
GENERALIZED KÄHLER STRUCTURES IN DIMENSION 4

FLORIN BELGUN

. These notes are intended to summarize and complete the lectures given by me on Dec 1,
2011, and Jan. 12, 2010 as part of the lectures on generalized complex structures by Prof.
Dr. V. Cortés. the main results are contained in [3], [4] and [14], but they rely on [1] and
on the important notion of standard (or Gauduchon) metric [10]. The more recent notion of
conformal product may help understanding the construction of generalized Kähler structures
associated to a pair of commuting complex structures.

Feel free to send me by e-mail your remarks and comments.

1. Generalized Kähler structures

Definition 1.1. [12] A generalized Kähler structure on a manifold M is a pair J1,J2 of
commuting generalized complex structures, such that G := −J1J2 induces (via the tautological
symplectic form) a positive definite metric on TM ⊕ T ∗M

The restrictions of J1,J2 to the eigenspaces C± of G (these eigenspaces are both J1- and
J2-invariant, because these endomorphisms commute) induce, by projection on TM , almost
complex structures J± on M . Integrability of J1,J2 imply the one of J±. More precisely, we
have:

Proposition 1.2. [12] A generalized Kähler structure on a manifold M is equivalent to a
pair J+, J− of integrable complex structures on M , which are both orthogonal with respect to
the same Riemannian metric g, such that, if we denote by ω± := g(J±·, ·) the corresponding
Kähler forms, the following conditions hold:

dc+ω+ = −dc−ω− = h (1)

h is exact. (2)

Here the operators dc± := i(∂̄±−∂±) are obtained from the ∂ and ∂̄ operators corresponding
to the complex structures J±. In fact, dc+ω+ is a real 3-form equal to dω(J+·, J+·, J+·) and an
analogue formula holds for dc−ω−.

By analogy (or by considering a twisted Courant bracket on TM⊗T ∗M), we define a twisted
generalized Kähler structure to be given by a pair of orthogonal complex structures J± such
that the 3-form h above is closed, but not exact. Following [4], we will call in these notes
a generalized Kähler structure untwisted if it satisfied the conditions in the proposition 1.2,
and the notion of generalized Kähler structure will be consider to cover both the twisted and
untwisted one.

The goal of these lectures is to show that, in dimension 4, the generalized Kähler structures
are equivalent to some simpler structures, which are easier to construct. As a consequence, for
a compact 4-manifold M admitting a generalized complex structure, it is possible to classify
(under some mild assumptions) the compact complex surfaces (M,J±), [3], [14], [4].

Before we can state the main results, we recall some basic facts about 4-dimensional Rie-
mannian geometry. We review then some important properties of the Riemannian (more
generally, Weyl) curvature of a hermitian surface; here we need to compare the curvature of
two conformal, torsion-free connections (Weyl structures) on a conformal-Riemannian mani-
fold (see the Appendix).
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2. Curvature of hermitian surfaces

2.1. Hermitian surfaces. Main statements. A Hermitian surface is a complex 2-dimen-
sional (real 4-dimensional) manifold (M4, J) with a hermitian metric g, i.e. g is a Riemannian
metric and J : TM → TM is a skew-symmetric endomorphism of TM with respect to g which
is integrable, i.e. its Nijenhuis tensor

4NJ(X,Y ) := [JX, JY ]− J [JX, Y ]− J [X, JY ]− [X,Y ] (3)

vanishes identically.

We denote by ωJ := g(J ·, ·) ∈ Λ2M the Kähler form of J with respect to g. By the canonical
isomorphism TM ' T ∗M induced by g, J ∈ End(TM) = T ∗M ⊗ TM ' T ∗M ⊗ T ∗M can be
identified with ωJ . This kind of identifications will be often used in the text.

Our first remark is that J induces a canonical volume form on M , ω ∧ ω, which is twice
the Riemannian volume form induced by g and the orientation of TM , for which a basis
e1, Je1, e2, Je2 is positive (∀e1, e2 ∈ TM linearly independent over C).

Therefore, the case where two different complex structures are simultaneously g-orthogonal
is split in two sub-cases:

(1) The case where J± induce the same orientation on M , where (M4, g, J±) will be called
a bihermitian surface;

(2) The case where J± induce opposite orientations on M , where (M4, g, J±) will be called
an ambihermitian surface.

These two situations will turn out to be geometrically distinct. The main results we will prove
are the following:

Theorem 2.1. [3] Let (M4, g, J±) be a compact bihermitian surface with even first Betti
number. Then there exists a conformal change in the metric such that (M, g′ := efg, J±) is
an untwisted generalized Kähler manifold.

In fact, the condition on the first Betti number turns out to distinguish the twisted and the
untwisted case:

Proposition 2.2. [4] Let (M4, g, J±) be a compact generalized Kähler surface. Then this
generalized Kähler structure is untwisted iff the first Betti number is even.

As a consequence, generalized Kähler 4-manifolds (corresponding to bihermitian surfaces)
with b1 even are classified [3].

For the sake of completeness we also recall in Section 5 other results by Pontecorvo [14] about
bihermitian surfaces (that also leads to a complete classification [14]), concerning the case when
the conformal structure is anti-self-dual, which means that there are no local obstruction to
existence of compatible complex structures.

The main result for generalized Kähler 4-manifolds associated to ambihermitian surfaces is

Theorem 2.3. [4] Let (M4, g, J±) be a compact generalized Kähler manifold on an ambiher-
mitian surface. Then the eigenspaces V± of Q := −J+J− corresponding to the eigenvalues ±1
are both holomorphic (complex 1-dimensional) distributions on M , therefore (M,J±) has two
transversal holomorphic foliations.

Conversely, any compact complex surface (M,J) admitting a pair of transversal holomorphic
distributions admits a generalized Kähler structure (J being J+).
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This result also leads to a complete classification of the underlying compact complex surfaces
[4].

Because the list of surfaces in the above cited classification relies on extensive knowledge of
the special field of compact complex surfaces (including the Kodaira classification), we leave
to the motivated reader the choice to consult the original papers and we focus in these notes
on the geometrical aspects that are the essential ingredients that lead to these lists.

2.2. Curvature of a 4-dimensional manifold. On every oriented Riemannian manifold
(Mn, g), the line bundle of n-forms is canonically identified with R, by the fact that any
n-form is a multiple of the canonical Riemannian volume form vg.

The Hodge star operator of a p-form α is the image of vg through the adjoint map of the
wedge product with α, restricted to Λn−p:

α ∧ · : Λn−pM → ΛnM,

therefore ∗α is characterized by the following property

g(∗α, β)vg = α ∧ β, ∀β ∈ Λn−pM. (4)

Equivalently, for a given positive orthonormal basis e1, . . . , en of TM ,

∗g(e1 ∧ . . . ∧ ep) := ep+1 ∧ . . . ∧ en.
Recall that the norm on forms is such that the p-forms ei1 ∧ . . .∧ eip , for 1 ≤ i1 < · · · < ip ≤ n
form an orthonormal basis of ΛpM .

If n = 4 and p = 2, we obtain that ∗ : Λ2M → Λ2M is an involution, therefore Λ2M splits
in the orthogonal direct sum of the space of self-dual forms Λ+M , where ∗ acts as the identity,
and the space of anti-self-dual forms Λ−M , where ∗ acts as −1.

Remark 2.4. Recalling that Λ2M is canonically identified to the space of skew-symmetric
endomorphisms of TM , i.e. of the adjoint bundle of the O(4)-principal bundle of orthonormal
frames on M , the splitting Λ2M = L+M ⊕ Λ−M corresponds to the splitting of so(4) as a
sum of two simple ideals (both isomorphic to so(3)) [11, 1, 5].

As a consequence, the Riemannian curvature of the Levi-Civita connection∇ := ∇g, defined
by

R∇X,Y Z := ∇X(∇Y Z)−∇Y (∇XZ)−∇[X,Y ]Z,

X, Y, Z ∈ TM , induces a symmetric endomorphism of Λ2M , and, because of the splitting of
the latter, we obtain the Singer-Thorpe curvature decomposition (see [1] for details):

R =

B0W+ + Scal
12

W− + Scal
12 Λ−MBt

0

Λ+M Λ−M

Λ+M

(5)
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Here, Scal is the scalar curvature of ∇, B0 is identified with the traceless Ricci tensor (it is
actually the suspension of half the traceless Ricci tensor, see [2]), and W± are the self-dual,
resp. anti-self-dual Weyl tensors of g. They are both symmetric trace-free endomorphisms of
Λ+M , resp. Λ−M and depend on the conformal class [g] only (see the Appendix). The factor
1/12 in front of the Scalar curvature ensures that the trace of R on Λ2M is half the scalar
curvature (the consecutive traces on TM that define Scal yield twice such a result).

Note that the decomposition (5) holds for the Riemannian part of the curvature of an
arbitrary Weyl structure as well (see the Appendix).

2.3. The Lee form of a hermitian surface. Let (M4, g) be a Riemannian (oriented) 4-
manifold and let J be an orthogonal almost complex structure on (M, g), i.e. J : TM → TM ,
with J2 = −Id is skew-symmetric w.r.t. g, and ωJ := g(J ·, ·) its corresponding Kähler form.
We say that (M4, g, J) is a hermitian surface iff J is integrable (i.e., its Nijenhuis tensor (3)
vanishes).

As we have seen at the beginning of this section, J intrinsically defines an orientation on M
by the volume form 1

2ω
J ∧ ωJ which coincides up to sign with the Riemannian volume form

vg. ω
J is thus a self-dual 2-form if J is positively oriented (and anti-self-dual otherwise). Note

that the square norm of ωJ is 2.

We get thus a further decomposition of the space of 2-forms on an almost hermitian surface:

Proposition 2.5. Let (M, g) be a Riemannian 4-manifold and J a g-orthogonal almost com-
plex structure on M . Fix on M the orientation induced by J . Then

(1) ωJ ∈ Λ+M

(2) Λ1,1M = RωJ ⊕ Λ1,1
0 M = RωJ ⊕ Λ−M

(3) Λ2,0+0,2M is the orthogonal complement of RωJ in Λ+M .

The proof is done by checking these claims on an arbitrary hermitian basis.

Remark 2.6. Note that we consider the real parts of the complex vector spaces defined by
the type decompositions of forms. More precisely, Λ1,1M denotes here the real vector bundle
of the J-invariant 2-forms, i.e. for which α(J ·, J ·) = α, and Λ2,0+0,2M consists of the real
J-anti-invariant 2-forms, i.e. for which α(J ·, J ·) = −α. As skew-symmetric endomorphisms,
Λ1,1M are those that commute with J , and Λ2,0+0,2M those that anti-commute with J .

Inserting just one J into α ∈ Λ1,1M turns it into a symmetric endomorphism (still com-
muting with J), and if α ∈ Λ2,0+0,2M , then α(J ·, ·) = α(·, J ·) ∈ Λ2,0+0,2M . We denote
by

J : Λ2,0+0,2M → Λ2,0+0,2M J (α) := α(J ·, ·) (6)

the complex structure on Λ2,0+0,2M given by inserting one J into a J-anti-invariant 2-form.

Before discussing the curvature decomposition of a hermitian surface, let us first introduce
a basic notion:

Definition 2.7. The Lee form of a hermitian surface (M, g, J) is the uniquely defined 1-form
θ such that

dωJ = −2θ ∧ ωJ .

Remark 2.8. Of course, we need to show that such a form exists and is unique: Indeed,the
wedge product with a non-degenerate 2-form is an injective linear map from Λ1M to Λ3M ,
and therefore is an isomorphism if dimM = 4. So θ in the definition exists and is unique.
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In conformal geometry, there is another notion of Lee form (see the Appendix). That these
two notions coincide is justified by the following Proposition (that also explains why we have
put the factor −2 in the definition of θ):

Proposition 2.9. Let (M4, g, J) be a hermitian surface. Then the Weyl structure

∇J := ∇g + θ̃

defined by the Lee form θ of J is the unique Weyl structure ∇ on M such that ∇J = 0.

Proof. Consider an arbitrary Weyl structure ∇ := ∇g + η̃ = ∇g + (η ∧ ·) + η ⊗ Id (28-29).
From (31), see also Remark 6.5 in the Appendix, we have

∇XJ = ∇gXJ + [η ∧X,J ]. (7)

The next Lemma shows that the first term in (7) is the image of a C-linear map from TM to
Λ2,0+0,2M :

Lemma 2.10. Let (M, [g]) a conformal Riemannian manifold. An orthogonal almost complex
structure J on M is integrable if and only if, for some (and hence any) Weyl structure ∇, the
following relation holds:

∇JXJ = J∇XJ, ∀X ∈ TM. (8)

Proof. Consider the following tensor:

A(X,Y, Z) := g((∇JXJ − J∇XJ)(Y ), Z)

Because J is a skew-symmetric endomorphism of TM , so is ∇XJ , and because J2 = −Id,
this endomorphism anti-commutes with J , therefore A is skew-symmetric in Y,Z.

On the other hand,

A(X,Y, Z)−A(Y,X,Z) = 4g(N(X,Y ), Z), (9)

where N(X,Y )is the Nijenhuis tensor of J (3).

If A = 0, then N = 0, thus J is integrable. On the other hand, using the skew-symmetry
of A and the relation ((9) above, it is easy to check that

A(X,Y, Z) = 2g(N(X,Y ), Z)− 2g(N(Y, Z), X) + 2g(N(Z,X), Y ),

thus if J is integrable then N = 0, therefore A = 0. �

∇gJ and ∇J are both skew-symmetric endomorphisms that anti-commute with J , hence
are elements in Λ2,0+0,2M . On the other hand, if we consider the complex structure J on
TM and the complex structure J on Λ2,0+0,2M , the previous Lemma shows that the maps
X 7→ ∇gXJ and X 7→ ∇XJ are C-linear. Therefore, their difference (see (7))

X 7→ [η ∧X, J ]

is also a C-linear map from TM to Λ2,0+0,2M .

Now, the first term of the left hand side of (7) is an unknown element of the vector space

HomC(TM,Λ2,0+0,2M)

which has complex dimension 2 · 1 = 2. On the other hand, the map

Λ1M 3 η 7−→ [η ∧X, J ] ∈ HomC(TM,Λ2,0+0,2M)

is a C-linear map from TM (of complex dimension 2) to HomC(TM,Λ2,0+0,2M), also of
complex dimension 2. This map is surjective iff it is injective, i.e. iff

[η ∧X, J ] = 0, ∀X ∈ TM =⇒ η = 0,

which is easily checked (we just need here dimTM > 2).
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That implies, therefore, that a unique Weyl structure ∇ (defined by some uniquely deter-
mined η0) always exists, such that ∇J = 0.

To check that η0 = θ, the Lee form defined above, we just note that

∇XωJ = ∇X (g(J ·, ·)) = (∇Xg)(J ·, ·)

since ∇XJ = 0. But ∇Xg = −2η0(X)g, thus

∇ωJ = −2η0 ⊗ ωJ .

By skew-symmetrizing we get that dωJ = −2η0 ∧ ωJ thus η0 = θ. �

Corollary 2.11. Let (M, g, J) be a hermitian surface and let θ = θJ be the Lee form of the

canonical Weyl structure ∇ := ∇g + θ̃. The following relation holds:

∇gXJ = Jθ ∧X + θ ∧ JX ∀X ∈ TM.

Proof. We compute

[θ ∧X, J ] = −Jθ ⊗X + JX ⊗ θ − θ ⊗ JX +X ⊗ Jθ = −Jθ ∧X − θ ∧ JX,

and use that ∇XJ = 0. �

Recall that the codifferential on k-forms on an oriented Riemannian manifold (M, g) is
defined by

δg := (−1)k ∗−1 d∗,

where d is the exterior differential. As ∗2 = (−1)k(n−k) on k-forms, it follows that on an
hermitian surface (M, g, J)

δgωJ = − ∗ d ∗ ωJ = 2 ∗ (θ ∧ ωJ).

A simple computation shows

∗(η ∧ ωJ) = Jη and ∗ η = Jη ∧ ωJ , (10)

for any 1-form η. Here we considered Jη to be the 1-form dual to the vector J(η]), thus
Jη = −η ◦ J . We get thus

δgωJ = −2JθJ , (11)

where we note that J doesn’t need to induce the same orientation on M as ∗.

2.4. Complex structures on a Riemannian 4-manifold. From the decomposition of Λ2M
on an almost hermitian surface (Prop. 2.5) we obtain the following decomposition of the
curvature of a 4-dimensional Riemannian manifold on which an almost complex structure J
has been fixed:
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R =

RωJ

W− + Scal
12

B1

Bt
2

Λ2,0+0,2M Λ−M

Λ−MBt
1

RωJ

Λ2,0+0,2M

Scal∇
12

(
Scal∇

12 − a
)
Id

Φ

Φt
A0+

+2a

B2

(12)

Here, Scal∇ is the scalar curvature of the metric g, but it can also be the scalar curvature of
a particular Weyl structure (see the Appendix). We will actually see that, if J is integrable,
there is a canonical Weyl structure associated to it, and the computations will be made using
this Weyl structure.

Note that all components are irreducible with the exception of the 2× 2 symmetric matrix

A0 +
(
Scal∇

12 − a
)
Id, which decomposes into its traceless part (and also its J -anti-invariant

part) A0 and its diagonal part (also its J -invariant part) which is just a multiple of the
identity.

A priori there is no special relation between the entries in the table above, but if J is
integrable, much can be said about them:

Theorem 2.12. [1] Let (M, g) be a Riemannian manifold and let J be a g-orthogonal integrable
complex structure on M . Let ∇J be the unique Weyl structure on M for which ∇J = 0, let
θ be the corresponding Lee form, and κ the scalar curvature of this Weyl structure. Then, in
the decomposition (12) of the Riemannian curvature Rg, the following relations hold:

(1) A0 = 0,
(2) Φ = J (dθ)+, the self-dual part of the exterior derivative of the Lee form θ,
(3) a = −κ/12 = −Scalg/12− (δgθ − ‖θ‖2g)/2

First note that since dωJ = −2θ ∧ ωJ , we have

0 = ddωJ = −2dθ ∧ ωJ

thus dθ, and in particular (dθ)+ is orthogonal to ωJ and is thus equal to (dθ)2,0+0,2 and hence
is a skew-symmetric endomorphisms of TM that anti-commutes with J . Also, (dθ)− = (dθ)1,1

is the part of dθ that commutes with J .
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Proof. All the claims are about the structure of W+, which is a conformally invariant tensor
(Proposition 6.7 in the Appendix). We can thus consider any Weyl structure, noting that
the decomposition (12) refers to the Riemannian part of the Weyl curvature, i.e. without the
terms in the Faraday form (33).

Consider thus the curvature decomposition for R∇, for ∇ the canonical Weyl structure
associated to J . We recall (see the Appendix) that the curvature of a Weyl structure is

R∇ = R∇,Riem + F∇ ⊗ Id− 1

2
F∇ ∧ Id, (13)

where F∇ = dθ is the Faraday form, and = R∇,Riem is the Riemannian part of R∇. This
Riemannian part further decomposes

R∇,Riem = ρ∇ ∧ Id+W

into the suspension of the symmetric Schouten tensor and the Weyl tensor (which, for n = 4,
further decomposes in W+ +Wm). From Proposition 6.7 we know that

ρ∇ = ρg − (∇gθ)sym + θ ⊗ θ − 1

2
g(θ, θ)g,

and that the Weyl tensor is conformally invariant. By taking the trace of the above relation
or from Corollary 6.9 we also get:

κ = Scal∇ = Scalg + 6(δgθ − g(θ, θ)). (14)

We want to compute the image of ωJ by the self-dual Weyl tensor W+, as relations (2) and
(3) in the Theorem will follow from that.

Consider R∇J = 0 and use the curvature decomposition (13):

R∇(ωJ) = W+(ωJ) + (ρ∇ ∧ Id)(ωJ)− 1

2
(F∇ ∧ Id)(ωJ) + trJF

∇Id. (15)

Remark 2.13. R∇ denotes the curvature operator R∇ : Λ2M → End(TM) (actually it’s
just the skew-symmetric endomorphisms plus the multiples of the identity), but when we write
R∇J , we mean that we apply the curvature to J , i.e. we consider the commutator of the
image of R∇ (as an endomorphism of TM) with J . But even though J and ωJ are equivalent
objects, when we speak of the image of ωJ through R∇, which is an endomorphism of TM as
well, we denote this by R∇(ωJ).

Note that, while R∇J = 0, this just means that the endomorphism R∇(α) commutes with
J for any 2-form α (in particular for ωJ).

In (15), we are interested only in the components in Λ+M : we can therefore ignore the
term in ρ∇0 that is known to exchange self-dual and anti-self-dual 2-forms. Also note that the
term in the identity vanishes (see Corollary 2.11, point 4.).

Note that the left hand side of (15) is not zero, it just commutes with J (see the remark
above), but since we only look for the self-dual components, it means that the only possibly
non-zero term of R∇(ωJ)+ is some multiple of J . To compute it, let us fix e1, . . . , e4 an
orthonormal basis of TM , such that Je1 = e2 and Je3 = e4 and take a trace in the Bianchi
identity (32):

2R∇(ωJ)X =
4∑
i=1

R∇ei,JeiX = −
4∑
i=1

R∇X,eiJei −
4∑
i=1

R∇Jei,Xei = −2JR̃ic∇(X),
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where R̃ic∇ = (Ric∇)sym is the other contraction than the one that yields the Ricci tensor,
and which, for n = 4, is symmetric (37). We have thus

2g(R∇(ωJ), ωJ) =
4∑
i=1

g(R∇(ωJ)ei, Jei) =
4∑
i=1

R̃ic∇(ei, J(Jei)) = −Scal∇.

We conclude that the coefficient of J in R∇(ωJ) is κ/4. Thus (15) implies:

κ

4
J = W+(ωJ) +

κ

12
J − 1

2
(F∇ ∧ Id)(ωJ)+,

where we still need to compute the term in the Faraday curvature. Using the definition of the
suspension (34), we compute

g((F∇ ∧ Id)(ωJ)(X), Y ) = g

(
1

2

4∑
i=1

F∇(ei, ·) ∧ Jei(X), Y

)
=

=
4∑
i=1

−1

2

(
F∇(ei, X)g(Jei, Y )− F∇(ei, Y )g(Jei, X)

)
= −1

2

(
F∇(X, JY )− F∇(JX, Y )

)
.

We see that we obtain automatically a self-dual form (more precisely, a form in Λ2,0+0,2M).
This form is nothing but

−J (F∇)+ = 2J (dθ)+.

Therefore,

W+(ωJ) =
1

6
κJ + J (dθ)+ (16)

Claims (2) and (3) from the Theorem follow immediately.

To prove claim (1) in the Theorem, we will use Lemma 2.10 to prove that the part of the
curvature of g that sends Λ2,0+0,2M to itself commutes with J , hence is of diagonal type.

Let D := ∇g be the Levi-Civita connection of g. From (8) we have

DJXDJY J = DJX(JDY J) = J(DXJ)(DY J) + JDJXDY J,

and, by replacing X,Y with JY , resp. JX, we also have

−DYDXJ = −J(JDY J)(JDXJ)− JDYDJXJ = J(DY J)(DXJ)− JDYDJXJ.

By adding these two relations and skew-symmetrizing in X,Y , we get

RgJX,JY −D[JX,JY ]J −R
g
X,Y J +D[X,Y ]J = JRgJX,Y J − JD[JX,Y ]J − JR

g
JY,XJ + JD[JY,X].

Note that the derivation arguments of the terms containing only first order derivatives of J add
up to the Nijenhuis tensor (which is zero). If we denote by α := JX∧JY −X∧Y ∈ Λ2,0+0,2M ,
therefore Jα = JX ∧ Y +X ∧ JY , we conclude

[Rg(α), J ] = −J [Rg(Jα), J ], ∀α ∈ Λ2,0+0,2M. (17)

Note that, for any skew-symmetric endomorphism B on TM , [B, J ] is twice the 2, 0+0, 2–part
of B. If we denote by A the endomorphism of Λ2,0+0,2M induced by Rg, (17) reads like

A(α) = −JA(Jα), ∀α ∈ Λ2,0+0,2M,

but this means precisely that A is J -invariant, hence a multiple of the identity. Thus A0 = 0.

�

We conclude that, in case (M, g) admits an orthogonal integrable complex structure com-
patible with the orientation, then some components of W+ vanish (A0 = 0) and the value
of the other components can be computed in terms of the complex structure. In particular,
α := (dθ)+ is an eigenvector of W+ for the eigenvalue λ0 := −κ. Three possibilities occur:
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(1) W+ = 0, i.e. α = 0 and κ = 0;
(2) W+ 6= 0 but α = 0;
(3) α 6= 0.

Consider first that the third case holds on an open dense set of M . We will see that the 3
eigenvalues of W+ ( seen, via a fixed metric g, as a symmetric trace-free endomorphism of
Λ+M) are distinct and we will say that W+ is non-degenerate. Indeed, in the orthonormal
basis

ωJ√
2
,Jα0, α0

of Λ+M (here α0 := α/‖α‖g is the unit form determined by α), W+ is the following 3 × 3
matrix:

W+ =

 −κ
6 ‖α‖g 0

‖α‖g κ
12 0

0 0 −κ

 . (18)

The eigenvalues of the upper left 2× 2 block are

λ± =
κ

24
±

√
κ2 + 16‖α‖2g

8
,

and the eigenvalue λ0 = κ/12 lies between (and is distinct of) λ+ and λ− unless α = 0.

Remark 2.14. The eigenvalues of W+ depend on the chosen metric g but not their order and
ratios, since the symmetric operator W+ : Λ+M → Λ+M is rescaled by a conformal change
of metric.

Conversely, suppose W+ is almost everywhere non-degenerate on (M, g). Then we can ask
whether there is any g-orthogonal complex structure J compatible with the orientation of M
and, if yes, how many such J ’s exist.

Proposition 2.15. [1] Let (M4, g) be a connected, oriented 4-manifold with non-degenerate
self-dual Weyl tensor W+. Then there exist at most two strictly distinct orthogonal complex
structures J± (i.e., J+ 6= ±J− everywhere) compatible with the orientation. In this case, if we
denote by θ± their Lee forms, the following relations hold

(dθ+)+ + (dθ−)+ = 0 (19)

‖θ+‖2g − δgθ+ = ‖θ−‖2g − δgθ−. (20)

Note that The signs “+” have different significations: (dθ+)+ is the self-dual part of dθ+,
i.e. of the exterior derivative of the Lee form of J+.

Proof. We fix g the Riemannian metric and we use Theorem 2.12 and its implications. Denote

by ω± := ωJ
±

.

We have seen that if J is integrable, then it determines an orthonormal basis of Λ+ such
that W+ has the form (18), in particular α is an eigenvector for the middle eigenvalue of W+.
It implies that

α+
0 = ±α−0 , (21)

where α± := (dθ±)+, α±0 are the unit forms determined by α± and J ± are the complex
structures on the orthogonal complements of RJ± in Λ+M . Note that these spaces are distinct,
and (21) implies that their intersection is spanned by α+

0 .
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Therefore, {ω+/
√

2,J +α+
0 } and {ω−/

√
2,J −α−0 } are two orthonormal basis of the same

2-dimensional plane, therefore either(
ω+
√
2

J +α+
0

)
=

(
cos τ − sin τ
sin τ cos τ

)(
ω−√
2

J −α−0

)
(the two basis induce the same orientation and are thus rotated by the rotation matrix Rτ
above), or (

ω+
√
2

J +α+
0

)
=

(
cos τ sin τ
sin τ − cos τ

)(
ω−√
2

J −α−0

)
,

i.e., the two basis are obtained by some reflection Sτ (and induce opposite orientations). Before
we compute the transformation of the 2× 2 matrix

H :=

(
2a b
b −a

)
under the above changes of basis, note that the trace −a and determinant −2a2 − b2 are
invariants, hence

κ+ = κ− and ‖α+‖ = ‖α−‖. (22)

This means that, if the 2×2 block in (18) has the form (22) for two different basis {ω+/
√

2, α+
0 }

and {ω−/
√

2, α−0 }, then it must be the same matrix, i.e. the rotation Rτ , resp. reflection Sτ
must commute with H, therefore its eigenspaces (labeled by their distinct eigenvalues) must
be invariant. For a rotation Rτ , this is only possible for τ ≡ π (mod 2π) (which corresponds
to the trivial J− = ±J+). Thus the only non-trivial orthogonal transformation that could
transform H into itself is a reflection about one of the eigenspaces of H (the other reflection
would be equal to minus the first one).

Therefore, if J± are integrable orthogonal complex structures on a 4-manifold with non-
degenerate W+, either they coincide up to sign or they are related by a reflection given by
W+ alone. Therefore, up to sign, there are at most two compatible complex structures on
(M, g).

Equation (20) follows from (22) and the last relation from Theorem 2.12. From (21) and
(22) we only obtain

(dθ+)+ = ±(dθ−)+.

In order to show that the correct sign is −1, we note that the orientation induced on Λ+M by
the basis {ωJ , α0,Jα0} is independent on the complex structure J ∈ Λ+M . As the reflection
Sτ relating {ω−,J −α−0 } to {ω+,J +α+

0 } is orientation-reversing, in order to complete this
2× 2 transformation to an orientation-preserving 3× 3 orthogonal transformation T of Λ+M ,
we need to add a −1 on the diagonal:

T =

(
Sτ 0
0 −1

)
.

It follows that α+
0 = −α−0 , thus (dθ+)+ + (dθ−)+ = 0, as claimed. �

If we look for compatible complex structures on a conformal 4-manifold, we have seen that,
if W+ is non-degenerate, a bihermitian structure is the most we can expect, and in this case,
the compatible complex structures are related by (19-20). These relations trivially hold on the
set where W+ is degenerate, but not zero, because in this case there is only one compatible
complex structure (up to sign), namely the eigenvector of norm

√
2 for the simple eigenvalue

2a (the other double eigenvalue is −a). They also hold on the subset where W+ = 0, because
Theorem 2.12 implies that on this subset κJ = 0 and (dθJ)+ = 0 for any orthogonal complex
structure.



12 FLORIN BELGUN

Note, however, that if W+ vanishes on an open set U , there are infinitely many local complex
structures on U compatible with the metric an the orientation (see Section 5).

A theorem by Pontecorvo [14] says that the open subset U where two orthogonal complex
structures J± are linearly independent (as elements in Λ+M) is dense in M . As a consequence,
the conformal structure is determined by a non-trivial bihermitian structure on M : Indeed,
if J± are linearly independent on U , the commutator K := [J+, J−] is a skew-symmetric
endomorphism that doesn’t vanish on U , and, together with J+ and J−, spans Λ+M (the
identifications are made for any metric g compatible with both J±). It is easy to see that the
space E+ spanned by K,J+, J− is stable under the commutator of endomorphisms and that
each element of norm1 1/4 is an almost complex structure which should be orthogonal w.r.t.
to any bihermitian metric g. But this fixes the conformal structure on the open dense set U ,
hence on M .

We end this section with the following concluding remarks (see [14] for details):

Remark 2.16. (1) The relations (19-20) hold for any two compatible integrable complex
structures on a given oriented Riemannian 4-manifold (M, g).

(2) The subset where J± are linearly independent is open and dense.
(3) A non-trivial bihermitian structure determines the underlying conformal structure.
(4) If (M, g) admits three independent compatible complex structures, then W+ ≡ 0 (the

manifold is anti-self-dual).

3. Proof of theorem 2.1

Let (M,J+) be a compact complex surface with b1 even and suppose that there exists a
J+-hermitian metric g on M and another g-orthogonal complex structure J− that induces the
same orientation as J+, i.e. (M, g, J±) is bihermitian.

In the following Lemma, we use the notion of a standard metric (also called Gauduchon
metric):

Definition 3.1. Let (M, c) be a conformal manifold and ∇ a fixed Weyl structure on M . A
metric g ∈ c is standard for ∇ if δgθ = 0, where θ is the Lee form of ∇ w.r.t. g.

We will use the case where ∇ = ∇J is the canonical Weyl structure of a complex structure
on a 4-dimensional manifold. In this case, we say that g is standard for J .

An deep result by Gauduchon [10] states that if M is compact, there is always a standard
metric for a given Weyl structure and this standard metric is unique up to a constant rescaling.
Moreover, in the case of a complex hermitian surface (M, c, J) with b1 even, another result by
Gauduchon states that the Lee form of J w.r.t. the standard metric is co-exact [10], see also
[4], Proposition 1.

Lemma 3.2. [3] Let (M, c, J±) be a bihermitian structure on a compact 4-manifold M with
b1 even. Then the standard metric g of J+ is also standard for J− and their Lee forms satisfy

θ+ + θ− = 0. (23)

Proof. From (19) we have d(θ+ + θ−)+ = 0, which implies that θ+ + θ− is closed (as M is
compact). Let g be the standard metric of J+, thus δθ+ = 0. Let β be the harmonic part in
the Hodge decomposition of θ+ + θ−, i.e.

θ+ + θ− = β + da,

1the norm on the space of endomorphisms, equal to A 7→ tr(AtA), is independent on any metric
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where a is some function. From [10], we have that θ+ = δα, for some 2-form α. Therefore

θ− = da+ β + δα

is the Hodge decomposition of θ−, i.e. these three components are L2-orthogonal:∫
M
‖θ−‖2vg =

∫
M
‖β + da− dα‖2vg =

∫
M

(
‖β‖2 + ‖da‖2 + ‖dα‖2

)
vg.

On the other hand, from (20), we have∫
M
‖θ−‖2vg =

∫
M
‖θ+‖2vg =

∫
M
‖δα‖2vg,

thus β ≡ 0 and da ≡ 0, i.e., θ+ + θ− = 0. �

Recall now that, by definition of the Lee form, dω± = −2θ± ∧ ω±, therefore, from (10), we
have

dc±ω
± = 2J±θ± ∧ ω± = 2 ∗ θ±. (24)

Let M, c, J± be a bihermitian 4-manifold with b1 even. Let g be the standard metric for both
J+ and J−. Then the above equation and (23) imply

dc+ω
+ + dc−ω

− = 0

and

ddc±ω
± = 2d ∗ θ± = −2δgθ± = 0, (25)

i.e., (M, g, J±) is generalized Kähler.

This finishes the proof of Theorem 2.1

As a consequence, in [3], the authors classify all compact complex surfaces with b1 even that
admit bihermitian metrics. The bihermitian structures with b1 odd have also been intensively
studied (see the citations in [4]), but they are usually not generalized Kähler. If, additionally,
the bihermitian structure is anti-self-dual, then the classification is complete (see section 5).

4. Proof of Theorem 2.3

First note that the first integrability condition (1) for a generalized Kähler manifold is
equivalent, in case of a 4-manifold, to

J+θ+ ∧ ω+ + J−θ− ∧ ω− = 0,

where we have used the notations from Section 2.1. Using (24) and the fact that J+ is self-dual,
and J− anti-self-dual, we obtain thus that (1) is equivalent to

θ+ = θ−.

That means, if we want to obtain an ambihermitian metric on M such that it is associated
to a generalized Kähler structure, we need to look for orthogonal complex structures J± that
have the same Lee form, or, equivalently, they have the same canonical Weyl structure ∇
(such that ∇J± = 0).

In that case, Q := −J+J− (which is a symmetric involution, as J+ and J− commute) is
also ∇-parallel, therefore the 2-dimensional distributions

H± := {X ∈ TM | J+X = ±J−X} = {X ∈ TM | QX = ±X},

are ∇-invariant. But if a distribution is invariant w.r.t. a torsion-free connection, it is inte-
grable, i.e. it is tangent to a foliation.
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We have thus, that an ambihermitian structure (M4, g, J±) undelying a generalized Kähler
structure implies the existence of 2 transversal foliations by surfaces which, because H± are
J±-invariant, are J±-holomorphic as well.

That proves one direction of the claimed equivalence.

Conversely, let (M,J) be a complex surface admitting two transversal holomorphic foliations
by complex curves. Let H± be the distributions tangent to these foliations. We set Q :=
IdH+ − IdH− and denote J+ := J and J− := QJ+. Then it is easy to check that J− is an
integrable complex structure on M .

Let g be a metric on M such that

(1) H+ and H− are orthogonal for g
(2) the restriction of g to H± is hermitian w.r.t. J

We claim that this metric is ambihermitian w.r.t. J± and that there exists a unique Weyl
structure ∇ such that the distributions H± are ∇-invariant.

Indeed, we only need to prove the second claim. Locally, (M,J) looks like a product of two
complex curves C±, i.e. there exists a covering of M with open sets U ' C+ × C− (product
of complex manifolds). The projections π± : U → C± are holomorphic maps, therefore the
tangent maps π±∗ : TU → TC± induce conformal equivalences between (kerπ±∗ ) ⊥ and TC±.
This means that [g] is a conformal product of some conformal structures [g±] on C± (see [6]),
more precisely

g = e2f
+
g+ + e2g

−
g−, (26)

where g± are randomly chosen2 hermitian metrics on C± and f± : U → R. Let

θ := −d+f− − d−f+

be the sum of d−f+, the derivative of f+ in the H−-directions (tangent to the leaves of U
biholomorphic to C−), and the H+-derivative of f−, d+f−. We claim:

Lemma 4.1. [6] The Weyl structure ∇ := ∇g + θ̃ is the unique Weyl structure on U such
that the distributions H± are ∇-parallel.

Proof. Let X,Y ∈ H+ be vectors in T(x+,x−)U ' Tx+C
+ × Tx−C−. Because X,Y ∈ H+ we

have that the second components of X,Y are zero. Note that the component of ∇XY in H−

does not depend on the extensions of X,Y to vector fields in H+ (the argument is similar to
the definition of the (second) fundamental form of an immersed submanifold).

Extend then X,Y to be vector fields in H+ that project on vector fields on C+ (or lift to U
some vector fields X+, Y + from C+) such that X+, Y + ∈ TC+ are parallel at x+ ∈ C+ w.r.t.
the Levi-Civita connection of g+ on C+. Then

C− 3 y− 7−→ g(X,Y )(x,y−) = e2f
+(x+,y−)g+(X+, y+)x+

is the product of the e2f
+

factor with a constant factor. Moreover, [X,Y ](x+,y−) = 0.

Let Z be a lift of a vector field on C−. It follows that X and Y commute with Z: [X,Z] =
[Y,Z] = 0. Then we compute, using the Koszul formula:

2g(∇gXY,Z) = −Z.(e2f+)g+(X,Y ) = 2θ(Z)g(X,Y ). (27)

Compute then, using (28-29),

∇XY = ∇gXY + θ(X)Y + θ(Y )X − θ]g(X,Y ),

2all hermitian metrics on a complex curve are conformally equivalent
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therefore ∇XY ∈ H+. Similarly we get that, for X,Y ∈ H−, ∇XY ∈ H−. This is enough to
prove that H± are ∇-invariant.

To show that ∇ is the only Weyl structure that leaves H± invariant, consider ∇′ = ∇+ η̃
and suppose that ∇′ also has this property. By choosing X,Y ∈ H+, ∇′XY ∈ H+ implies that
η vanishes on H−, and ∇′XY ∈ H− ∀X,Y ∈ H− implies η|H+ = 0. �

Remark 4.2. We have actually shown that M is locally a conformal product of two complex
curves, which abstractly means that the (local) projections π± are conformal submersions, and
more concretely that the metric is given by a formula like (26). The previous Lemma holds
in general: any conformal product admits a unique Weyl structure that preserves the product
structure. See [6] for details.

Now, ∇ is a Weyl structure for which H± are parallel distributions, i.e. ∇Q = 0. Moreover,
as ∇ is a conformal connection, it preserves the conformal structure on H± which, together
with the orientation of H±, is equivalent to the complex structre J on H±. Thus J = J+ is
∇-parallel, and J− = QJ+ is parallel as well.

Therefore, the Lee forms of J± are both equal to θ, which is equivalent to the first generalized
Kähler condition (1).

The second generalized Kähler condition,

ddc+ω
+ = 0,

see also (2) for the untwisted version, is equivalent (like in (25)) to

δθ = 0,

resp. that θ is co-exact. But δθ = 0 characterizes the standard metric in the conformal class.

Therefore, if we denote by h ∈ [g] the standard metric on the compact conformal manifold
(M, [g]) w.r.t. ∇, then (M,h, J±) is a generalized Kähler manifold.

It is untwisted iff θ is co-exact. But a standard metric has co-exact Lee form iff the first
Betti number is even ([4], Proposition 3).

This finishes the proof of Theorem 2.3. Note that one of the implications (generalized
Kähler ⇒ transverse foliations) holds in higher dimensions, too, [4]. The difficulty of the
converse implication in higher dimensions lies in the fact that not every hermitian metric that
is adapted to a hermitian product is a conformal product, as it is if the factors are complex
1-dimensional.

On the other hand, in dimension 4 the characterization of compact complex surfaces that
admit an ambihermitian metric underlying a generalized Kähler structure yields a complete
classification of those surfaces [4].

5. Anti-self-dual bihermitian surfaces

5.1. Twistor theory. Let (M, g) be an oriented Riemannian 4-manifold. If W− ≡ 0 we say
that g is self-dual and if W+ ≡ 0 we say that g is anti-self-dual (in short ASD). Of course, this
condition depends only on the conformal class [g] of g. The main tool of local investigation of
orthogonal complex structures on (M, g) is the twistor theory, [5]:

Let Z → M be the sphere bundle of self-dual 2-forms (or endomorphisms) of square norm
2, equivalently the bundle of orthogonal, positive-oriented, pointwise complex structures on
M . An orthogonal, positive-oriented almost complex structure J is thus a section of Z →M .

Every Weyl structure ∇ induces a connection on Z →M that decomposes TJZ in a vertical
part (tangent to the fiber Zx, if J ∈ Λ2

xM) and a horizontal part, isomorphic to TxM . As
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the fiber is a sphere, it admits a canonical complex structure J0. The horizontal part, being
isomorphic to TxM , also has a complex structure, namely J itself. We add these to get an
almost complex structure J on Z. The main points of the twistor theory are (see [5],[7] for
details):

(1) J is independent on the Weyl structure and depends on the conformal structure [g]
alone.

(2) J is integrable iff W+ ≡ 0.
(3) An integrable complex structure J on M is equivalent to a section J in Z that is
J -holomorphic (i.e., the tangent space of J(M) is J -invariant).

We see thus that, if W+ = 0, then there are infinitely many local complex structures on
M compatible with g and the orientation. Global complex structures need not exist (see the
conformally flat, hence self-dual, round sphere S4).

5.2. ASD bihermitian metrics. The global compatible complex structures on an ASD
manifold turn out to be very special:

Proposition 5.1. [14] Let M be a compact oriented 4-manifold. An ASD metric g which is
bihermitian w.r.t. the complex structures J± is also locally conformally Kähler (l.c.K.) w.r.t.
both these metrics.

A metric g is locally conformally Kähler (l.c.K.) iff it admits local Kähler metrics h (i.e., for
which ωh is closed) in the conformal class. If, additionally, b1(M) is even, then g is globally
conformally Kähler. Equivalently, a metric g on (M,J) is l.c.K. iff the Lee form of J w.r.t. g
is closed; it is globally conformally Kähler iff that Lee form is exact.

Proof. In Theorem 2.12, since W+ = 0, we conclude that (dθ±)+ = 0 and hence both θ± are
closed. But this means that θ = df on some open set, and there the local metric h := e2fg
will have

dωh = d(efωg) = 2dfωh − 2efθ ∧ ωg = 0.

We also conclude that κJ = 0 for all compatible complex structures J (i.e., there are local
Kähler scalar-flat metrics in the conformal class).

Conversely, assume g is l.c.K. w.r.t both J± and assume by the Theorem of Pontecorvo [14]
cited at the end of Section 2.4 that J+ 6= ±J± everywhere.

On the other hand, for the complex structure J+, the curvature of a Kähler metric (M, g, J+)
takes values only in Λ−M ⊕ RJ+, in particular the Weyl tensor must be degenerate and, if
κ+ 6= 0, then J− should be collinear to J+, contradiction. But κ+ = 0 implies W+ = 0.

The last claim follows from Lemma 3.2: Indeed, the Hodge decomposition of the closed
form θ+ contains an exact form and a harmonic form. But g is standard, thus θ+ is co-exact,
therefore it must vanish. �

Therefore, if (M, [g], J±) is bihermitian ASD and b1(M) is even, then the standard metric
to J± is actually Kähler (w.r.t. both J±), but this means that J± are both parallel w.r.t.
the Levi-Civita connection of g, and since they are linearly independent, the whole Λ+M is
spanned by global parallel sections. i.e. (M, g) is hyperkähler (see also [14]).

If, on the other hand, b1(M) is odd, then it can be shown that b1 = 1 [8], [13]. This implies
that the conclusion of Lemma 3.2 also holds in this case:

Proposition 5.2. [14] Let (M, c, J±) be a compact ASD bihermitian manifold with b1(M)
odd. Then the J+-standard metric g is also standard for J− and if the Lee forms w.r.t. g are
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θ±, then

θ+ = ±θ−.

Proof. As in the proof of Lemma 3.2 we show that θ± have the same L2-norm w.r.t. any
metric in the conformal class. Then, because they are both closed 1-forms, and that H1(M)
is 1-dimensional, it follows that

[θ+] = k[θ−],

for some k ∈ R.

If k = 1, let g be J+-standard and then θ+ = θ− by Hodge theory, as in Lemma 3.2.

If k 6= 1, then θ+ = kθ− + df and after a conformal change with the factor e2h with
h := f/(k − 1) we end up with the metric g′ and the Lee forms η± = θ± + dh that satisfy

dη+ = kdη−,

which implies (by taking the L2-norms), that k2 = 1, thus k = −1 and (20) applied for g′

implies that

‖η+‖2 − δη+ = ‖η−‖2 − δη− = ‖η+‖2 + δη+,

thus δη+ = 0 and g′ is standard for J+ (and thus for J−, too). �

These results can be used to classify completely all compact complex surfaces that admit
ASD bihermitian metrics [14].

6. Appendix: Riemannian and conformal geometry

6.1. Weight bundles. Let M be a n-dimensional manifold with density bundle |Λ|M . This
is an oriented, hence trivial real line bundle, whose positive sections are the volume elements
of M , allowing the integration of functions on the manifold; it is isomorphic, if M is oriented,
with ΛnM , the bundle of n-forms on M .

A conformal structure on M is a non-degenerate symmetric bilinear form on TM with values
in the line bundle L2 := L⊗L, also seen as a section c ∈ C∞(S2M ⊗L2). (here we denote by
S2M the bundle of symmetric bilinear forms on TM .)

In this paper, we restrict to the case where c is positive definite (note that L is canonically
oriented), thus (M, c) is a conformal Riemannian manifold.

Remark 6.1. Each positive section l of L trivializes it, hence

gl := cl−2 : TM ⊗ TM → R

is a Riemannian metric on M . If l′ := ef l is another positive section (for f : M → R a
smooth function), then the metric gl′ = e−2fgl is conformally equivalent to gl, and they belong
to the same conformal class, defined by c.

6.2. Weyl structures. Unlike in (semi-) Riemannian geometry, a conformal manifold does
not carry a canonical affine connection. Instead, there is a family of adapted connections, the
Weyl structures:

Definition 6.2. A Weyl structure ∇ on a conformal manifold (M, c) is a torsion-free, con-
formal connection on TM , i.e. ∇c = 0.

Remark 6.3. The expression ∇c has the following meaning: ∇ induces a connection on
all associated bundles to TM , in particular on |Λ|M and on L itself, therefore ∇ induces a
connection on S2M⊗L2, and ∇c is the covariant derivative of c with respect to this connection.
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The fundamental theorem of conformal geometry can now be stated:

Theorem 6.4. Let (M, c) be a conformal manifold and denote, for a Weyl structure ∇, by
∇L the connection induced by ∇ on L. The correspondence

{Weyl structures on M} −→ {connections on L} ,
given by ∇ 7→ ∇L is one-to-one.

More precisely, we have the following conformal Koszul formula

2c (∇XY, Z) = ∇LX (c(Y, Z)) +∇LY (c(X,Z))−∇LZ (c(X,Y )) +

c ([X,Y ], Z) + c ([X,Z], Y )− c ([Y, Z], X) .

Why do we need Weyl structures: first, because any integrable c–orthogonal complex struc-
ture on a 4-manifold is parallel for a (uniquely determined) Weyl structure. Second, the
formalism is helpful when dealing with the way curvature is modified after a conformal change
of the metric (see Proposition 6.7)

An important consequence of Theorem 6.4 and (28) is the relation between two Weyl struc-

tures: as the difference between two linear connections ∇′L and ∇L in the line bundle L is a
1–form θ, the difference between the corresponding Weyl structures ∇′ and ∇ must be given
by a tensor that depends linearly on θ. More precisely, applying (28) we get:

∇′XY −∇XY = θ̃XY := (θ ∧X)(Y ) + θ(X)Y, (28)

where θ∧X, the wedge product of a 1–form and a vector, is the skew-symmetric endomorphism
of TM defined by

(θ ∧X)(Y ) := θ(Y )X − c(X,Y )θ. (29)

Here, note that the 1–form θ is a section of T ∗M ' TM ⊗L−2 and thus c(X,Y )θ is a section
of TM ⊗ L−2 ⊗ L2 ' TM .

Convention. In this paper, we use the usual identifications of vectors and co-vectors, of
2–forms and skew-symmetric endomorphisms of the tangent space from Riemannian geometry,
but we keep in mind that, in the conformal setting, such an identification may involve the
addition of a weight factor Lk. As a rule, vectors have weight 1, co-vectors have weight −1
and an (r, s) tensor A ∈ ⊗rT ∗M ⊗⊗sTM has weight s− r. The identifications can be made
then as in Riemannian geometry, but we need to check that, in the end, the conformal weights
are the same.

In the particular case where ∇ = ∇g is the Levi-Civita connection of a Riemannian metric
g, the form θ above is called the Lee form of ∇′ w.r.t. g. Note that, if ∇′ is the Levi-Civita
connection of g′ = e−2fg, θ = df . It turns out that the Lee form of a fixed Weyl structure
∇ changes with an exact form when the referring metric changes, therefore dθ depends on ∇
alone (not surprising since dθ is the curvature of ∇L and, as we shall see below, the Faraday
form of ∇).

Remark 6.5. The difference tensor θ̃X is an endomorphism of TM which lies in the adjoint
bundle co(M) of the bundle of conformal frames CO(M); this adjoint bundle is split in the
bundle of skew-symmetric endomorphisms of TM and the line bundle of multiples of the
identity Id : TM → TM . The corresponding components of θ̃X are (θ ∧X) and, respectively
θ(X)I, and they act on a tensor by the Lie algebra action of co(n) on the corresponding
tensor powers of Rn and of (Rn)∗. In particular, if the action of the skew-symmetric part is
the usual so(n) action and thus all identifications between vectors and co-vectors are allowed
(disregarding the conformal weights), the action of Id on a tensor is the multiplication by its
conformal weight.
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For example, for a section l of Lk we have

∇′X l −∇X l = kθ(X)l, (30)

for a 1–form α, we have

∇′Xα−∇Xα = θ̃Xα = (θ ∧X)α−θ(X)α = −α ◦ (θ ∧X)− θ(X)α,

and, for an endomorphism A : TM → TM , we have

∇′XA−∇XA = [θ ∧X,A], (31)

where the square bracket is the commutator of endomorphisms. Note that the factor θ(X)Id
acts trivially on the weightless tensor A.

6.3. Curvature. The curvature of a Weyl structure ∇ is defined by

R∇X,Y Z := ∇X(∇Y Z)−∇Y (∇XZ)−∇[X,Y ]Z,

and can be seen as a 2–form with values in co(M). The identity component of this 2–form is
related to the Faraday form F∇ ∈ Λ2M , which is the curvature of the connection ∇L, more
precisely

R∇X,Y = (R∇X,Y )skew + F∇ ⊗ Id.
R∇ satisfies the Bianchi identities (tensorial and differential), the tensorial (or the first) Bianchi
identity being:

R∇X,Y Z +R∇Y,ZX +R∇Z,XY = 0, ∀X,Y, Z ∈ TM, (32)

and this identity is equally satisfied by the tensor

F̃∇ := −1

2
F∇ ∧ Id+ F∇ ⊗ Id. (33)

Notation. The suspension of a bilinear form A ∈ T ∗M ⊗ T ∗M by the identity is the
following tensor

(A ∧ Id)X,Y := A(Y, ·) ∧X −A(X, ·) ∧ Y, (34)

where we note, as in (29), that the wedge product between a vector and a 1–form (here A(Y, ·))
is a skew-symmetric endomorphism.

The curvature R∇ decomposes thus in two components, both of which satisfy the tensorial
Bianchi identity (32):

R∇ = R∇,Riem + F̃∇.

R∇,Riem is a 2–form with values in so(M), the bundle of skew-symmetric endomorphisms,
and satisfies the Bianchi identity (32), therefore it is a Riemannian curvature tensor and, for
dimM ≥ 3, it decomposes thus as

R∇,Riem = W + ρ∇ ∧ Id,
where ρ∇ is a symmetric bilinear form on TM and W is the trace-free part of R∇,Riem and is
called the Weyl tensor of (M, c) (that it depends only on c will become clear in the Proposition
6.7 below).

Recall that if F∇ = 0, and thus ∇ is the Levi-Civita connection of a (local) metric g, then
R∇ = R0 and, in this case, ρ∇ is the Schouten-Weyl tensor (a renormalization of the Ricci
tensor) of g. If ∇ is a general Weyl structure, we have:

Proposition 6.6. The curvature R∇ of a Weyl structure ∇ on a conformal manifold (M, c)
decomposes as

R∇ = R∇,Riem + F̃∇ =
(
ρ∇ ∧ Id+W

)
+

(
1

2
F∇ ∧ Id+ F∇ ⊗ Id

)
,
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where W is the Weyl tensor, F is the Faraday (exact) 2-form, and ρ∇ is the symmetric
Schouten-Weyl tensor. Equivalently,

R∇ = h∇ ∧ Id+W + F∇ ⊗ Id,
where h∇ = ρ∇ − 1

2F
∇ is the full Schouten-Weyl tensor of ∇.

We give now the transformation rule for the curvature tensors corresponding to two Weyl
structures.

Proposition 6.7. For two Weyl structures ∇′ = ∇ + θ̃, the corresponding Schouten-Weyl
tensors are related by:

h∇
′ − h∇ = −∇θ + θ ⊗ θ − 1

2
c(θ, θ)c. (35)

Moreover, the Weyl tensor W is independent on the Weyl structure and depends on the con-
formal structure only. The Faraday curvature changes as follows:

F∇
′

= F∇ + dθ.

Proof. Let us compute the curvature of ∇′ by deriving (28), and using (31) at a point where
all ∇–derivatives of the involved vector fields vanish:

∇′X∇′Y Z = (∇Xθ ∧ Y )(Z) + [θ ∧X, θ ∧ Y ](Z) + (∇Xθ)(Y )Z. (36)

Thus

R∇
′

X,Y Z = R∇X,Y Z − (∇θ ∧ Id)X,Y Z + 2[θ ∧X, θ ∧ Y ](Z) + dθ(X,Y )Z.

We compute directly

[θ ∧X, θ ∧ Y ] = (θ ⊗ θ)(Y ) ∧X − (θ ⊗ θ)(X) ∧ Y − c(θ, θ)X ∧ Y

=
1

2

(
((θ ⊗ θ) ∧ Id)X,Y −

1

2
c(θ, θ)(c ∧ Id)X,Y

)
,

that implies

F∇
′

= F∇ + dθ, W∇
′

= W∇

and the claimed result. �

Remark 6.8. While the Schouten-Weyl tensor is only defined by the curvature decomposition
for dimM ≥ 3, the curvature itself, and the Ricci tensor in particular, are well-defined in all
dimensions, and we have

h∇ =
1

n− 2
Sym0(Ric

∇) +
1

2n(n− 1)
Scal∇ · c− 1

2
F∇,

where the Ricci tensor is defined by the usual trace of the curvature:

Ric∇(X,Y ) := tr(R∇·,XY ).

Equivalently,

Ric∇ = (n− 2)ρ∇ + trcρ
∇ · c− n

2
F∇,

which also implies

Scal∇ = 2(n− 1)trcρ
∇ = 2(n− 1)trch

∇.

Note that, for ∇ a general Weyl structure, it is important which trace of the curvature
we consider: the other trace (in the arguments corresponding to the vectors X and Y in the
above expression) is a related Ricci-like tensor:

R̃ic∇(X,Y ) := trc
(
c(R∇X,··, Y )

)
,
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which has the same symmetric part, but the skew-symmetric part changes:

R̃ic∇ = Ric∇ − 2F∇. (37)

Since the skew part of Ric∇ is −(n/2)F∇, it means that R̃ic∇ is symmetric if n = 4.

Corollary 6.9. The scalar curvature of a Weyl structure ∇, with Lee form θ with respect to
a Riemannian metric g (i.e., ∇ = ∇g + θ̃) is given by

Scal∇ = Scalg + (n− 1)
(
2δgθ + (2− n)‖θ‖2g

)
.
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