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Abstract—This paper concerns the approximation of bivariate
functions using the filtered back projection (FBP) formula from
computerized tomography. To this end, we prove error estimates
and convergence rates for the FBP reconstruction method for
target functions f from a Sobolev space Hα(R2) of fractional
order α > 0, where we bound the FBP reconstruction error with
respect to the (weaker) norms of the (rougher) Sobolev spaces
Hσ(R2), for 0 ≤ σ ≤ α. The results of this paper generalize
previous of our findings in [2]–[4] for L2-error estimates, i.e.,
for the case σ = 0, to Sobolev error estimates for all fractional
orders σ ∈ [0, α] and provide criteria to assess the performance
of the utilized low-pass filter by means of its window function.

I. INTRODUCTION

The term filtered back projection (FBP) refers to a classical
reconstruction technique in computerized tomography (CT),
which deals with recovering the interior structure of a scanned
object from X-ray scans. This X-ray data can be interpreted
as a finite set of line integrals of the (unknown) attenuation
function of the scanned object which describes the amount of
energy that is absorbed by the medium.

We state the CT reconstruction problem as follows.
Problem 1 (Basic reconstruction problem): For Ω ⊂ R2

reconstruct a bivariate function f ∈ L1(Ω) on its domain Ω
from given Radon data{

Rf(t, θ) | t ∈ R, θ ∈ [0, π)
}
,

where the Radon transform Rf of f is defined as

Rf(t, θ) =

∫
{x cos(θ)+y sin(θ)=t}

f(x, y) dx dy

for (t, θ) ∈ R× [0, π).
Thus, the CT reconstruction problem seeks for the inversion

of the Radon transform R. For a comprehensive mathematical
treatment of R and its inversion, we refer to [6], [11].

In previous work [2]–[4] we derived L2-error estimates
and convergence rates for target functions f from fractional
Sobolev spaces Hα(R2), where α > 0. More recently, we
also proved Sobolev error estimates and convergence rates [1].
Although we use some of the results from [1] here, the primary
goal of this paper is to generalize our previous results in [2]
from L2-error estimates to Sobolev error estimates in the
rougher Sobolev spaces Hσ(R2), for σ ∈ [0, α].

The outline of this paper is as follows. In Section II, we
consider the inversion of the Radon transform by the classical
FBP formula. Further, we describe how the FBP can be stabi-
lized by using suitable low-pass filters of finite bandwidth and

with a compactly supported window function. This standard
approach leads us to an approximate reconstruction formula,
whose approximation quality will be evaluated in this paper.
To this end, in Section III, we derive Sobolev error estimates
for target functions from Sobolev spaces of fractional order.
Additionally, we state asymptotic convergence rates as the
bandwidth goes to infinity in Section IV. Asymptotic Sobolev
error estimates with weaker assumptions are finally provided
in Section V.

II. FILTERED BACK PROJECTION

The inversion of the Radon transform R is well understood
and given by the classical filtered back projection formula

f(x, y) =
1

2
B
(
F−1[|S|F(Rf)(S, θ)]

)
(x, y), (1)

which holds for f ∈ L1(R2)∩C (R2) (see [5, Theorem 6.2.]).
Here, the univariate Fourier transform F applies to variable S
and the back projection Bh of h ∈ L1(R × [0, π)) is defined
as

Bh(x, y) =
1

π

∫ π

0

h(x cos(θ) + y sin(θ), θ) dθ

for (x, y) ∈ R2. Note that, up to the constant 1
π , the back

projection operator B is the adjoint operator of the Radon
transform R.

We remark that the FBP formula is numerically unstable. By
applying the filter |S| to the Fourier transform F(Rf) in (1),
especially the high frequency components of Rf are amplified
by the magnitude of |S|. Thus, the filtered back projection
formula is in particular highly sensitive with respect to noise.

To reduce the noise sensitivity of the FBP formula, we
follow a standard approach and replace the filter |S| in (1)
by a low-pass filter AL of the form

AL(S) = |S|W (S/L) for S ∈ R

with finite bandwidth L > 0 and an even window function
W ∈ L∞(R) with compact support supp(W ) ⊆ [−1, 1].

When replacing the filter |S| in (1) by the low-pass filter
AL(S), the reconstruction of f is no longer exact and we only
get an approximate FBP reconstruction, denoted by fL.

However, for target functions f ∈ L1(R2) the reconstruction
fL is for any L > 0 defined almost everywhere on R2 (see [1,
Proposition 3.1]) and, moreover, the resulting approximate
FBP formula can be simplified as

fL =
1

2
B
(
F−1AL ∗ Rf

)
. (2)



Further, fL belongs to L2(R2) (see [1, Proposition 4.2]) and
can be expressed in terms of the target function f via

fL =
1

2
B
(
F−1AL ∗ Rf

)
= f ∗KL, (3)

where we define the convolution kernel KL : R2 −→ R as

KL(x, y) =
1

2
B
(
F−1AL

)
(x, y) for (x, y) ∈ R2.

For the sake of brevity, we call any application of the
approximate FBP formula (2) an FBP method. Therefore, each
FBP method provides one approximation fL to f , fL ≈ f ,
whose quality depends on the choice of the low-pass filter AL.

In the following, we analyse the intrinsic error of the FBP
method which is incurred by the use of the low-pass filter AL,
i.e., we wish to analyse the reconstruction error

eL = f − fL

with respect to the filter’s window W and bandwidth L.
We remark that pointwise and L∞-error estimates on eL

were proven by Munshi et al. in [8]. Their theoretical results
were further supported by numerical experiments in [9]. Error
bounds for the Lp-norm of eL, in terms of an Lp-modulus of
continuity of f , were proven by Madych in [7].

In [2]–[4] we derived L2-error estimates and convergence
rates for target functions from fractional Sobolev spaces
Hα(R2). Let us recall that the Sobolev space Hα(R2) of order
α ∈ R is defined as

Hα(R2) =
{
f ∈ S ′(R2) | ‖f‖α <∞

}
,

where

‖f‖2α =
1

4π2

∫
R2

(
1 + x2 + y2

)α |Ff(x, y)|2 d(x, y),

and where S ′(R2) denotes the Schwartz space of tempered
distributions on R2.

We remark that in relevant applications of (medical) image
processing, Sobolev spaces of compactly supported functions,

Hα
0 (Ω) =

{
f ∈ Hα(R2) | supp(f) ⊆ Ω

}
,

on an open and bounded domain Ω ⊂ R2, and of fractional
order α > 0 play an important role (cf. [10]). In fact, we can
consider the density of an image in Ω ⊂ R2 as a function
from the Sobolev space Hα

0 (Ω) whose order α is close to 1
2 .

III. ERROR ANALYSIS

In this section, we analyse certain Sobolev norms of the
inherent FBP reconstruction error eL for target functions f
from the Sobolev space Hα(R2) of fractional order α > 0. To
be more precise, we generalize our L2-error estimates of [2]
to Hσ-error estimates for 0 ≤ σ ≤ α. To this end, we partly
rely on [1], as this is indicated in the following discussion.

Let us assume that f ∈ L1(R2)∩Hα(R2) for some α > 0.
We first show that the approximate FBP reconstruction fL
belongs to the Sobolev space Hσ(R2) for 0 ≤ σ ≤ α.

In [1, Proposition 4.1] we have proven that the convolution
kernel KL belongs to C0(R2) ∩ L2(R2) and, moreover, that
its Fourier transform is given by

FKL(x, y) = WL(x, y) for almost all (x, y) ∈ R2.

Here, the compactly supported bivariate window function
WL ∈ L∞(R2) is defined as

WL(x, y) = W
(r(x, y)

L

)
for (x, y) ∈ R2,

where we let

r(x, y) =
√
x2 + y2 for (x, y) ∈ R2.

This in combination with representation (3) for fL yields

‖fL‖2σ = ‖f ∗KL‖2σ

=
1

4π2

∫
R2

(
1 + r(x, y)2

)σ |(WL · Ff)(x, y)|2 d(x, y)

≤
(

sup
r(x,y)≤L

|WL(x, y)|2
)
‖f‖2α = ‖W‖2∞,[−1,1] ‖f‖

2
α.

Thus, for f ∈ L1(R2)∩Hα(R2) with α > 0, the approximate
FBP reconstruction fL belongs to Hσ(R2) for all 0 ≤ σ ≤ α.

Let us now turn to the analysis of the FBP reconstruction
error eL = f − fL with respect to the Hσ-norm. For γ ≥ 0,
we define

rγ(x, y) =
(
1+r(x, y)2

)γ
=
(
1+x2 +y2

)γ
for (x, y) ∈ R2

so that the Hσ-norm of eL can be expressed as

‖eL‖2σ =
1

4π2

∫
R2

rσ(x, y) |F(f − fL)(x, y)|2 d(x, y)

=
1

4π2

∫
R2

rσ(x, y) |(Ff −WL · Ff)(x, y)|2 d(x, y)

= I1 + I2,

where

I1 =
1

4π2

∫
BL

rσ(x, y) |1−WL(x, y)|2 |Ff(x, y)|2 d(x, y)

with
BL =

{
(x, y) ∈ R2 | r(x, y) ≤ L

}
and where

I2 =
1

4π2

∫
R2\BL

rσ(x, y) |Ff(x, y)|2 d(x, y).

For γ ≥ 0, we define

Φγ,W (L) = sup
S∈[−1,1]

(1−W (S))2

(1 + L2S2)
γ for L > 0

so that we can bound I1 from above by

I1 ≤
(

sup
(x,y)∈BL

(1−WL(x, y))2

rα−σ(x, y)

)
‖f‖2α = Φα−σ,W (L)‖f‖2α,

since

sup
(x,y)∈BL

(1−WL(x, y))2

rα−σ(x, y)
= sup
S∈[−L,L]

(1−W (S/L))2

(1 + S2)
α−σ .



For 0 ≤ σ ≤ α, we can bound I2 by

I2 ≤ L2(σ−α) 1

4π2

∫
R2\BL

rσ(x, y) |Ff(x, y)|2 d(x, y)

≤ L2(σ−α) ‖f‖2α.

Combining the estimates for I1 and I2, we finally obtain

‖eL‖2σ ≤
(

Φα−σ,W (L) + L2(σ−α)
)
‖f‖2α.

We can summarize the discussion of this section as follows.
Theorem 1 (Hσ-error estimate, see [1, Theorem 5.2]): Let

f ∈ L1(R2) ∩ Hα(R2) for some α > 0 and let W ∈ L∞(R)
be even and compactly supported with supp(W ) ⊆ [−1, 1].
Then, for 0 ≤ σ ≤ α, the Hσ-norm of the inherent FBP
reconstruction error eL = f − fL is bounded above by

‖eL‖σ ≤
(

Φ
1/2
α−σ,W (L) + Lσ−α

)
‖f‖α, (4)

where

Φα−σ,W (L) = sup
S∈[−1,1]

(1−W (S))2

(1 + L2S2)
α−σ for L > 0.

We remark that for the special case σ = 0, the bound in (4)
agrees with the L2-error estimate of [2, Theorem 4.1].

Like the L2-error bound in [2, Theorem 4.1], the Hσ-error
estimate (4) involves the error term Φγ,W (L), but now with
γ = α − σ rather than γ = α. Consequently, we can rely on
the analysis in [2] concerning the properties of Φγ,W (L).

In [2, Theorem 4.2] we have proven that, if the window
function W is continuous on [−1, 1] and W (0) = 1, the error
term Φγ,W (L) converges to 0 as L goes to ∞ for all γ > 0.
With this we get the following convergence result for the
Hσ-norm of the FBP reconstruction error.

Corollary 1: Let the assumptions of Theorem 1 be satisfied
and let W ∈ C ([−1, 1]) with W (0) = 1. Then, for 0 ≤ σ < α,
the Hσ-norm of the reconstruction error eL = f−fL converges
to 0 as L goes to ∞, i.e.,

‖eL‖σ = o(1) for L −→∞.

We remark that the result in Corollary 1 is not covered by
our previous paper [1]. Indeed, throughout [1], we only rely
on the weaker assumption W ∈ L∞(R) for the filter’s window
function W rather than on W ∈ C ([−1, 1]).

IV. RATE OF CONVERGENCE

In this section we analyse the convergence rate of the FBP
reconstruction error ‖eL‖σ as L goes to ∞. To this end, we
partly rely on [1], as indicated in the following discussion.

Let S∗γ,W,L ∈ [0, 1], for γ ≥ 0, denote the smallest
maximizer in [0, 1] of the even function

Φγ,W,L(S) =
(1−W (S))2

(1 + L2S2)
γ for S ∈ [−1, 1].

To determine the rate of convergence for ‖eL‖σ , we assume
that S∗α−σ,W,L is uniformly bounded away from 0, i.e., there
exists a constant cα−σ,W > 0 satisfying

S∗α−σ,W,L ≥ cα−σ,W for all L > 0. (5)

Then, the error term Φα−σ,W (L) is bounded above by

Φα−σ,W (L) =

(
1−W (S∗α−σ,W,L)

)2(
1 + L2(S∗α−σ,W,L)2

)α−σ
≤ c2(σ−α)α−σ,W ‖1−W‖

2
∞,[−1,1] L

2(σ−α).

Consequently, we obtain

‖eL‖2σ ≤
(
c
2(σ−α)
α−σ,W ‖1−W‖

2
∞,[−1,1] + 1

)
L2(σ−α) ‖f‖2α

so that
‖eL‖σ = O(Lσ−α) for L −→∞.

In summary, this yields the following result.
Theorem 2 (Rate of convergence, see [1, Theorem 5.4]): Let

the assumptions of Theorem 1 as well as the assumption (5)
be satisfied. Then, for 0 ≤ σ ≤ α, the Hσ-norm of the inherent
FBP reconstruction error eL = f − fL is bounded above by

‖eL‖σ ≤
(
cσ−αα−σ,W ‖1−W‖∞,[−1,1] + 1

)
Lσ−α ‖f‖α. (6)

In particular,

‖eL‖σ = O(L−(α−σ)) for L −→∞.

Note that the decay rate α− σ in (6) is determined by the
difference between the smoothness α of the target function f
and the order σ of the Sobolev norm ‖ · ‖σ in which the
reconstruction error eL is measured.

We remark that assumption (5) is satisfied for a large class
of window functions. For example, let W satisfy

W (S) = 1 for all S ∈ (−ε, ε)

for some ε ∈ (0, 1). Then, assumption (5) is fulfilled with the
constant cα−σ,W = ε for all 0 ≤ σ ≤ α.

However, there are commonly used window functions W
which do not satisfy assumption (5). In fact, in [2] we
investigated the behaviour of S∗γ,W,L and Φγ,W (L) for γ > 0
numerically for the following window functions of the filter
AL(S) = |S|W (S/L):

Name W (S) for |S| ≤ 1 Parameter
Shepp–Logan sinc(πS/2) -
Cosine cos(πS/2) -
Hamming β + (1− β) cos(πS) β ∈ [1/2, 1]
Gaussian exp

(
−(πS/β)2

)
β > 1

We summarize our numerical results from [2] as follows.
For γ < 2, we found that assumption (5) is fulfilled and

Φγ,W (L) = O(L−2γ) for L −→∞.

For γ ≥ 2, assumption (5) is not fulfilled, since

S∗γ,W,L −→ 0 for L −→∞,

and the convergence rate of Φγ,W stagnates by

Φγ,W (L) = O(L−4) for L −→∞.

Note that all window functions in the above table are twice
continuously differentiable on [−1, 1] with

W (0) = 1 and W ′(0) = 0.



This motivated us to analyse the convergence behaviour of the
error term Φγ,W for the special case of C k-window functions
whose first k − 1 derivatives vanish at zero (cf. [2]).

Consequently, to continue our analysis, we now consider
even window functions W with compact support in [−1, 1]
that additionally satisfy W ∈ C k([−1, 1]) for some k ≥ 2
with

W (0) = 1, W (j)(0) = 0 for all 1 ≤ j ≤ k − 1.

Under this assumption, we have proven in [2, Theorem 6.1]
that for γ ≤ k the error term Φγ,W (L) is bounded above by

Φγ,W (L) ≤ 1

(k!)2
‖W (k)‖2∞,[−1,1] L

−2γ for all L > 0

and for γ > k by

Φγ,W (L) ≤


1

(k!)2 ‖W
(k)‖2∞,[−1,1] L

−2γ for L <
√
k√

γ−k
c2γ,k
(k!)2 ‖W

(k)‖2∞,[−1,1] L
−2k for L ≥

√
k√

γ−k ,

where the constant

cγ,k =
( k

γ − k

)k/2(γ − k
γ

)γ/2
(7)

is strictly monotonically decreasing in γ > k. In particular,

Φγ,W (L) = O
(
L−2min{k,γ}

)
for L −→∞.

We remark that this theoretical result complies with our
numerical experiments in [2]. In particular, the saturation of
the convergence rate at order O(L−2k) is observed in [2]
and so the numerical experiments in [2] show that the stated
convergence rate of Φγ,W (L) is optimal for the special case
of C k-windows.

Using the above bound of Φγ,W (L) in Theorem 1 gives the
following Hσ-error estimate for C k-window functions.

Theorem 3 (Hσ-error estimate for C k-windows): Let the
assumptions of Theorem 1 be satisfied. In addition, let
W ∈ C k([−1, 1]) for k ≥ 2 with

W (0) = 1, W (j)(0) = 0 for all 1 ≤ j ≤ k − 1.

Then, for 0 ≤ σ ≤ α, the Hσ-norm of the inherent FBP
reconstruction error eL = f − fL is bounded above by

‖eL‖σ ≤
(

1

k!
‖W (k)‖∞,[−1,1] + 1

)
Lσ−α ‖f‖α

for α− σ ≤ k, and by

‖eL‖σ ≤
(cα−σ,k

k!
‖W (k)‖∞,[−1,1] L−k + Lσ−α

)
‖f‖α

for α− σ > k and sufficiently large L > 0. In particular,

‖eL‖σ = O
(
L−min{k,α−σ}

)
for L −→∞.

Note that in Theorem 3 for α − σ ≤ k the decay rate of
‖eL‖σ is determined by the difference between the smoothness
α of the target function f and the order σ of the considered
Sobolev norm, whereas for α−σ > k the decay rate saturates
at O(L−k). Here, k denotes the differentiability order of the

window function W , whose first k−1 derivatives are required
to vanish at zero. However, in this case the error bound still
decreases at increasing α, since the involved constant cα−σ,k
is strictly monotonically decreasing in α − σ > k. Thus, a
smoother target function still permits a better approximation,
as expected. Nevertheless, the attainable convergence rate is
limited by the differentiability order of the filter’s window
function.

V. ASYMPTOTIC ERROR ESTIMATES

In this section, we finally derive an asymptotic Hσ-error
estimate for the FBP method under weaker assumptions.

For this purpose, we consider even window functions
W ∈ L∞(R) with compact support in [−1, 1] that are k-times
differentiable only at the origin for some k ≥ 2 with

W (0) = 1, W (j)(0) = 0 for all 1 ≤ j ≤ k − 1.

As in the previous error estimates of this paper, we consider
target functions f ∈ L1(R2) ∩ Hα(R2) for some α > 0 and
analyse the Hσ-norm of the inherent FBP reconstruction error
eL = f − fL for 0 ≤ σ ≤ α.

We again start with splitting the Hσ-norm of eL into the
sum of two integrals

‖eL‖2σ =
1

4π2

∫
R2

rσ(x, y) |F(f − fL)(x, y)|2 d(x, y)

= I1 + I2,

where

I1 =
1

4π2

∫
BL

rσ(x, y) |1−WL(x, y)|2 |Ff(x, y)|2 d(x, y)

with
BL =

{
(x, y) ∈ R2 | r(x, y) ≤ L

}
and where

I2 =
1

4π2

∫
R2\BL

rσ(x, y) |Ff(x, y)|2 d(x, y).

As before, the integral I2 can be bounded above by

I2 ≤ L2(σ−α) ‖f‖2α.

The integral I1 can be expressed as

I1 =
1

4π2

∫
BL

rσ(x, y)

∣∣∣∣1−W(r(x, y)

L

)∣∣∣∣2 |Ff(x, y)|2d(x, y).

Because W ∈ L∞(R) is k-times differentiable at zero, we
can apply Taylor’s theorem and, thus, there exists a function
hk : R −→ R satisfying

W (S) =

k∑
j=0

W (j)(0)

j!
Sj + hk(S)Sk for all S ∈ R

and
lim
S→0

hk(S) = 0.

By assumption, the window W satisfies

W (0) = 1, W (j)(0) = 0 for all 1 ≤ j ≤ k − 1.



Hence, for (x, y) ∈ R2 follows that

W
(r(x, y)

L

)
= 1 +

(W (k)(0)

k!
+ hk

(r(x, y)

L

))(r(x, y)

L

)k
for all L > 0. If we now define, for γ ≥ 0,

φ∗γ,L,k = max
(x,y)∈BL

(
r(x,y)
L

)2k
rγ(x, y)

= max
S∈[0,1]

S2k

(1 + L2 S2)
γ ,

then integral I1 can be bounded by

I1 ≤ 2φ∗α−σ,L,k (I3 + I4),

where we let

I3 =
1

4π2

∫
BL

(W (k)(0)

k!

)2
rα(x, y) |Ff(x, y)|2 d(x, y)

and

I4 =
1

4π2

∫
BL

hk

(r(x, y)

L

)2
rα(x, y) |Ff(x, y)|2 d(x, y).

We have

I3 ≤
(W (k)(0)

k!

)2
‖f‖2α

and, by using Lebesgue’s theorem on dominated convergence,
we obtain

I4 = o(1) for L −→∞.

This leads to

I1 ≤ 2φ∗α−σ,L,k

(W (k)(0)

k!

)2
‖f‖2α + φ∗α−σ,L,k o(1).

In [2], we have shown that the maximum φ∗γ,L,k is bounded
by

φ∗γ,L,k ≤ L−2γ

for γ ≤ k and by

φ∗γ,L,k ≤

{
L−2γ for L <

√
k√

γ−k

c2γ,k L
−2k for L ≥

√
k√

γ−k

for γ > k with the strictly decreasing constant cγ,k from (7).
Thus, we obtain

I1 ≤
2

(k!)2
|W (k)(0)|2 L2(σ−α) ‖f‖2α + o

(
L2(σ−α)

)
for α− σ ≤ k, or α− σ > k and L < L∗, as well as

I1 ≤
2

(k!)2
c2α−σ,k |W (k)(0)|2 L−2k ‖f‖2α + o

(
L−2k

)
for α− σ > k and L ≥ L∗ with the critical bandwidth

L∗ =

√
k√

α− σ − k
and the strictly monotonically decreasing constant

cα−σ,k =
( k

α− σ − k

)k/2(α− σ − k
α− σ

)(α−σ)/2

for α− σ > k.
In summary, we have proven the following asymptotic

Hσ-error estimate for the approximate FBP reconstruction fL.

Theorem 4 (Asymptotic Hσ-error estimate): Let the assump-
tions of Theorem 1 be satisfied. Moreover, let W be k-times
differentiable at the origin, k ≥ 2, with

W (0) = 1, W (j)(0) = 0 for all 1 ≤ j ≤ k − 1.

Then, for 0 ≤ σ ≤ α, the Hσ-norm of the inherent FBP
reconstruction error eL = f − fL is bounded above by

‖eL‖σ ≤

(√
2

k!
|W (k)(0)|+ 1

)
Lσ−α ‖f‖α + o(Lσ−α)

for α− σ ≤ k, and by

‖eL‖σ ≤

(√
2

k!
cα−σ,k|W (k)(0)|L−k + Lσ−α

)
‖f‖α+o(L−k)

for α− σ > k and sufficiently large L > 0. In particular,

‖eL‖σ = O
(
L−min{k,α−σ}

)
for L −→∞.

VI. CONCLUSION

We conclude that the flatness of the window W determines
the convergence rate of the Hσ-error bounds for the inherent
FBP reconstruction error. Indeed, if the first k− 1 derivatives
of W vanish at zero, the convergence rate saturates at O(L−k)
for α− σ > k. Further, the quantity |W (k)(0)| dominates the
error bounds and can be used as an indicator to predict the
approximation quality of the FBP method in the Hσ-norm.
We remark that the windows we considered earlier satisfy the
assumptions of our theory with k = 2 so that Theorem 4
predicts an affine-linear behaviour of the Hσ-error with respect
to |W ′′(0)|. For σ = 0, this was observed numerically in [9].

In practice, the FBP method has to be discretized, leading to
inevitable discretization errors. However, the analysis of these
is beyond the aims and scopes of this paper. Instead, we pro-
vide quantitative criteria to a priori evaluate the performance
of the chosen low-pass filter in the continuous setting.

REFERENCES

[1] M. Beckmann, A. Iske: Approximation of bivariate functions from
fractional Sobolev spaces by filtered back projection. Preprint HBAM
2017-05, University of Hamburg, 2017.
https://preprint.math.uni-hamburg.de/public/papers/hbam/hbam2017-05.pdf

[2] M. Beckmann, A. Iske: Error estimates and convergence rates for filtered
back projection. Preprint HBAM 2016-06, University of Hamburg, 2016.
https://preprint.math.uni-hamburg.de/public/papers/hbam/hbam2016-06.pdf

[3] M. Beckmann, A. Iske: On the error behaviour of the filtered back
projection. Proc. Appl. Math. Mech. (PAMM) 16(1), 2016, 833–834.

[4] M. Beckmann, A. Iske: Error estimates for filtered back projection. IEEE
2015 International Conference on Sampling Theory and Applications
(SampTA), 2015, 553–557.

[5] T.G. Feeman: The Mathematics of Medical Imaging: A Beginner’s Guide
(2nd ed.). Springer, New York, 2015.

[6] S. Helgason: The Radon Transform (2nd ed.). Birkhäuser, Boston, 1999.
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