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SOME DIFFERENTIAL OPERATORS IN THE THEORY OF JACOBI-FORMS

by Rolf Berndt

This is the report of someone who, coming from arithmetic
and function theory, got lost in representation theory
while trying to consider the joint roof for elliptic mo-
dular forms, MaaR wave-forms, elliptic functions, Jacobi-
forms and theta-functions. Thus, the following is not yet
a summary of results but rather of some observations and
questions to the experts, hoping they find the function-
theoretic background interesting enough to look again at
a - from a general point of view - very simple example,
and take these notes as a base for further discussions.

All those functions mentioned above are automorphic forms

or functions living on
X =TCxH (H = {0 €C, Im w > 0O})

This space is a homogeneous space for the semi-direct
product
R? 5o SL, (IR)

But as becomes clear for instance in Igusa [I] or Eichler-
Zagier [E+Z] the right group to look at is the semidirect
product of a three-dimensional Heisenberg group (HIR) with
SL2(EQ . This group has been introduced by several authors,
but there still seems to be no generally accepted name.

In Igusés notation it is denoted by B(RR). Kirillov([Kil]p.287)
uses St(1,IR), and this notation will be followed here.

The general method of representation theory, so very success-
ful for the study of automorphic forms for semisimple or
reductive groups, tells to look for the irreducible unitary
representations of the group and try to find appropriate
models living on the group or the space X. And these models
can be characterized as eigenfunctions of differential opera-
tors (the Laplace Operator in simple cases). Now the problem



here is: While the types of irreducible unitary represen-
tations of St(1,IR) are known by Mackey's method (and will

be reviewed here in a first part), the space X is not
symmetric, not even weakly symmetric but only a generalized
symmetric space in the sense of Kowalski [Kol]. Conse-
quently the invariant differential operators on X do not
form a commutative ring. But by Helgason [He1],[He2] they
may be characteri ed from within the Lie algebra St (1,IR)

of the group St(1,R) and several features from the theory

of SL(2,I1R) extend to this case: There.is a natural
Laplacian, which breaks up into two nice (noncommuting)
invariant operators. One can try te use these operators to
classify the functions mentioned at the beginning. This will
be done in the second part of these notes. One further obser-
vation to be made here still mystifies the author but must
have a very simple explanation: there are joint eigenfunctions
for those two differential operators of second order (in
their action on a certain bundle), which are just the expo-
nentials of the potential of the Kdhler-metric generating

the Laplacian.

As an application of the formalism developed here, there
will be given an explanation for the fact that Jacobi's
theta function satisfies the heat equation.

I owe much to the inspiring atmosphere of the IHES and to
hints by so many people at the IHES, in Paris and in Hamburg,
and it is better that I don't mention any names here and
instead give my thanks globally.



1. Notations
The following groups will be used:

i) The semi-direct product

G' :=TR%3 SL(2,R)

with the multiplication law(for Asu,A',u'€ R;M,M' € SL(2,R))
(A, sM) (A w5 MY)=( (A", 1" )+ (A, u)M' ;MM"),

which can be understood by the identification

G' — GL(3,R)
1T X q A T
(A,u,M) —— O a b ’M=(cd)
0 ¢ d

ii) The Heisenberg Group H(R) with the multiplication
law (for A,u,n,A' ,u’ ,x' €R)
Apuin) (A"u" 5" )= (2" ut+p ' s x+n ' + det (;. ﬁ, ) )

(Here and in the following the notation of Eichler and
Zagier ([E+z]) is adopted, other authors use a factor one
half in the third term of the multiplication law).

iii) The semi-direct product

St(1,R) = HR) » SL(2,R)
with the multiplication law

(*)[A,u,u;M][Avul,nl;Ml]=[(Al'ul)+(>\,u)M,u+n'+det(§;3ﬁ),'})4'); MM' ]

which also can be understood as a multiplication law of a
subgroup of GL(4,R)(e.g.[E+Z] p.71).

iv) The Jacobi group

67 := 5t'(1,R) :=(H(R) /Z 1w SL(2,R)

= ZIRZ. s1 » SL(2,R)

whose multiplication law can be obtained easily from (%) by

the change of variable - e2niK

for the 1-sphere S1.



As usual the following groups will be locked at as sub-

groups of the above mentioned groups (when possible):

N = {n(x)=(; }1{)-; x €ER}, T = {t(a)=(g 2_1 ),a € R,a > 0}
1 21
2 2
B = {b'(x,y):=(y Xy ),x € R;y €E R,y > 0} =NT
0O y-i
- _ cos 9 sin §
K = 50(2) = {r(s) (-sin % cos %)}
k= s xs0(2) = {(g,r(®)}

K and KJ are maximal compact subgroups of G' resp. G

with
cT/x9 = G'/K

J

X.

In the three cases i,iii and iv the groups are semi-direct
products of a well known normal subgroup TL  with

SL(2,R) =: Go‘ This allows a ccmplete classifacation of their
equivalence classes of irreducible unitary representations by
"Mackey's method“[Ma1,Ma2], which has been applied especiallX
by Duflo [Dul] to get a parametrization of the unitary dual G
for an arbitrary algebraic group G (see too the thesis of
sliman [SL]). Though in principle well known, this parametri-

gation will be developed in the next paragraph.

Representation means here a continuous representation in some

Hilbertspace

2. Mackey's method for ZR2>0 SL(2,R),St(1,R) and GJ.
The case of G' =ZR2>o SL(2,R) is the simplest, because here
the normal subgroup % = IR2 is abelian.

The unitary dual ﬁ. of Rz is again ZR2 and G, = SL(2,R)
operates by

A t -1t
T35 x=x (P,Q) — M = XM ( 'Q)(P,Q €ER,M € G_)



SL(2,R) operates Egansitively on ]Rz\(0,0), so there are

4
two GO-Orbits i‘tn n, represented by X, = X (0,0) cacl
say by x; = X (1’0). The isotropy subgroups in G, of these
characters are
GOXO = SL(2,R) resp. GOXl =N

Therefore, by [Ma1]p.77~there exist exactly two kinds of irre-

ducible unitary representations of G', namely.

I, the usual irreducible unitary representations of SL(2,R)
extended trivially to G', thatis to say the principal series,
the supplementary series and the discrete series (see for in-

stance Lang [La,lp.17)
XL

ITI the induced representations U - of G' induced for each
S € R by the representaion
xLg t (A,ui1) (05n(x)) p— b ¥
of the subgroup
RN =: NY ~

of G'.

J St'(1,R) the normal sub-

In the case of G = St(1,R) or G
group ¥ is no longer abelian, sc by [Ma2] projective repre-

sentations of GO enter:

The unitary dual of the Heisenberg-group (= H(R) may be
parametrized by :RZ U R* where the elements (P,Q) of F?
belong to the representations = = x(P,Q) trivial on the
center C(R) = {(0,0,r); » €ER} of H(R) and the elements

m of R*¥ belong to representations T of ¥ , which re-
stricted to C(R) give the character

2nim
nm(0,0;u) = e e

This and three models of this representation (the Schrddinger-
representation, the lattice-representation and the Fock-repre-

sentation) are discussed in Cartier [Ca].



G operates on & by

1

. i} ng with (nq)(n)= n((xo,po)M_ ,u0+2det(xxﬁ ))

(el e}

for g = (A,u,xiM) and n = (A _,u_,u% ).

For the representations =t of the type x(P,Q) there are
the two Go—orbits, which give the two types of representations
of St(1,R) being simply the trivial extensions of the repre-

sentations I and II of G' discussed above.

For each representation =1 of the type um(m ¥ 0) there is

a type III of representations of St(1,R): The orbit T[mG
consists only of L itself, because nmg and L. giving the
same character on C(R)
9 . i . R ot 2ntimu
L. (0,0,uo) = nm(o,o,uo) e 0

are equivalent by the theorem of Stone - von Neumann.

So there exists for each g € G a unitary operator Mg with

1

ng(n) = ,Mgﬂ'(n)M; for all n € L.

There is Mg = w(g) for g € I and Mg is uniquely determined

up to a multiplicative constant of modulus one. Thus M gives

a projective representation of G which composed with the
canonical projection G - G/y. = Go gives for all m (see [Kil
P.288/9) the Segal-Shale-Weil representation R of GO for an

-up to a trivial multiplicator system ~ well-defined cocycle o,

of order two determined for instance in Lion-Vergne [L + V] p.56).
All unitary irreducible representations of G can be obtained by
tensorin9 M with the 1/w-representations of GO = SL(2,R).
These are for instance listed in the discussion of the metaplectic
group Mp(1,I1R) in Gelbart [Ge.l] p.77.

For the unitary dual of the group GJ there are to be retained
from the representations just discussed exactly those which are
trivial on C(Z ). Thus in the discussion above nothing is changed
in type I and IT,and for type III only m € Z ~ 0 is to be taken.

The aim of the following paragraphs is to identify models of these

representations with spaces of functions characterized as



eigenfunctions of differential operators on the group GJ
or on the space X = GJ/KJ. The base for this discussion will
be the study of the Liealgebra st(1,R) of St(1,R) and some of

its representations in different spaces.

, I :
&. Coordinization, a G -invariant metric and Laplacian on X

It seems to be convenient to use several coordinizations:
The space
X =C x H

will be described as a four-dimensional IR -space either by the

complex coordinates

v = a+if € €, w =x+iy€H and their conjugates Vv,w
or the real coordinates

aIBIXIYI

or the real coordinates

P, d, X, v with v = pwt+ g .

GJ operates on X by

v+iw+y aw+b
cwt+d ' cw+d

=:M (W)

(v,w) b (

) = g(v,w)

for

g = [{x,u),z, M] € el , M = (i g) € SL(2,R)

This gives
(p,q,0)— (((p,a)+(A,u) )M, M(w))

GJ/KJ can be identified naturally with X wvia

J

| o s
gk? = [(h,p), g, MK — (AitH = 2ith,

ci+d ' ci+d

in the v,w coordinates. In the (p,q,w)-coordinates this means

gKI— (A, WM, M(i))

and sugyests the following coordinization of GJ




J

¢’ 3 ¢ = [(p,q),2:1] 10,0,05n(x)t(y "/

2)r(ﬁ‘)]
Here the notations of the first paragraph are used and give

gKJP—* (p,q;w= x+iy) .

As communicated to the author by Kdhler and already mentioned
in [Be1] there is a family of GJ-invariant Kdhler metrics given
by the closed exterior two form

- 2
= g3 : = A (v-v)
@ = ddF with F = c1log(w w) ic, oo ' ©17% > 0
SN 2 dw1d5 2ic, v-v vV
ds = -'C.l ((1.)—6)2 + =5 (dv- PRy dw)A(dv—ﬁ dw)
or
2 ax®-ay? e, Aoy B 5 2
ds™ = ¢, —5—— + c_ = ((x"+y“)dp“+2ydpdg+dq”).
1 4Y2 2y
To this metric belongs the Laplace-Operator
2 2 2 2 2
e 1 4yz(8 5 + 3 2) " 1 l(a S —ox +(x2+y2) 3 2) .
1 3% oy 2 ¥ 5p 3pag 3q

By the way, X is a"generalized symmetric space” in the sense of
Kowalski [ko] : for each point (v,w) € X there exists an isometry of order 4

Tixing precisely the point (v,u). .. For (0,i) this automorphism is given
. 01
by g = (O;(-1O))



,ﬁ4. The Liealgebra ¢ = st(1,R) of St(1,R) and GJ and a

<

realization by differential operators

The Liealgebra Q of St(1,R) may be generated by elements T (i=0,...,5)
with the multiplication table

To T1 T2 T3 T4 T5
oy o} o} 0 o}
(o]
T, 0 © 2o, T, T, T,
T3 0 -T‘I T2 0] 2T5 2T4
T4 0 _T2 -T1 -2T5 0 —2T3
s | © T, Ty -2, 2ry o

| Here the Ti are chosen to give the one parameter subgroups

| exptT_ = [0,0,t;1], exptT, = [t,o,o;1],exptT2 = [0,1,0;1]

[0,0,0; (cosht 81nht)]’

t
- (€ © _
exptT3 N [O’O’O’(o e't)]' exptl, sinht cosht

_ cost sint
exptT. = [0,0,0; ( g o Cost)]

By the realization of <§ as the subalgebra of polynomials of

§ degree < 2 in the Weylalgebra of non-commutative polynomlals

i in p, g with the commutation law Pg-gp=1 (see [Kilp. 2&.) these
l elements T may be identified in the following way

H
|

2

1 1, 2
3 = 3{pq+ap), Ty = 5(@™-p7), T

4

)
(p fqz) d

M= Q

i The T for i=1,..,5 go by the canonical map in the Liealgebra q
|W"f Hg XN SL(2,R) to elements Ti given by the matrices

O 1 0o 0O o0 1
T; = C 0 © Té = 0O 0 o
0O 0 o0 0 0 o
0O 0 o 0O 0 o O O O
' cC 1 0O T = o 0 1 T =10 0 1 c
= 4 5
0 0 -1 c 1 0 0 -1 0
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For

$ =< T, T > resp. §' = < T. >

the Liealgebra of KJ resp. K = 50(2) and

M= < T1,T2,T3,T4 > resp.m' = < T!

there are vector-space direct sum decompositions

$ +m resp. g’ = k' +m

with
[k, m] € me resp. [k',m] <

In consequence X = GJ/KJ is a reductive space, and Helgason's

theory of invariant differential operators can be applied and #iis
will be done in the next paragraph.

For several purposes it is convenient to look, too,at the

complexification a@ of q and introduce the operators

Z =31 T Z=1iT
o o] 5

-%(TB:';iT‘l), Y+=%?(T1:iT2)

>
1

I+

Then these elements are eigenvectors for ad k and the multiplicatic
table becomes

2z, Y, Y. X X 2
Z, . 0 0
Y, 0 2% 0 WZy_ -Y_
Y_ -2 2 o rRY O ¥Y_
X, o 4@y, O 2z -2X,
X_ 3y _ 0 =22 O 2X_
A o Yy, 6 -¥Y_2X -2X_ O




The Ti define left-invariant vector-~fields on St(4,n)

(and GJ) given by the following formula (where the coordinization
g = (p,q,K;1) (O,M) has to be kept in mind): For a function
$ = ¢(p,q,K,x,y,4”) we have

!
z«Tida = E’E‘P(g expt Ti) t=o

and this gives after some calculations (for the last three
operators see for instance [Lalp.114/5)

Ly = 2
TO Ik

-1/2 3 " 9
ZT1 =y / [cosJ‘QE - (ysina) +xcos & )Tq_

-(ply sind + x cos~F ) +q cosi) 9

A
%TZ = y-l/2 [sin«"g—p +(y cosJ- x sina¥) g_q -
- (ply cosd - x sind) - g sin«}')g—h:]
ZT3 = - 2y sin 23’% + 2y cos ZS-S—Y + sin 2% %e-,
—tT4=2ycos 29 g—x+2ysin Z&g—y—cos 23“%;
3
xT5 ¥
and
-1/2 . -ida Lov3 L : 3
V2 --Z.Y+ =y 4 [e J‘(,a—p- - (x+1y)a—q)—el (p(x+1y)+q)5}—<]
—-l . . . : .
VT oy = V2 i (§—p - (x-iy) g_q) S e A =
; _ 2id d 3 3
vz -tX_I_ ie 2y 55 ) "3k




= G

5.[Nwdh’and G -invariant differential operators on X

In the usual theory (see for instance [Bo] or [Ge,]) automorphic
forms for a discrete subgroup T of a semisimple group G with
maximal compact subgroup K are characterized as left r-invariant,
right K-covariant functions on G with a certain growth condition
which are eigenfunctions of the differential operators on G
corresponding to the center of the enveloping algebra U(q) of the
Lie algebra of G. The center of U(g) in the case of the group

@J resp. St(1,IR) is generated by T, and not rich enough to give
anything useful here.*) But there is the possibility of looking
at the GJ-invariant differential operators ID(GJ[KJ) on ¥ = GI/KJ,
which may be thought of as left-G-invariant and right-K-invariant
vector fields on G. More precisely, in the case of a reductive
homogeneous space there is by Helgason ([He;] or [He,l Th.2.8) a
linear bijection of ID(GJ/KJ) with I(m), the set of AdGJ(KJ)—
invariants in the symmetric algebra S(m) of the complement

Mz <T ..., T,> of &= <T;,Tg> in ¢. Explicitly, if Q € I(w),

f € C®(X) and ® is the canonical lifting of f to G then

(DA(Q)f)(gKJ) = Q(E%T,...,g%:)¢(g exp(t Ty +...+t, T, )) | ¢=0.

Here ) stands for the symmetrizing operator: I#) can be
described as the ad.k-invariants of U@h) and there is the

following

Lemma : UOth may be generated by

*)Borho tells me to be careful here: after a suitable
localization the center is generated by two elements.
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G =e IS AEE w B e WS ages
Q, = AM(T? -T7 )T, +(T,T,+T,T,)T,)
Q, = AM(TT -T3 )T, +(T,T,+T,T;)T3) .

Proof: Elements P € U(q) will be thought of as symmetrized
polynomials in Tg,...,Ts and similarly Q € U(#) as polynomials in
T

0ol Q € UGM)a is equivalent to adZ,Q = adZQ = 0. Z,

1?° y*
being in the center of %, the first equality gives no condition.
To evaluate the second equality, we can deduce from the multi-

plication table that

(%) adZ(YinxfxT) = (j-k+2£-2m) (V7 x &)

holds. This gives zero for the four "basic" combinations
j=k=1 ;  g=m=1 ; j=2, m=1

5 k=2, £=1,

i.e. the following elements of U(M@) are &-invariant

P, = Y. Y_+Y_Y,

P, = X,X_+X.X_
1 = 2 2
| P, = Y2X_+Y X ¥ +X ¥
= v2 2
) B, = X, +Y XY +X,¥2

And it follows from (*) that all &-invariant elements of UOM¢)
; may be algebraically combined from P;,...,P,. In view of the
equations Y; = Yy and Xz = X;, the operators P, and P, are

already real (and equal to Q; resp. Q,). Thus together with
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P,+P, = ZReP, and -i(P,-P,) = 2JmP, (equal up to constant
factor to Q, resp. Q,) they generate the ring of &-invariants

in Uwm).

Using the expressions at the end of paragraph 4, this translates

into the differential operators on GJ:

- _1r.os d 2 9 -, 2% 32
b Ep oz - (orBdggag * o158z - (V) g * (T gy
2
2 8%
+|v] BKZJ
2 2
5 = 2 3 _9°
A, 'ZPZ ty (ax2 ayz) Wiy t392
A 3 52 2 82 52
3 = = (1) e —— - =
xReP3 7= [ap2 2Rew T Re@)gaé 2Revapaﬂ
+2Re (vu)gA + P Refrd2r 32 2 [—2me—2
ag IxZ ay 3 apPad
+Jm@%————- Jmv 22 +2Jm(vw ) + Iy
3q2 3 PoK aq ak2
3 13 .3
[BX oy E}] 5 Ay
_ 3 . 8% 32 5 13
by = Egp, = lepr ~2Revpmg 3% "2y 35
3¢ 32 3 3
ol 2meapaq + ] =

Applied to functions ¢ on GJ, which are constant on the classes

J .
gK”, 4, and 4, gilve the operators

A° = ip 82 5, 32
1
o

2492)_07%]
ap? pag (XY gy
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_ 32 32
A= ”yz[— +3'y_2]3

Q
2 9x2

which combine to give the Laplace operator given in paragraph
3. In the same way the operators A, and A, 80 down to GJ-
invariant operators A; and Af on X, which generate the ring

ID(GJ/KJ) of GJ-invariant operators on X.

In the spirit of Selberg ([Se])and Helgason ([Hei],[Hez]) it

is now natural to define for X = (X;,...,%,) €CL*"

Jé’A = {f € t”(X);AEf = A f for d=d, L .. U

and the eigeanspace representation TA of GJ given by

Tk(g)f(z) = £(g”'(z)) for all f € €A and z € X.

Then there is of course Helgason's problem ([Hel] p. 241):

determine the joint eigwnspaces £ and identify the representation

A
TA5 in particular, for what X is TA %preducible? Lacking an
answer here, which goes beyond the usual SLz—theory, the
problem will be broadened by replacing the functions on X by
sections of certain vector bundles over X (i.e. certain
automorphic forms) and replacing the A; by differential
operators on the space of sections invariant under the action

of GJ.

6. Jacobil Forms

Jacobi-forms recently have been thoroughly studied by Eichler
and Zagier [E+Z]. Other references in this context are (see
the introduction of [E+Z]) Pyatetskii-Shapiro [Pyal, Shimura

[Shi,], [Shi,], Berndt [Be]l-[Be,] and Frenkel [Fe]. Eichler
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and Zagier introduce for complex functions h living on X = ITxIH

and elements g = [(A,u),g;M] EGJ.the operator

h — hlk,m[g]

defined by *)

(hlk;m[(lau):gsM]>(sz)

_ G -k m, _c(v+rw+p)2 , V+iwty awtb
= s (Cw‘l'd) e ( CZUJT + w+2)\V+}\u)h( SLET ’cw+d)
{ )

Y

= J‘Km(g;v,m) (e™(z):=e271M2)
For a subgroup resL(2,R) of finite index they put
rY = 22r

and give the

Definition: A Jacobi form of weight k and index m (k, m € IN)

on T is a complex function h on X = € xTH with the properties
i) h is holomorphic on X
ii) thm [¥]1= h for all v € 17
iii) for each M € SL(2,2) h k,m[O’M] has a Fourier
development of the form
z c(n,r)qner with c¢(n,r) = 0 unless nyr2/im

(@ = e(w), &= e(v)).

If h satisfies a stronger condition ii') with c(n,r) = 0 unless

*)

The order of the variables in T and IH has been reversed
here with respect to [E+Z], because for the author the

prototype of functions with this transformation property is the

Weierstrass - @ funetion, which st/|t usually is written as

P=' @(V,m).
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n>rz/4m)it is called a cuspform.

To get something non-trivial for m = 0 (and even k = 0) the
condition 1) has to be weakened to the condition

i') h is meromorphic.
This gives the notion of meromorphic Jacobi forms and Jacobi

functions (see [Bez]).

The first main result of Eichler and Zagier (th.1.1) is the
finite-dimensionality of the space Jk,m(r) of Jacobi forms

of weight k and index m on rJ. Among many other things they
also look at the usual lifting of functions h on ¥ to functions

& on GJ given by

and thus establish an identification (th.1.4) between the space

Xk m(FJ) of complex functions h on X satisfying the
E]

condition ii) in the definitions of the Jacobi forms
and the space

.xk m(I‘J) of complex functions ¢ on GJ left-invariant
3

under PJ and transforming on the right by the

representation

(%) 2(20(0,0),8:r($ 1) = 3" o(g)

of the maximal compact subgroup KJ = Slxs0(2) of GJ.



A further step in the characterization of Jacobi forms as

functions on GJ is given by the following observation:

Applied to functions éh on @9 coming from the lifting @.> that

is functions of the type

%melksgk/262w1mpv

@h(g) = h((g(O,i))jkm(g;O,i) =3 f(p,q;x,y) ,

the operators from paragraph 5 give (remembering 7§ = 2ﬂi§§%)
’ o

2, o - oo it (:23,’)_% (£ -ofq)  (C = §heI yk/z 2nimpy,
IYLQ = CeiéYZy)—% (fp-mfg+2p(m-m)(2ﬂim)f)

o 172—Ce-2i‘}(—2y(fx+ify))

2, 0 = S8y (e, ity )+ (hyp? (2nim)-21k) 7).

3

and consequently

(k,m)f

AiQ = CAi

with ’

(k,m) _ -1, 32 _ 32 2,2y 92 : tm) (-2 _ 9
N = (Ebz 2X3536 +(x%+y )EE?)+upl(2“1m)(ap “aq)
+2i(2mim)

and

2 2
2(_8° L, 3% _ e T ; R R
bhya( +By2) 2y(2ik-4yp (2n1n0)(ax +1ay) 2k.

Agk’m) 3x2

¥

This shows
Remark: The liftingcfkm of a holomorphic Jacobi form h goes

to an eigenfunction o, = @km(h) of the operators A§k,m) (i=1,2).
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Here the following formalism is used: For functions

h(v,v;u,5) = h(pw+d,pu+q;w,w) = £(p,qiuw,d)

we have

3f _ 1,98f _.of 3h , v-v 8h
30 - 20% ~i3y) % 3 tom v
o . 1,3f .36, _ b ,v-¥ 2h
= 2 Yy T e

(To simplify matters, there is no distinction made between

functions of (w,w) and (x,y).).

It is tempting to try to characterize the 1lifted Jacobi forms
completely as automorphic forms on the group GJ. To do this
the condition iii) concerning the Fourier development has to
be understood as a boundedness condition for the function D, -
This is still an open problem to me. The answer should be
connected with the representation-theoretic motivation for
the automorphy-factor jkm (see Satake [S 1). Anyway, the

space J - (PJ) with the scalar product ([E+Z]p.25)

I,
- 2 =
(h,h') = § e BB/ Y (v, AT o)y 5 2da d 8 dx dy
I'J\X" .

is a first candidate for a ¢fiwrbe—dimempi-omads discrete

J

series representation Tkm of G given by

-1 J
TKm(g)h = hlkm[g ] for h € Jk,m(r ) s
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Starting from here something non-discrete is easily gotten by

the procedure in the next paragraph.

7. Maass-Jacobi forms

In the classical SLz-theory not only automorphic forms for the
automorphy factor

J(Mw) = (card) ™K

are studied; but also forms for the factor

' (M30) = SikaF
k
(See particularly: Petersson [Pe], Maass [Ma], Selberg [Se],
Roelcke [Rol’zl and Elstrodt [El]; care has to be taken with
the index k whose significance is sometimes different with
different authors). These forms give for k € IR in general
projective representations of SL(2,IR) resp. ordinary repre-

sentations of the universal covering group §i(2,IR) of SL(2,IR)

(Sally [Sa]).

For the Jacobi group it is now natural to take as a factor

J
ng (237,0) = Sm(cm+d k/262w1m( )

M (B3P>Q5%,,) A cord)

and to define for complex functions f on X with z = (p,q,X,y) € X
flig;k,m)(z) = f(g(Z))uk m(g,z) for k € IR and m € 2.
s

If < = arg z is to be chosen from the interval (-m,n)] there
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is a factor system (see Roelcke [Ro]lp.295)

&, () = o 2THEW(HLN)

W a cocycle taking values in {-1,0,1} such that

£ llg,g,skml = & (M ,M,)(f |lg,:k,m]) |lg, sk,m]

holds. Let further wv-be a unitary multiplicator system for

a discrete group rJ = 2297 in GJ (with -1 € T) such that

v(gg,) = G (M,M,)w(g)™g,) and W (0,-1)) = e "k

2

then ;.k,m(r) may be defined as the space of complex valued
functions f on X with
i) £ is real-analytic in all four variables P, 4, X, ¥ € X
ii) f|[k,m] = v(g)f for all 4€ T
1ii) f takes a certain growth condition for the cusps,
which will have to be specified elsewhere:
The automorphy factor Hiem gives in the usual way a lifting

map Y, o from functions f on X to functions ® _ on GJ with
2

£

fi{g3k,m1(0,0;0,1)

<I>f(g)
(*)

ik, i 2x+
$Me? }e”lm(p X*PU e (p,a;%,7) .

Here again the coordinization of GJ

g = [p,q;'s;ll[O,O,O;H(X)t(yl/z)r(«})]
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is used. With
- - 2
D = Smelk e21r1m(p X+pq)

the operators from paragraph 5 give here applied to functions

of the type (*)

R -Y2 3 8 i
_‘[Y+¢ = De At A G (2y) (35 “3q 2pyi(2mim) ]
L o= Deia’lf{" r, K = (Zy)-l/z[a— S +2pyi(2mim) ]
Y. m?’> m 3p . aq
L, 2= 13De‘2i°1 £, A = 2y (L +id ysoyp2(2rim)-ik
X, V2 k,m * “k,m X oy
Y o-ipe2¥y o oy = 2y(=2 -i-2y4+2yp2(2 wim)-ik
Y v2 k,m ?> “k,m ax oy ’
; and consequently
2;9 = DAi[k’”-‘]f
with
[k,m] _ . -1.3%2 _, 02 242)_32 L g2 s
A, =y 02 2Xap3q +(x2+y )aq2 +Uy p(2n1m)aq
2 9.2
+(2py) 2(2mim)]
= T K +KF = 2KmAm+21(2ﬂlm)4= 2A K ~2i(2wim)
and
{k,m] _ v2 32 32 2 OE1) e 3
B = (2y;-(3§— +3§7)+4y(2yp (27im) 1k)3§

+(2yp2(2nim)-ik )2

1

2

K A K

o, i S il " o 203

Aes2,m k,m'

B Kk-2,mAm—2k .
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As is to be expected, the operators m’ Km, Ak,m’ Kk,m have
each a simple commutation property with respect to the operators
l[g;k,m]. By straightforward computations it can be shown
Lemma: For complex functions f on X and all g € GJ, k,m € IR

the relations

Eﬁ(fl[g;k,m ) (Eﬁf)llg;k+1,m]

K (fltesk,m) = (X £)|[g3k-13m]

Kk,m(fl[g;k,m]) (Kk,mf)|[g5k+2,m]

Ak’m(fl[g;ksm]) (Kk,mf)l[g5k-2:m]
hold.

[k,m]

As a corollary the Ai commute with the operators [[g,k,m].

So here again the question of eigenspace representations arises.
This time there will be gotten only ek—representations of GJ,
but there are quite nice joint eigenfunctions for the

Agk’m] (GIRN=R N2

Remark: For

- 2
e = k/2 -2mmp2y
there is

AEk’m]f = -bmmf and A£k=m]f = -2kf .

It is further to be remarked that these eigenfunctions are of

the form



- olf =

where F appeared in paragraph 3 as the potential of the
GJ-invariant Kadhler-metric, which is fundamental for this
theory. This fact should leave a simple explanation, which

should be got by further looking into Selberg [Se].

Starting from this f, one can in the usual way (see [E+Z]p.16fF)
construct Eigenstein series which give automorphic forms on X
and, being non-holomorphic eigenfunctions of Aik,m] (i = 1,2),

will be called here Maass<Jacobi forms:

Formally it may be put for each k, m € IR

= 2
yk/ze 2mm p

E(p,q,x,y;k,m) = = | [y;k,m]

YEPZ\F{

with rf = 22xSL(2, ) > ri = {[(O,U),t(é?)],uln € }.

The automorphy factor ¥y m being of modulus one, the series
2

converges for positive ‘m at least as well as the series

z ICw+dl-k,

(c,d)=1

i.e. at least for k » 4, Here, too, further research has to

be done.
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8. Concluding remarks

The author is aware that the material presented here is rather
preliminary and fragmentary. Real work should start now

putting some of the fragments together, studying models of the
representations given in the second paragraph by using the
differential operators derived later on, and answer the questions
arising. The author hopes though to have shown that something
may be done this way for the Jacobi group, and he would be

very glad if someone got interested enough to join forces with

him in further studies.

At last, it is perhaps worthwhile to also state the following

two observations:

More nonholomorphic eigenfunctions

Weierstrass @-function and their derivatives are annihilated
by operators Aj and AZ“ Another family of eigenfunctions for
A, and 4, (with eigenvalues (0,-2k)) is given by

L. k/2 ik
vy e

o = (2 €2) .

This too may be used to get automorphic forms by the Eigenstein

series procedure.

Jacobi's theta function and the heat equation

Jacobi's theta function

s 2
Fov W =T ezﬂl(n w+2nv)

n€éd
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satisfies the heat equation
. 3 a2 _
(811’1?(; -—3_‘\1_2.).3'- 0.

r&being a Jacobi form of type (k,m) = (1/2,1) (see, for instance,
[Mu]). and being in a space realizing the Segal-Shale-Weil
representation of GJ (see [S]), this fact may be understood as

a consequence of the formalism developed in paragraph 6:

Let h be a holomorphic Jacobi form on X of type (k,m) and
® = Ch its lifting to a function on GJ. With the operators

from paragraph 6, then there holds

-2Tmo, 2;¢ = -ko

Tt
o
]
=~
<
+
o
1]
NH
©
O
|

and

-4rm®,

k3
=
o
1
1
n
=
&
&
o
]

Using the formula given in 6 to change from the variables

(p,q,X,y) to the variables (v,w), it may be calculated

fx D = l_écezl‘}'(2y(fX'ify)+(21rim)llp2f-2ikf)

= /?CeZiJ((w-E)h +(v-v)h +(2nim)izzzlih+kh)
U v wTw

and

X, Cei"’(zyr”z(fp-zfq+<2nim)2p<m-a>f)

v

Ce2i" i( (m-a)hvv+8n‘im( V--\F)hv+ (27im)

2plv-v)?
fyz“b b-—=~—h

+2(27im)h)




T S oatmiie b sl

e
Gt

BT TR
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Comparization gives for k = % just

(-v24 m.‘tx_-IYZ_W = (w-0)C(-8mmh -in ).

And as W. Borho kindly pointed out to the author, this
expression is seen to be zero simply by looking at the Weil
#epresentation of:a realized as a subalgebra of the eyl algebra
A (IR) given in paragraph 4. There we have (see, for instance,

[Kilp.288) for a space L2(IR) with coordinate u the representation

Pt-;d—ci . q b+ 1ij)u 0 1 = i)
il d :
Pzﬁ*ﬁ'mz s qp‘—'uaﬁ, q2 > iau2.

Introducing the operators defined in 4. gives, after a small

calculation with A = 4mm, the desired result
-V/2AX_ - Y2 0,

This calculation may even be avoided by locking at [B] Lemma 3.4
(which is worthwhile anyway in this context), where the

structure of.U(qg) is described.
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