull-back of the surface form dS of S3
1 consid-

ered as a submanifold of H = R4 with outward orientation along Cρ. This surface

form is given as

dS = ( x0dx1 ∧ dx2 ∧ dx3

− x1dx0 ∧ dx2 ∧ dx3

+ x2dx0 ∧ dx1 ∧ dx3

− x3dx0 ∧ dx1 ∧ dx2) |S3
1
.

Since this calculation is very lengthy, we will give a Maple 13 script in appendix

A, with which one can calculate the pull-back. �

Remark 2.2.16.

We have to note that the authors of [3] only get the same result up to a minus

sign for the pull-back we just calculated. This again leads to a sign error in the

eigenvalue equation for the discrete spectrum of the Hydrogen atom in this paper.

Nevertheless an execution of the Maple script will affirm that the result we state

in this thesis is correct.

Lemma 2.2.17.

The following equality is true for every W :=
3∑
i=0

wiei ∈ H̊4
0 and ξ := ξ1e1 +

ξ2e2 + ξ3e3 ∈ ∂H4
0 \ {0}:∫

∂H4
0

ei〈ξ,Z〉

N(Z −W )
dx1 ∧ dx2 ∧ dx3(Z) = 2π2 · ei〈ξ,=(W )〉 · e

i〈ξ,<(W )〉

|ξ|
.

Proof:

First we note that the function

χ : ∂H0
4 → C, Z 7→ 1

N(Z −W )

is integrable on H0
4 as can be checked by power counting and thus the integral on

the right hand side of the proposed equality is well-defined. Pulling the integral

back along the standard chart for ∂H0
4 we get∫

∂H4
0

ei〈ξ,Z〉

N(Z −W )
dx1 ∧ dx2 ∧ dx3(Z) =

∫
R3

ei(ξ1z1+ξ2z2+ξ3z3)

<(W )2 +
3∑
j=1

(zj − wj)2

d(z1, z2, z3).
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Next we see that the map

T : R3 → R3,

z1

z2

z3

 7→
z1 + w1

z2 + w2

z3 + w3



is a diffeomorphism of class C∞ and thus by invoking the transformation theorem

we get

∫
∂H4

0

ei〈ξ,Z〉

N(Z −W )
dx1 ∧ dx2 ∧ dx3(Z)

=

∫
R3

ei(ξ1(z1+w1)+ξ2(z2+w2)+ξ3(z3+w3))

<(W )2 +
3∑
j=1

z2
j

d(z1, z2, z3)

= ei〈ξ,=(W )〉 ·
∫
R3

ei(ξ1z1+ξ2z2+ξ3z3)

<(W )2 +
3∑
j=1

z2
j

d(z1, z2, z3).

We see that the last integral in the equality above is invariant under rotations of

ξ in R3 and thus we get:

∫
R3

ei(ξ1z1+ξ2z2+ξ3z3)

<(W )2 +
3∑
j=1

z2
j

d(z1, z2, z3)

=

∫
R3

ei|ξ|·z1

<(W )2 +
3∑
j=1

z2
j

d(z1, z2, z3)
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Now we set α(z2, z3) :=
√
<(W )2 + z2

2 + z2
3 as an abbreviation and calculate:∫

R3

ei|ξ|·z1

<(W )2 +
3∑
j=1

z2
j

d(z1, z2, z3)

=

∫
R

∫
R

∫
R

ei|ξ|·z1

z2
1 + α(z2, z3)2

dz1 dz2 dz3 | (1)

=

∫
R

∫
R

π

α(z2, z3)
e−|ξ|α(z2,z3) dz2 dz3

=

∫
R

∫
R

π√
<(W )2 + z2

2 + z2
3

e−|ξ|·
√
<(W )2+z22+z23 dz2 dz3

=

∫
(0,∞)

∫
(0,2π)

π√
<(W )2 + r2

e−|ξ|·
√
<(W )2+r2 · r dφ dr | (2)

= 2π2

∫
(0,∞)

e−|ξ|·
√
<(W )2+r2√

<(W )2 + r2
· r dr

= 2π2

∫
(<(W ),∞)

e−|ξ|s ds | (3)

= 2π2 · e
−|ξ|·<(W )

|ξ|

For the equality (1) we used Fubini’s theorem, in (2) we made a transformation

into polar coordinates in R2 and in (3) we made the substitution s :=
√
<(W )2 + r2.

In summary we get:∫
∂H4

0

ei〈ξ,Z〉

N(Z −W )
dx1 ∧ dx2 ∧ dx3(Z)

= ei〈ξ,=(W )〉 ·
∫
R3

ei(ξ1z1+ξ2z2+ξ3z3)

<(W )2 +
3∑
j=1

z2
j

d(z1, z2, z3)

= 2π2 · ei〈ξ,=(W )〉 · e
−|ξ|·<(W )

|ξ|

�

Now we have collected all the results we need to follow the main proof of this

section.

Proof of Theorem 2.2.2:

For k ∈ N we consider a function ϕ ∈ C2(H,C) that is harmonic and homogeneous

of degree k. Its existence is ensured by lemma 2.2.13. Then also by lemma 2.2.13

we have the following equality for every X ∈ H:

(d̃egϕ)(X) = (k + 1)ϕ(X).
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By the Poisson formula from theorem 2.1.4 we therefore get for every Y ∈ B̊4
1 :

ϕ(Y ) =
k + 1

2π2

∫
S3
1

ϕ(X)

N(X − Y )
dS(X).

Now we consider an arbitrary ρ ∈ R≥0 and by invoking the second part of lemma

2.2.7 we get for every W ∈ H̊4
1 :

ϕ ◦ Cρ(W ) =
k + 1

2π2

∫
S3
1

ϕ(X)

N(X − Cρ(W ))
dS(X).

Now we use the first part of lemma 2.2.7, the fact that Cayley transformations

are conformal transformations and therefore diffeomorphisms of class C∞ and the

fact that the set Cρ({∞}) = {1} is a null set in S3
1 to invoke the transforma-

tion theorem. With the pull-back of dS we have calculated in lemma 2.2.15 we

therefore get for every W ∈ H̊4
1 :

ϕ◦Cρ(W ) = −k + 1

2π2

∫
∂H4

0

ϕ ◦ Cρ(Z)

N(Cρ(Z)− Cρ(W ))
· 8ρ3

(N(Z) + ρ2)3
dx1∧dx2∧dx3(Z)

Now we take into account lemma 2.2.14 in order to simplify this equation to

ϕ ◦ Cρ(W )

= −(k + 1)ρ

π2

∫
∂H4

0

ϕ ◦ Cρ(Z) · N(W ) + ρ2

(N(Z) + ρ2)2
· 1

N(Z −W )
dx1 ∧ dx2 ∧ dx3(Z). (1)

Now we introduce the auxiliary function

ψ : H4
0 −→ C

Z 7−→ 1

(N(Z) + 2ρ<(Z) + ρ2)2
· ϕ ◦ Cρ(Z).

Then we get for every W ∈ H̊4
0 by inserting ψ into equation (1):

(N(W ) + 2ρ<(W ) + ρ2) · ψ(W )

= −(k + 1)ρ

π2

∫
∂H4

0

ψ(Z)

N(Z −W )
dx1 ∧ dx2 ∧ dx3(Z). (2)

At this point we note that ϕ ∈ C2(H,C) is a continuous function and therefore

by lemma 2.2.8 we can deduce that ψ ∈ L1(H4
0 ,C) ∩ L2(H4

0 ,C). From lemma

2.2.11 we see that if we define functions ψ̂t for t ∈ R≥0 as in this lemma we get

for every W ∈ H4
0 :

ψ(W ) = lim
R→∞

∫
B4
R∩∂H

4
0

ψ̂<(W )(ξ) · ei〈ξ,=(W )〉 dx1 ∧ dx2 ∧ dx3(ξ).
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We can now insert this into equation (2) and get for every W ∈ H̊4
0 :

(N(W ) + 2ρ<(W ) + ρ2) · lim
R→∞

∫
B4
R∩∂H

4
0

ψ̂<(W )(ξ) · ei〈ξ,=(W )〉 dx1 ∧ dx2 ∧ dx3(ξ)

= −(k + 1)ρ

π2
lim
R→∞

∫
B4
R∩∂H

4
0

(∫
∂H4

0

ψ̂0(ξ) · ei〈ξ,Z〉

N(Z −W )
dx1 ∧ dx2 ∧ dx3(Z)

)
dx1 ∧ dx2 ∧ dx3(ξ)

Here we invoked Fubini’s theorem to interchange the order of integration on the

right hand side. Now we can use the formula in lemma 2.2.17 to get for every

W ∈ H̊4
0 :

(N(W ) + 2ρ<(W ) + ρ2) · lim
R→∞

∫
B4
R∩∂H

4
0

ψ̂<(W )(ξ) · ei〈ξ,=(W )〉 dx1 ∧ dx2 ∧ dx3(ξ)

= −2(k + 1)ρ lim
R→∞

∫
B4
R∩∂H

4
0

ψ̂0(ξ) · ei〈ξ,=(W )〉 · e
−|ξ|·<(W )

|ξ|
dx1 ∧ dx2 ∧ dx3(ξ).

Now we pull back the two integrals along the standard chart of ∂H4
0 and identify

elements of ∂H4
0 with elements of R3, suppressing the standard chart in our

notation. Then we get for every W ∈ H̊4
0 :

(N(W ) + 2ρ<(W ) + ρ2) · lim
R→∞

∫
B3
R\{0}

ψ̂<(W )(ξ) · ei〈ξ,=(W )〉 dξ

= −2(k + 1)ρ lim
R→∞

∫
B3
R\{0}

ψ̂0(ξ) · ei〈ξ,=(W )〉 · e
−|ξ|·<(W )

|ξ|
dξ. (3)

Now we use that by the last part of proposition 2.2.10 we have for every W ∈ H̊4
0 :

(N(W ) + 2ρ<(W ) + ρ2) · lim
R→∞

∫
B3
R\{0}

ψ̂<(W )(ξ) · ei〈ξ,=(W )〉 dξ

= (<(W )2 +W 2
1 +W 2

2 +W 2
3 + 2ρ<(W ) + ρ2)F̃ .ψ̂<(W )

((
W1
W2
W3

))
= F̃ .

[
(<(W )2 + 2ρ<(W ) + ρ2)ψ − (∂2

1ψ + ∂2
2ψ + ∂2

3ψ)
]((W1

W2
W3

))
Therefore we get with (3) for every W ∈ H̊4

0 :

lim
R→∞

∫
B3
R\{0}

[
(<(W )2 + 2ρ<(W ) + ρ2) · ψ̂<(W )(ξ) + ∆ψ̂<(W )(ξ)

]
· ei〈ξ,=(W )〉 dξ

= −2(k + 1)ρ lim
R→∞

∫
B3
R\{0}

ψ̂0(ξ) · e
−|ξ|·<(W )

|ξ|
· ei〈ξ,=(W )〉 dξ.

And invoking the injectivity of the Fourier cotransformation on L2(R,C) we get

for all W ∈ H̊4
0 and all ξ ∈ R3 \ {0}:

−1

2
∆ψ̂<(W )(ξ) +

(<(W ))2 + 2ρ<(W ) + ρ2

2
ψ̂<(W )(ξ) = −(k + 1)ρ

|ξ|
· e−|ξ|·<(W ) · ψ̂0(ξ)
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Now we consider the limit <(W ) → 0 on both sides of the equation. Using

Lebesgue’s theorem of majorized convergence with the majorizing function for ψ

given in the proof of lemma 2.2.8, we get

lim
<(W )→0

ψ̂<(W ) = ψ̂0.

With an analogous argument using that ψ is of class C2 we can show that

lim
<(W )→0

∆ψ̂<(W ) = ∆ψ̂0.

This implies the equality

−1

2
∆ψ̂0(ξ) +

ρ2

2
ψ̂0(ξ) = −(k + 1)ρ

|ξ|
· ψ̂0(ξ).

Setting κ := (k + 1)ρ we get for every ξ ∈ R3 \ {0}:

−1

2
∆ψ̂0(ξ) +

κ

|ξ|
· ψ̂0(ξ) = − κ2

2(k + 1)2
· ψ̂0(ξ)

and thus κ2

2(k+1)2
∈ σd (Hκ). This finishes the argument. �
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Appendix A

Maple 13 Code

On the following two pages of this appendix we give a copy of the commented

source code and output of the maple script that was referred to in the proof of

lemma 2.2.15. It is an import of a pdf-file generated directly by Maple 13.
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(1)(1)

E4 O E4 O 

E4 O E4 O 

E4 O E4 O 

(3)(3)

(2)(2)

E4 O E4 O 

Maple 13 script for calculation of the pull-back in lemma 2.2.15

First we define the squared norm on the quaternions:

Now we include the package for differential geometry and setup the space  as frame for the 
following calculation. We will denote this frame by E4:

frame name: E4

Now we define the surface form dS on the three-dimensional unit sphere in H. Then we define a Cayley 

calculated by evaluating the Cayley transformation as defined in definition 2.2.5 on the standard basis of
H:

 :



(4)(4)

E4 O E4 O 

(3)(3)

E4 O E4 O 

2.2.15.
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veröffentlicht wird.

Hamburg, den 22. Dezember 2011

91


	Contents
	1 Quaternionic Analysis and Conformal Transformations
	1.1 Basic Notations and Results
	1.2 Basic Quaternionic Analysis
	1.3 Quaternionic projective spaces and conformal transformations

	2 Applications of Quaternionic Analysis
	2.1 The quaternionic Poisson formula
	2.2 The discrete spectrum of the Hydrogen Atom

	Bibliography
	A Maple 13 Code
	B Eigenständigkeitserklärung

