
PROJECTIVE AND CONFORMAL FLATNESS

FLORIN BELGUN

. These notes are intended to summarize and complete the lectures given by me on Dec. 6
and 10, 2012, as part of the lectures on affine differential geometry by Prof. Dr. V. Cortés.

Feel free to send me by e-mail your remarks and comments.

1. Projective geometry

1.1. Projective structures.

Definition 1. A projective structure on a manifold M of dimension n > 1 is a class of
torsion-free connections on M that define the same family of unparametrized geodesics.

A curve c : I →M is a (parametrized) geodesic for the connection ∇ iff

∇ċċ = 0.

The curve c is an unparametrized geodesic for ∇ iff there is a diffeoemorphism ϕ : I1 → I
such that c ◦ ϕ is a parametrized geodesic. Equivalently, c is an unparametrized geodesic iff

∇ċċ is colinear to ċ. (1)

Example 2. RPn, the real projective space of dimension n, is the set of lines (i.e., one-
dimesional vector subspaces) of Rn+1, or, equivalently, the quotient of Rn+1 r {0} by the
action of R∗.

The family of unparametrized geodesics on RPn is the family of projective lines: such a
projective line [E] is the set of (vectorial) lines in Rn+1 contained in a 2–plane E ⊂ Rn+1 or,
equivalently, the set (E r {0})/R∗.

Indeed, on each affine chart Uα := {Rx | α(x) 6= 0} ⊂ RPn, (here α ∈ (Rn+1)∗) the affine
hyperplane

Hα := {x ∈ Rn+1 | α(x) = 1}
is diffeomorphic to Uα. Any affine diffeomorphism of Hα to Rn induces a torsion-free (flat)
connection on Uα whose geodesic are the affine lines in Hα, which correspond to the 2–planes
in Rn+1 as described above.

Note that RPn is the quotient of the euclidian sphere Sn ⊂ Rn+1 under the action of
the antipodal transformation. The induced Riemannian connection on Sn has the big circles
(i.e., intersections of Sn with 2–planes) as geodesics, which cover the projective lines in RPn.
Therefore, the (non-flat) Levi-Civita connection on the round sphere induce (globally) the
same unparametrized geodesics on RPn as the affine charts (which have flat connections).

This suggest the notion of projective equivalence and projective flatness:

Definition 3. Two connections are projectively equivalent iff they induce the same un-
parametrized geodesics. A connection is projectively flat iff it is locally equivalent to a flat
connection. The corresponding projective structure is called flat.

Proposition 1. For two projectively equivalent connections ∇,∇′ there exists a 1–form η on
M such that

∇′XY = ∇XY + η̃XY ; η̃X = η(X)Id + η ⊗X.

1
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Proof. Two linear connections are related by

∇′XY = ∇XY +AXY,

where A : TM → End(TM) is a linear map. The connections ∇,∇′ have the same torsion iff
AXY = AYX, ∀X,Y ∈ TM .

On the other hand, the condition (1) implies that

AXX is colinear to X, ∀X ∈ TM.

Equivalently, there is a map η : TM → R such that

AXX = 2η(X)X, ∀X ∈ TM. (2)

Because X 7→ AXX is quadratic, so must be X 7→ η(X)X, therefore η : TM → R has to
be linear. Applying (2) to X + Y for any vectors X,Y , and using the symmetry condition
AXY = AYX, we obtain

AXY = η(X)Y + η(Y )X.

�

1.2. Curvature. The curvature of a connection ∇ is defined, as usual, by the formula

RX,Y Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z =
(
[∇X ,∇Y ]−∇[X,Y ]

)
Z,

and is thus a section R of

Λ2M ⊗ End(TM) = Λ2M ⊗ (T ∗M ⊗ TM).

If the connection is torsion-free, then the first Bianchi identity implies that∑
X,Y,Z

RX,Y Z := RX,Y Z +RY,ZX +RZ,XY = 0,

or, equivalently, that B1(R) = 0, where

B1 : Λ2M ⊗ (T ∗M ⊗ TM)→ Λ3M ⊗ TM

is the corresponding skew-symmetrization of the first 3 factors.

We denote by R the space of linear curvature tensors R satisfying the Bianchi identity. The
dimension of R is

n(n− 1)

2
n2 − n(n− 1)(n− 2)

6
n =

n2(n2 − 1)

3
.

This space can be, however, further decomposed, using two independent contractions:

F (X,Y ) :=
1

n
tr(Z 7→ RX,Y Z) ∈ Λ2M

is called the Faraday form, and

Ric(X,Y ) := tr(Z 7→ RZ,XY ) ∈ T ∗M ⊗ T ∗M

is called the Ricci tensor of R. The first Bianchi identity implies that

Ric(X,Y )− Ric(Y,X) = −nF (X,Y ), (3)

thus the skew-symmetric part of Ric is

Ricsk = −n
2
F ∈ Λ2M.

There also exist maps from Λ2M , resp from S2M to R, constructed by suspension with the
identity:
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Definition 4. The suspension of a bilinear map A ∈ T ∗M ⊗ T ∗M with the identity is the
following element of Λ2M ⊗ End(TM):

(A ∧ Id)X,Y Z := A(Y,Z)X −A(X,Z)Y.

This suspension is also in R iff A ∈ S2M (i.e., A is symmetric). More precisely, for a
skew-symmetric form A, the suspension A∧ Id needs to be corrected by a Faraday-type term,
in order to obtain an element of R:

Ã :=
1

2
A ∧ Id−A⊗ Id ∈ R, ∀A ∈ Λ2M.

The Ricci contraction of (A ∧ Id) is

tr(Z → (A ∧ Id)Z,XY ) = tr(Z → A(X,Y )Z −A(Z, Y )X = (n− 1)A(X,Y )

(for A symmetric or not), and the Faraday contraction of it is zero iff A is symmetric. The

Ricci contraction of F̃ is n−1
2 F + F = n+1

2 F . On the other hand, the Faraday contraction of

F̃ is −n+1
n F . This implies that, for a symmetric tensor ρsym, the tensor

ρsym ∧ Id− n

n+ 1
F̃ is in R,

its Faraday contraction is F , and its Ricci contraction is (n− 1)ρsym − n
2F .

Therefore, if, for a given connection ∇ with curvature R, Ricci tensor Ric and Faraday form
F , we define the normalized Ricci tensor (or Schouten tensor)

ρR :=
1

n− 1

(
Ric +

n

n+ 1
F

)
, (4)

then the Faraday and Ricci tensor of

(ρR ∧ Id) +
n

n+ 1
F ⊗ Id (5)

coincide with the ones of R itself. It follows that the Weyl tensor, defined by

W := R− ρR ∧ Id− n

n+ 1
F ⊗ Id ∈ R,

has vanishing Faraday and Ricci trace (hence it is completely trace-free). Denote by W ⊂ R
the space of trace-free (or Weyl) curvature tensors.

We conclude:

Proposition 2. The curvature of a torsion-free connection decomposes in the following ten-
sors, sections of vector bundles associated to GL(n)–irreducible representations:

R = W + ρsym ∧ Id +
n

n+ 1
F̃ ,

where W ∈ W, ρsym ∈ S2M , F ∈ Λ2M .

The dimension of W is thus

dimW =
n2(n2 − 1)

3
− n2 =

n2(n2 − 4)

3
> 0 ⇔ n > 2.

The Weyl tensor vanishes thus for n = 2 by dimensional reasons.

We will show that, for n > 2, the vanishing of W is equivalent to the projective flatness of
∇. One of the claimed implications follows from

Proposition 3. If ∇′ = ∇+ η̃, we have the following relations between the curvature compo-
nents of R,R′:

F ′ = F + dη, ρ′ = ρ−∇η + η ⊗ η, W ′ = W.
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Proof. We make the computations in a point p ∈M , and we suppose that all the vector fields
used for the computations are ∇–parallel at p. Thus

R′X,Y = [∇′X ,∇′Y ] = [∇X + η̃X ,∇Y + η̃Y ].

We have [∇X ,∇Y ] = RX,Y , and we need to compute

[∇X , η̃Y ]− [∇Y , η̃X ]

and [η̃X , η̃Y ]. Recall that η̃X = η(X)Id + η ⊗X. Therefore

[∇X , η̃Y ]− [∇Y , η̃X ] = ˜(∇Xη)Y − ˜(∇Y η)Y =

= dη(X,Y )Id− (∇η ∧ Id)X,Y ,
(6)

and

[η̃X , η̃Y ] = [η ⊗X, η ⊗ Y ] =

= ((η ⊗ η) ∧ Id)X,Y .
(7)

�

1.3. The Cotton tensor. Before proving the main theorem of projective geometry, we define

Definition 5. The Cotton tensor of a connection ∇ is the following section of Λ2M ⊗ T ∗M
(whose skew-symmetric part, i.e., the component in Λ3M , is zero):

C(X,Y ;Z) = ∇Xρ(Y,Z)−∇Y ρ(X,Z).

Remark 6. For any connection, the curvature satisfies the second (or differential) Bianchi
identity:

∇XRY,Z +∇YRZ,X +∇ZRX,Y = 0.

The Faraday form is nothing but 1/n times the curvature of the connection induced by ∇ on
ΛnTM . As such it satisfies itself the differential Bianchi identity, and thus dF = 0.

This also menas that F = 0 iff the connection ∇ is locally equiaffine, i.e., it admits locally
∇–parallel volume forms. (The local character is essential: even-dimensional real projective
space are non-orientable, but the Levi-Civita connection on Sn induces a locally equiaffine
connection on RPn.

At this point, we note the following fact (not related to our main result):

Proposition 4. For a projective manifold M of dimension n ≥ 2, for any given non-vanishing
volume form ω, there exists a unique connection ∇ adapted to the projective structure and
equiaffine w.r.t. ω, i.e., such that ∇ω.

In fact, one can prove, more generally, that every connection on the line bundle ΛnM is
induced by a unique connection adapted to the projective structure on M .

Proof. Let ∇ be a connection adapted to the given projective structure on M and denote by
R,W,Ric, F, ρ the corresponding tensors as above. The covariant derivative of the volume
form ω is thus given by a 1–form, thus

∇ω = α⊗ ω.
We set then

∇′ := ∇′ + aα̃,

where a ∈ R is a constant to be determined. Then

∇′Xω −∇Xω = −(n+ 1)aα(X)ω.

By setting a := −1/(n+ 1) we obtain that ∇′ω = 0. The relation above also implies that the
connection ∇′ with the property that ∇′ω = 0 is unique. �
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Returning to the Cotton tensor, note that it vanishes iff the covariant derivative of ρ (or
of Ric) is completely symmetric. For n > 2, it turns out that C is determined by the Weyl
tensor:

Proposition 5. If we denote by δW (X,Y ;Z) := tr(V 7→ ∇VWX,Y Z, we have, for n > 2:

δW (X,Y ;Z) = (n− 2)C(X,Y ;Z).

Proof. We take the trace of the second Bianchi identity:

0 = δR(X,Y ;Z) + tr(V 7→ ∇XRY,V Z +∇YRV,XZ)

= δR(X,Y ;Z)−∇XRic(Y, Z) +∇Y Ric(X,Z)

= δW (X,Y ;Z) + tr

(
V 7→ (∇V ρ ∧ Id)X,Y Z +

n

n+ 1
∇V F (X,Y )Z

)
−

(use (4) ) − (n− 1)C(X,Y ;Z) +
n

n+ 1
(∇XF (Y,Z)−∇Y F (X,Z))

= δW (X,Y ;Z)− (n− 2)C(X,Y ;Z).

(8)

Here we have used that

tr(V 7→ A(X,Y, V )Z) = A(X,Y, Z)

and that F is closed. �

1.4. Projective flatness. The main result of this lecture is:

Theorem 1. Let M be a projective manifold of dimension n ≥ 2. Then M is projectively flat
iff W = 0 and, if n = 2, C = 0.

Proof. First, if M is projectively flat, then W and hence C have to vanish for n ≥ 3. For
n = 2 (actually for all n ≥ 2), we have the following

Lemma 1. If ∇′ = ∇+ η̃, then C ′ − C = η(W ).

Proof. We compute

∇′Xρ′(Y,Z) = ∇Xρ′(Y,Z)− ρ′(η̃XY,Z)− ρ′(Y, η̃XZ) =

= ∇Xρ(Y, Z)−∇X∇Y η(Z) +∇Xη(Y )η(Z) + η(Y )∇Xη(Z)−
− ρ′(η̃XY, Z)− ρ(Y, η̃XZ) +∇Y η(η̃XZ)− η(Y )η(η̃XZ).

(9)

If we skew-symmetrize the above relation in X and Y (using that η̃XY = η̃YX), we obtain

C ′(X,Y ;Z)− C(X,Y ;Z) = −(RX,Y η)(Z)− η(X)ρ(Y, Z) + η(Y )ρ(X,Z)+

+ (ρ(X,Y )− ρ(Y,X))η(Z)

= η(RX,Y Z)− η ((ρ ∧ Id)X,Y Z)− n

n+ 1
F (X,Y )η(Z)

= η(WX,Y Z).

(10)

�

Therefore, if ∇ is projectively flat, then W (if n ≥ 3), resp. C (if n = 2) must coincide with
the ones defined by a flat connection.

Conversely, if W and C vanish (from Proposition 5, W = 0 implies, for n > 2, that C = 0,
for any adapted connection ∇), we want to construct a flat connection projectively equivalent
to ∇. From W = 0 we have, for an adapted connection ∇,

R = ρ ∧ Id + F ⊗ Id.
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From the Proposition 3, we need to find locally a 1–form η such that ρ = ∇η− η⊗ η. In order
to solve (locally) this nonlinear PDE, we use the Frobenius theorem:

Theorem 2. If D ⊂ TN is an involutive distribution (subbundle in TN) on a manifold N ,
then there exists a foliation F (i.e., a family of submanifolds) tangent to this distribution (i.e.
TF = D).

A distribution D is said to be involutive iff the Lie bracket of two sections of D (seen as
vector fields on N) is a vector field which is also a section of D.

We will construct a distribution D on N := T ∗M as follows:

The tangent space of N = T ∗M decomposes, for a given connection ∇, in the vertical and
horizontal components

TαN = T Vα N ⊕ THα N,
where T V ' T ∗M and THN ' TM . More precisely, for a vector field X on M , we denote
by X̄ ∈ THN the horizontal lift of X to T ∗M . For an arbitrary section α of T ∗M , the vector
α∗(X) (which is the the image of the vector X by the tangent map of α) decomposes in ∇XA
(the vertical part) and X̄ (the horizontal part). These parts will be identified, as shown above,
with a 1–form, resp. with a vector on M .

We define

Dα := {(AV , AH) ∈ T VN ⊕ THN | AV = ρ(AH , ·) + α(AH)α}. (11)

It is easy to see that D is an n–dimensional subbundle of TN since D can be identified with
the graph of a linear map from TM to T ∗M . To check that D is involutive, we let A,B be
sections of D such that AH = X̄ and BH = Ȳ , where X,Y are vector fields on M which are
∇–parallel at a point p ∈M . We compute

[A,B] = [X̄, Ȳ ] + [AV , Ȳ ] + [X̄, BV ] + [AV , BV ]

at the point α ∈ T ∗pM . First, because [X,Y ] vanishes at p, the horizontal part of [X̄, Ȳ ]
vanishes at α. The vertical part is given by the curvature of the connection ∇:

[X̄, Ȳ ] = −RX,Y α = α(RX,Y ·) = α ((ρ ∧ Id)X,Y ·) +
n

n+ 1
F (X,Y )α. (12)

The bracket [AV , Ȳ ] is vertical and coincides with −∇YAV , thus, from (11) we have

[AV , Ȳ ] = −∇Y ρ(X, ·). (13)

[X̄, BV ] = ∇Xρ(Y, ·). (14)

And the bracket [AV , BV ] is a bracket of vector field in the fixed vector space T ∗pM :

[AV , BV ] = AV (Y )α+ α(Y )AV −BV (X)α− α(X)BV =

= ρ(X,Y )α+ α(X)α(Y )α+ α(Y )ρ(X, ·)− α(Y )α(X)α

− ρ(Y,X)α− α(Y )α(X)α− α(X)ρ(Y, ·) + α(X)α(Y )α

= − n

n+ 1
F (X,Y )α− α ((ρ ∧ Id)X,Y ·) .

(15)

Therefore

[A,B] = α (C(X,Y ; ·))
which is zero by the hypothesis C = 0. The distribution D is thus involutive, thus there exists
a submanifold containing α and tangent to D. Such a submanifold corresponds to a section
(also called α) of T ∗M , such that the vertical part of α∗(X) (which is ∇Xα) satisfies

∇Xα = ρ(X, ·) + α(X)α,
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which means that ρ = ∇α − α ⊗ α and thus the connection ∇′ = ∇ + α̃ has zero Ricci (and
Faraday) tensor, hence its curvature vanishes. �

In conclusion, the Weyl tensor and, in dimension 2, the Cotton tensor behave like the
curvature of a Riemannian manifold: their vanishing is equivalent to the existence of a local
isomorphism with a model space (in the projective case, it is RPn).

Florin Belgun, Fachbereich Mathematik, Universität Hamburg, Bundessstr. 55, Zi. 214, 20146
Hamburg

E-mail address: florin.belgun@math.uni-hamburg.de


