PROJECTIVE AND CONFORMAL FLATNESS

FLORIN BELGUN

. These notes are intended to summarize and complete the lectures given by me on Dec. 6 and 10, 2012, as part of the lectures on affine differential geometry by Prof. Dr. V. Cortés. Feel free to send me by e-mail your remarks and comments.

1. Projective geometry

1.1. Projective structures.

Definition 1. A projective structure on a manifold M of dimension n > 1 is a class of torsion-free connections on M that define the same family of unparametrized geodesics.

A curve $c: I \to M$ is a (parametrized) geodesic for the connection ∇ iff

$$\nabla_{\dot{c}}\dot{c} = 0.$$

The curve c is an unparametrized geodesic for ∇ iff there is a diffeoemorphism $\varphi : I_1 \to I$ such that $c \circ \varphi$ is a parametrized geodesic. Equivalently, c is an unparametrized geodesic iff

$$\nabla_{\dot{c}}\dot{c}$$
 is colinear to \dot{c} . (1)

Example 2. $\mathbb{R}P^n$, the real projective space of dimension n, is the set of lines (i.e., onedimesional vector subspaces) of \mathbb{R}^{n+1} , or, equivalently, the quotient of $\mathbb{R}^{n+1} \setminus \{0\}$ by the action of \mathbb{R}^* .

The family of unparametrized geodesics on $\mathbb{R}P^n$ is the family of projective lines: such a projective line [E] is the set of (vectorial) lines in \mathbb{R}^{n+1} contained in a 2-plane $E \subset \mathbb{R}^{n+1}$ or, equivalently, the set $(E \setminus \{0\})/\mathbb{R}^*$.

Indeed, on each affine chart $U_{\alpha} := \{\mathbb{R}x \mid \alpha(x) \neq 0\} \subset \mathbb{R}P^n$, (here $\alpha \in (\mathbb{R}^{n+1})^*$) the affine hyperplane

$$H_{\alpha} := \{ x \in \mathbb{R}^{n+1} \mid \alpha(x) = 1 \}$$

is diffeomorphic to U_{α} . Any affine diffeomorphism of H_{α} to \mathbb{R}^n induces a torsion-free (flat) connection on U_{α} whose geodesic are the affine lines in H_{α} , which correspond to the 2-planes in \mathbb{R}^{n+1} as described above.

Note that $\mathbb{R}P^n$ is the quotient of the euclidian sphere $S^n \subset \mathbb{R}^{n+1}$ under the action of the antipodal transformation. The induced Riemannian connection on S^n has the *big circles* (i.e., intersections of S^n with 2-planes) as geodesics, which cover the projective lines in $\mathbb{R}P^n$. Therefore, the (non-flat) Levi-Civita connection on the round sphere induce (globally) the same unparametrized geodesics on $\mathbb{R}P^n$ as the affine charts (which have flat connections).

This suggest the notion of projective equivalence and projective flatness:

Definition 3. Two connections are projectively equivalent iff they induce the same unparametrized geodesics. A connection is projectively flat iff it is locally equivalent to a flat connection. The corresponding projective structure is called flat.

Proposition 1. For two projectively equivalent connections ∇, ∇' there exists a 1-form η on M such that

$$\nabla'_X Y = \nabla_X Y + \tilde{\eta}_X Y; \ \tilde{\eta}_X = \eta(X) \mathrm{Id} + \eta \otimes X.$$

Proof. Two linear connections are related by

$$\nabla'_X Y = \nabla_X Y + A_X Y,$$

where $A: TM \to \text{End}(TM)$ is a linear map. The connections ∇, ∇' have the same torsion iff $A_X Y = A_Y X, \forall X, Y \in TM$.

On the other hand, the condition (1) implies that

$$A_X X$$
 is collinear to $X, \forall X \in TM$.

Equivalently, there is a map $\eta: TM \to R$ such that

$$A_X X = 2\eta(X)X, \ \forall X \in TM.$$
⁽²⁾

Because $X \mapsto A_X X$ is quadratic, so must be $X \mapsto \eta(X)X$, therefore $\eta : TM \to \mathbb{R}$ has to be linear. Applying (2) to X + Y for any vectors X, Y, and using the symmetry condition $A_X Y = A_Y X$, we obtain

$$A_X Y = \eta(X) Y + \eta(Y) X.$$

1.2. Curvature. The curvature of a connection ∇ is defined, as usual, by the formula

$$R_{X,Y}Z := \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]}Z = \left([\nabla_X, \nabla_Y] - \nabla_{[X,Y]} \right) Z,$$

and is thus a section R of

$$\Lambda^2 M \otimes \operatorname{End}(TM) = \Lambda^2 M \otimes (T^* M \otimes TM).$$

If the connection is torsion-free, then the first Bianchi identity implies that

$$\sum_{X,Y,Z} R_{X,Y}Z := R_{X,Y}Z + R_{Y,Z}X + R_{Z,X}Y = 0,$$

or, equivalently, that $B_1(R) = 0$, where

 $B_1: \Lambda^2 M \otimes (T^*M \otimes TM) \to \Lambda^3 M \otimes TM$

is the corresponding skew-symmetrization of the first 3 factors.

We denote by \mathcal{R} the space of linear curvature tensors R satisfying the Bianchi identity. The dimension of \mathcal{R} is

$$\frac{n(n-1)}{2}n^2 - \frac{n(n-1)(n-2)}{6}n = \frac{n^2(n^2-1)}{3}$$

This space can be, however, further decomposed, using two independent contractions:

$$F(X,Y) := \frac{1}{n} \operatorname{tr}(Z \mapsto R_{X,Y}Z) \in \Lambda^2 M$$

is called the Faraday form, and

$$\operatorname{Ric}(X,Y) := \operatorname{tr}(Z \mapsto R_{Z,X}Y) \in T^*M \otimes T^*M$$

is called the *Ricci tensor* of *R*. The first Bianchi identity implies that

$$\operatorname{Ric}(X,Y) - \operatorname{Ric}(Y,X) = -nF(X,Y), \qquad (3)$$

thus the skew-symmetric part of Ric is

$$\operatorname{Ric}^{sk} = -\frac{n}{2}F \in \Lambda^2 M.$$

There also exist maps from $\Lambda^2 M$, resp from $S^2 M$ to \mathcal{R} , constructed by *suspension* with the identity:

Definition 4. The suspension of a bilinear map $A \in T^*M \otimes T^*M$ with the identity is the following element of $\Lambda^2 M \otimes \text{End}(TM)$:

$$(A \wedge \mathrm{Id})_{X,Y}Z := A(Y,Z)X - A(X,Z)Y.$$

This suspension is also in \mathcal{R} iff $A \in S^2M$ (i.e., A is symmetric). More precisely, for a skew-symmetric form A, the suspension $A \wedge \text{Id}$ needs to be corrected by a Faraday-type term, in order to obtain an element of \mathcal{R} :

$$\tilde{A} := \frac{1}{2}A \wedge \mathrm{Id} - A \otimes \mathrm{Id} \in \mathcal{R}, \ \forall A \in \Lambda^2 M.$$

The Ricci contraction of $(A \wedge \mathrm{Id})$ is

$$\operatorname{tr}(Z \to (A \wedge \operatorname{Id})_{Z,X}Y) = \operatorname{tr}(Z \to A(X,Y)Z - A(Z,Y)X = (n-1)A(X,Y)$$

(for A symmetric or not), and the Faraday contraction of it is zero iff A is symmetric. The Ricci contraction of \tilde{F} is $\frac{n-1}{2}F + F = \frac{n+1}{2}F$. On the other hand, the Faraday contraction of \tilde{F} is $-\frac{n+1}{n}F$. This implies that, for a symmetric tensor ρ^{sym} , the tensor

$$\rho^{sym} \wedge \operatorname{Id} - \frac{n}{n+1}\tilde{F} \text{ is in } \mathcal{R},$$

its Faraday contraction is F, and its Ricci contraction is $(n-1)\rho^{sym} - \frac{n}{2}F$.

Therefore, if, for a given connection ∇ with curvature R, Ricci tensor Ric and Faraday form F, we define the *normalized Ricci tensor* (or *Schouten tensor*)

$$\rho^R := \frac{1}{n-1} \left(\operatorname{Ric} + \frac{n}{n+1} F \right), \tag{4}$$

then the Faraday and Ricci tensor of

$$(\rho^R \wedge \mathrm{Id}) + \frac{n}{n+1}F \otimes \mathrm{Id}$$
(5)

coincide with the ones of R itself. It follows that the Weyl tensor, defined by

$$W := R - \rho^R \wedge \mathrm{Id} - \frac{n}{n+1} F \otimes \mathrm{Id} \in \mathcal{R},$$

has vanishing Faraday and Ricci trace (hence it is completely trace-free). Denote by $\mathcal{W} \subset \mathcal{R}$ the space of trace-free (or Weyl) curvature tensors.

We conclude:

Proposition 2. The curvature of a torsion-free connection decomposes in the following tensors, sections of vector bundles associated to GL(n)-irreducible representations:

$$R = W + \rho^{sym} \wedge \mathrm{Id} + \frac{n}{n+1}\tilde{F},$$

where $W \in \mathcal{W}, \ \rho^{sym} \in S^2M, \ F \in \Lambda^2 M$.

The dimension of \mathcal{W} is thus

$$\dim \mathcal{W} = \frac{n^2(n^2 - 1)}{3} - n^2 = \frac{n^2(n^2 - 4)}{3} > 0 \iff n > 2.$$

The Weyl tensor vanishes thus for n = 2 by dimensional reasons.

We will show that, for n > 2, the vanishing of W is equivalent to the projective flatness of ∇ . One of the claimed implications follows from

Proposition 3. If $\nabla' = \nabla + \tilde{\eta}$, we have the following relations between the curvature components of R, R':

$$F' = F + d\eta, \ \rho' = \rho - \nabla \eta + \eta \otimes \eta, \ W' = W.$$

Proof. We make the computations in a point $p \in M$, and we suppose that all the vector fields used for the computations are ∇ -parallel at p. Thus

$$R'_{X,Y} = [\nabla'_X, \nabla'_Y] = [\nabla_X + \tilde{\eta}_X, \nabla_Y + \tilde{\eta}_Y].$$

We have $[\nabla_X, \nabla_Y] = R_{X,Y}$, and we need to compute

$$[\nabla_X, \tilde{\eta}_Y] - [\nabla_Y, \tilde{\eta}_X]$$

and $[\tilde{\eta}_X, \tilde{\eta}_Y]$. Recall that $\tilde{\eta}_X = \eta(X) \mathrm{Id} + \eta \otimes X$. Therefore

$$[\nabla_X, \tilde{\eta}_Y] - [\nabla_Y, \tilde{\eta}_X] = (\tilde{\nabla_X} \eta)_Y - (\tilde{\nabla_Y} \eta)_Y = = d\eta(X, Y) \mathrm{Id} - (\nabla \eta \wedge \mathrm{Id})_{X,Y},$$
(6)

and

$$[\tilde{\eta}_X, \tilde{\eta}_Y] = [\eta \otimes X, \eta \otimes Y] =$$

$$= ((\eta \otimes \eta) \wedge \operatorname{Id})_{X,Y}.$$
(7)

1.3. The Cotton tensor. Before proving the main theorem of projective geometry, we define **Definition 5.** The Cotton tensor of a connection ∇ is the following section of $\Lambda^2 M \otimes T^*M$ (whose skew-symmetric part, i.e., the component in $\Lambda^3 M$, is zero):

$$C(X,Y;Z) = \nabla_X \rho(Y,Z) - \nabla_Y \rho(X,Z)$$

Remark 6. For any connection, the curvature satisfies the second (or differential) Bianchi identity:

$$\nabla_X R_{Y,Z} + \nabla_Y R_{Z,X} + \nabla_Z R_{X,Y} = 0.$$

The Faraday form is nothing but 1/n times the curvature of the connection induced by ∇ on $\Lambda^n TM$. As such it satisfies itself the differential Bianchi identity, and thus dF = 0.

This also menas that F = 0 iff the connection ∇ is locally equiaffine, i.e., it admits locally ∇ -parallel volume forms. (The local character is essential: even-dimensional real projective space are non-orientable, but the Levi-Civita connection on S^n induces a locally equiaffine connection on $\mathbb{R}P^n$.

At this point, we note the following fact (not related to our main result):

Proposition 4. For a projective manifold M of dimension $n \ge 2$, for any given non-vanishing volume form ω , there exists a unique connection ∇ adapted to the projective structure and equiaffine w.r.t. ω , i.e., such that $\nabla \omega$.

In fact, one can prove, more generally, that every connection on the line bundle $\Lambda^n M$ is induced by a unique connection adapted to the projective structure on M.

Proof. Let ∇ be a connection adapted to the given projective structure on M and denote by $R, W, \text{Ric}, F, \rho$ the corresponding tensors as above. The covariant derivative of the volume form ω is thus given by a 1-form, thus

$$\nabla \omega = \alpha \otimes \omega$$

We set then

$$\nabla' := \nabla' + a\tilde{\alpha},$$

where $a \in \mathbb{R}$ is a constant to be determined. Then

$$\nabla'_X \omega - \nabla_X \omega = -(n+1)a\alpha(X)\omega.$$

By setting a := -1/(n+1) we obtain that $\nabla' \omega = 0$. The relation above also implies that the connection ∇' with the property that $\nabla' \omega = 0$ is unique.

Returning to the Cotton tensor, note that it vanishes iff the covariant derivative of ρ (or of Ric) is completely symmetric. For n > 2, it turns out that C is determined by the Weyl tensor:

Proposition 5. If we denote by
$$\delta W(X,Y;Z) := \operatorname{tr}(V \mapsto \nabla_V W_{X,Y}Z)$$
, we have, for $n > 2$:
 $\delta W(X,Y;Z) = (n-2)C(X,Y;Z).$

Proof. We take the trace of the second Bianchi identity:

$$0 = \delta R(X, Y; Z) + \operatorname{tr}(V \mapsto \nabla_X R_{Y,V} Z + \nabla_Y R_{V,X} Z)$$

$$= \delta R(X, Y; Z) - \nabla_X \operatorname{Ric}(Y, Z) + \nabla_Y \operatorname{Ric}(X, Z)$$

$$= \delta W(X, Y; Z) + \operatorname{tr}\left(V \mapsto (\nabla_V \rho \wedge \operatorname{Id})_{X,Y} Z + \frac{n}{n+1} \nabla_V F(X, Y) Z\right) - (8)$$

(use (4)) $-(n-1)C(X, Y; Z) + \frac{n}{n+1} (\nabla_X F(Y, Z) - \nabla_Y F(X, Z))$

$$= \delta W(X, Y; Z) - (n-2)C(X, Y; Z).$$

Here we have used that

$$tr(V \mapsto A(X, Y, V)Z) = A(X, Y, Z)$$

and that F is closed.

1.4. Projective flatness. The main result of this lecture is:

Theorem 1. Let M be a projective manifold of dimension $n \ge 2$. Then M is projectively flat iff W = 0 and, if n = 2, C = 0.

Proof. First, if M is projectively flat, then W and hence C have to vanish for $n \ge 3$. For n = 2 (actually for all $n \ge 2$), we have the following

Lemma 1. If $\nabla' = \nabla + \tilde{\eta}$, then $C' - C = \eta(W)$.

Proof. We compute

$$\nabla'_{X}\rho'(Y,Z) = \nabla_{X}\rho'(Y,Z) - \rho'(\tilde{\eta}_{X}Y,Z) - \rho'(Y,\tilde{\eta}_{X}Z) =$$

$$= \nabla_{X}\rho(Y,Z) - \nabla_{X}\nabla_{Y}\eta(Z) + \nabla_{X}\eta(Y)\eta(Z) + \eta(Y)\nabla_{X}\eta(Z) -$$

$$-\rho'(\tilde{\eta}_{X}Y,Z) - \rho(Y,\tilde{\eta}_{X}Z) + \nabla_{Y}\eta(\tilde{\eta}_{X}Z) - \eta(Y)\eta(\tilde{\eta}_{X}Z).$$
(9)

If we skew-symmetrize the above relation in X and Y (using that $\tilde{\eta}_X Y = \tilde{\eta}_Y X$), we obtain

$$C'(X,Y;Z) - C(X,Y;Z) = -(R_{X,Y}\eta)(Z) - \eta(X)\rho(Y,Z) + \eta(Y)\rho(X,Z) + (\rho(X,Y) - \rho(Y,X))\eta(Z)$$

= $\eta(R_{X,Y}Z) - \eta((\rho \wedge \mathrm{Id})_{X,Y}Z) - \frac{n}{n+1}F(X,Y)\eta(Z)$
= $\eta(W_{X,Y}Z).$ (10)

Therefore, if ∇ is projectively flat, then W (if $n \ge 3$), resp. C (if n = 2) must coincide with the ones defined by a flat connection.

Conversely, if W and C vanish (from Proposition 5, W = 0 implies, for n > 2, that C = 0, for any adapted connection ∇), we want to construct a flat connection projectively equivalent to ∇ . From W = 0 we have, for an adapted connection ∇ ,

$$R = \rho \wedge \mathrm{Id} + F \otimes \mathrm{Id}.$$

From the Proposition 3, we need to find locally a 1-form η such that $\rho = \nabla \eta - \eta \otimes \eta$. In order to solve (locally) this nonlinear PDE, we use the Frobenius theorem:

Theorem 2. If $\mathcal{D} \subset TN$ is an involutive distribution (subbundle in TN) on a manifold N, then there exists a foliation \mathcal{F} (i.e., a family of submanifolds) tangent to this distribution (i.e. $T\mathcal{F} = \mathcal{D}$).

A distribution \mathcal{D} is said to be *involutive* iff the Lie bracket of two sections of \mathcal{D} (seen as vector fields on N) is a vector field which is also a section of \mathcal{D} .

We will construct a distribution \mathcal{D} on $N := T^*M$ as follows:

The tangent space of $N = T^*M$ decomposes, for a given connection ∇ , in the vertical and horizontal components

$$T_{\alpha}N = T_{\alpha}^{V}N \oplus T_{\alpha}^{H}N,$$

where $T^V \simeq T^*M$ and $T^HN \simeq TM$. More precisely, for a vector field X on M, we denote by $\bar{X} \in T^HN$ the *horizontal lift* of X to T^*M . For an arbitrary section α of T^*M , the vector $\alpha_*(X)$ (which is the the image of the vector X by the tangent map of α) decomposes in $\nabla_X A$ (the vertical part) and \bar{X} (the horizontal part). These parts will be identified, as shown above, with a 1-form, resp. with a vector on M.

We define

$$\mathcal{D}_{\alpha} := \{ (A^V, A^H) \in T^V N \oplus T^H N \mid A^V = \rho(A^H, \cdot) + \alpha(A^H) \alpha \}.$$
(11)

It is easy to see that \mathcal{D} is an *n*-dimensional subbundle of TN since \mathcal{D} can be identified with the graph of a linear map from TM to T^*M . To check that \mathcal{D} is involutive, we let A, B be sections of \mathcal{D} such that $A^H = \bar{X}$ and $B^H = \bar{Y}$, where X, Y are vector fields on M which are ∇ -parallel at a point $p \in M$. We compute

$$[A, B] = [\bar{X}, \bar{Y}] + [A^V, \bar{Y}] + [\bar{X}, B^V] + [A^V, B^V]$$

at the point $\alpha \in T_p^*M$. First, because [X, Y] vanishes at p, the horizontal part of $[\bar{X}, \bar{Y}]$ vanishes at α . The vertical part is given by the curvature of the connection ∇ :

$$[\bar{X},\bar{Y}] = -R_{X,Y}\alpha = \alpha(R_{X,Y}\cdot) = \alpha\left((\rho \wedge \mathrm{Id})_{X,Y}\cdot\right) + \frac{n}{n+1}F(X,Y)\alpha.$$
(12)

The bracket $[A^V, \bar{Y}]$ is vertical and coincides with $-\nabla_Y A^V$, thus, from (11) we have

$$[A^V, \bar{Y}] = -\nabla_Y \rho(X, \cdot). \tag{13}$$

$$[\bar{X}, B^V] = \nabla_X \rho(Y, \cdot). \tag{14}$$

And the bracket $[A^V, B^V]$ is a bracket of vector field in the fixed vector space T_p^*M :

$$A^{V}, B^{V}] = A^{V}(Y)\alpha + \alpha(Y)A^{V} - B^{V}(X)\alpha - \alpha(X)B^{V} =$$

= $\rho(X, Y)\alpha + \alpha(X)\alpha(Y)\alpha + \alpha(Y)\rho(X, \cdot) - \alpha(Y)\alpha(X)\alpha$
- $\rho(Y, X)\alpha - \alpha(Y)\alpha(X)\alpha - \alpha(X)\rho(Y, \cdot) + \alpha(X)\alpha(Y)\alpha$
= $-\frac{n}{n+1}F(X, Y)\alpha - \alpha\left((\rho \wedge \operatorname{Id})_{X,Y}\cdot\right).$ (15)

Therefore

$$[A,B] = \alpha \left(C(X,Y;\cdot) \right)$$

which is zero by the hypothesis C = 0. The distribution \mathcal{D} is thus involutive, thus there exists a submanifold containing α and tangent to \mathcal{D} . Such a submanifold corresponds to a section (also called α) of T^*M , such that the vertical part of $\alpha_*(X)$ (which is $\nabla_X \alpha$) satisfies

$$\nabla_X \alpha = \rho(X, \cdot) + \alpha(X)\alpha,$$

which means that $\rho = \nabla \alpha - \alpha \otimes \alpha$ and thus the connection $\nabla' = \nabla + \tilde{\alpha}$ has zero Ricci (and Faraday) tensor, hence its curvature vanishes.

In conclusion, the Weyl tensor and, in dimension 2, the Cotton tensor behave like the curvature of a Riemannian manifold: their vanishing is equivalent to the existence of a local isomorphism with a model space (in the projective case, it is $\mathbb{R}P^n$).

Florin Belgun, Fachbereich Mathematik, Universität Hamburg, Bundessstr. 55, Zi. 214, 20146 Hamburg

E-mail address: florin.belgun@math.uni-hamburg.de