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Abstract. We consider the approximation of target functions from fractional Sobolev spaces by
the method of filtered back projection (FBP), which gives an inversion of the Radon transform.
The objective of this paper is to analyse the intrinsic FBP approximation error which is incurred
by the use of a low-pass filter with finite bandwidth. To this end, we prove L2-error estimates on
Sobolev spaces of fractional order. The obtained error bounds are affine-linear with respect to
the distance between the filter’s window function and the constant function 1 in the L∞-norm.
With assuming more regularity of the window function, we refine the error estimates to prove
convergence for the FBP approximation in the L2-norm as the filter’s bandwidth goes to infinity.
Further, we determine asymptotic convergence rates in terms of the bandwidth of the low-pass
filter and the smoothness of the target function. Finally, we develop convergence rates for noisy
data, where we first prove estimates for the data error, which we then combine with our estimates
for the approximation error.

1. Introduction

The method of filtered back projection (FBP) is a popular reconstruction technique for bivariate
functions from Radon data. To formulate the basic reconstruction problem mathematically, we
regard for f ∈ L1(R2) its Radon transform

Rf(t, θ) =

∫
{x cos(θ)+y sin(θ)=t}

f(x, y) d(x, y) for (t, θ) ∈ R× [0, π).

Here, the set {(x, y) | x cos(θ) + y sin(θ) = t} ⊂ R2 describes the straight line `t,θ with distance t
to the origin that is perpendicular to the unit vector nθ = (cos(θ), sin(θ))T . Note that the Radon
transformRmaps a bivariate function f ≡ f(x, y) in Cartesian coordinates onto a bivariate function
Rf ≡ Rf(t, θ) in polar coordinates.

Now the reconstruction problem reads as follows.

Problem 1.1 (Basic reconstruction problem). On given domain Ω ⊆ R2, reconstruct a bivariate
function f ∈ L1(Ω) on Ω from Radon data

{Rf(t, θ) | t ∈ R, θ ∈ [0, π)} .

Therefore, the basic reconstruction problem seeks for the inversion of the Radon transform R,
which is accomplished by the method of filtered back projection. For a comprehensive mathematical
treatment of the Radon transform and its inversion, we refer to the textbooks [4, 17].

Date: November 27, 2017.
Key words and phrases. Filtered back projection, error estimates, convergence rates, Sobolev functions.

1



2 MATTHIAS BECKMANN AND ARMIN ISKE

The outline of this paper is as follows. In §2 we discuss the main ingredients of the filtered back
projection (FBP) and their relevant analytical properties. In particular, we explain in §2 how suit-
able low-pass filters can be used to obtain an approximate FBP reconstruction method for bivariate
functions. The aim of this paper is to analyse the approximation error of the FBP reconstruction,
whose error bounds depend on the low-pass filter’s window function, on its bandwidth and on the
regularity of the target function. Before doing so, we first describe other related methods in §3
and explain their differences to our approach. Further, in §4 we recall an error estimate from our
previous work [1] concerning the FBP reconstruction error in the L2-norm for the relevant case of
target functions from Sobolev spaces of fractional order.

That error estimate from [1] allows us to show convergence of the approximate reconstruction
to the target function as the filter’s bandwidth goes to infinity, but only under rather strong
assumptions. In contrast, due to a result by Madych [11], convergence can be shown under much
weaker assumptions. This has motivated us to investigate the refinement of our previous L2-error
estimate, as detailed in §5. On the basis of our refined error estimates we are able to prove
convergence under much weaker conditions. Furthermore, this allows us to determine asymptotic
rates of convergence in terms of the bandwidth of the low-pass filter and the smoothness of the
target function. In §6 and §7 we show that the convergence rate saturates with respect to the
differentiability order of the filter’s window function. Our theoretical results are supported by
numerical simulations.

Finally, in §8 we develop deterministic convergence rates for noisy data, where we combine our
estimates on the approximation error from §5 and §7 with error estimates for the data error. In
particular, we estimate the norm of the regularization operator in dependence of the regularization
parameter. This allows us to balance the approximation error with the noise level and the norm of
the regularization operator, as we elaborate on in detail in the final step of §8.

2. Filtered Back Projection

The inversion of the Radon transform R is well understood and involves the (continuous) Fourier
transform, here taken as

Fg(S, θ) =

∫
R
g(t, θ)e−itS dt for (S, θ) ∈ R× [0, π)

for g ≡ g(t, θ) in polar coordinates satisfying g(·, θ) ∈ L1(R) for all θ ∈ [0, π), as well as the back
projection

Bh(x, y) =
1

π

∫ π

0

h(x cos(θ) + y sin(θ), θ) dθ for (x, y) ∈ R2

for h ∈ L1(R × [0, π)). Note that the back projection B maps a bivariate function h ≡ h(t, θ) in
polar coordinates onto a bivariate function Bh ≡ Bh(x, y) in Cartesian coordinates.

Later in this work we also use the (continuous) Fourier transform on R2, defined as

Ff(X,Y ) =

∫
R

∫
R
f(x, y)e−i(xX+yY ) dxdy for (X,Y ) ∈ R2

for f ≡ f(x, y) in Cartesian coordinates, where f ∈ L1(R2).
Now the inversion of the Radon transform is given by the filtered back projection formula [3, 17]

(2.1) f(x, y) =
1

2
B
(
F−1[|S|F(Rf)(S, θ)]

)
(x, y) ∀ (x, y) ∈ R2,

which holds for any function f ∈ L1(R2) ∩ C(R2).
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We remark that the FBP formula is numerically unstable. Indeed, by applying the filter |S| to the
Fourier transform F(Rf) in (2.1), especially the high frequency components of Rf are amplified by
the magnitude of |S|. To stabilize the FBP reconstruction method, we follow a standard approach
and replace the filter |S| in (2.1) by a low-pass filter AL of the form

AL(S) = |S|W (S/L)

with finite bandwidth L > 0 and an even window function W : R −→ R with compact support
supp(W ) ⊆ [−1, 1]. Further, we assume W ∈ L∞(R).

Therefore, the scaled window function WL(S) = W (S/L) is even and compactly supported with
supp(WL) ⊆ [−L,L]. In particular, WL ∈ L1(R), and so, unlike |S|, any low-pass filter of the form
AL(S) = |S|WL(S) is in L1(R). When replacing the filter |S| in (2.1) by a low-pass filter AL(S),
the reconstruction of f is no longer exact and we obtain an approximate FBP reconstruction fL via

fL(x, y) =
1

2
B
(
F−1[AL(S)F(Rf)(S, θ)]

)
(x, y) for (x, y) ∈ R2.

For target functions f ∈ L1(R2) the approximate reconstruction fL is defined almost everywhere
on R2 (see [2, Proposition 3.1]) and can be simplified to

(2.2) fL =
1

2
B(qL ∗ Rf) ,

where ∗ denotes the convolution product of bivariate functions in polar coordinates, given by

(qL ∗ Rf)(S, θ) =

∫
R
qL(t, θ)Rf(S − t, θ) dt for (S, θ) ∈ R× [0, π),

and where we define the band-limited function qL : R× [0, π) −→ R as

qL(S, θ) = F−1AL(S) for (S, θ) ∈ R× [0, π).

Note that the function qL is well-defined on R× [0, π) and satisfies qL ∈ L2(R× [0, π)).
Moreover, the approximate FBP reconstruction fL belongs to L2(R2) (see [2, Proposition 4.2])

and can be rewritten in terms of the target function f via

(2.3) fL = f ∗KL,

where ∗ now denotes the convolution product of bivariate functions in Cartesian coordinates, given
by

(f ∗KL)(x, y) =

∫
R

∫
R
f(X,Y )KL(x−X, y − Y ) dX dY for (x, y) ∈ R2,

and where we define the convolution kernel KL : R2 −→ R as

KL(x, y) =
1

2
BqL(x, y) for (x, y) ∈ R2.

Note that KL is well-defined on R2 and satisfies KL ∈ C0(R2) ∩ L2(R2) (see [2, Proposition 4.1]).
Further, its Fourier transform is given by

(2.4) FKL(x, y) = WL(x, y) for almost all (x, y) ∈ R2,

where the compactly supported and radially symmetric bivariate window function WL ∈ L∞(R2)
is defined as

WL(x, y) = WL

(√
x2 + y2

)
for (x, y) ∈ R2.

Rigorous derivations of the formulas (2.2), (2.3) and (2.4) can be found, for example, in [2],
where no additional assumptions on the band-limited function qL and the convolution kernel KL
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are needed. We remark that relation (2.3) was derived via ridge functions in [11, Proposition 1]
under different assumptions.

For the sake of brevity, we call any application of the approximate FBP formula (2.2) an FBP
method. Therefore, each FBP method provides one approximation fL to f , fL ≈ f , whose quality
depends on the choice of the low-pass filter AL.

In the following, we analyse the intrinsic error of the FBP method which is incurred by the use
of the low-pass filter AL, i.e., we wish to analyse the reconstruction error

(2.5) eL = f − fL

with respect to the filter’s window function W and bandwidth L. To this end, in §4 and §5 we
prove L2-error estimates on eL for target functions f from Sobolev spaces of fractional order. Here,
the Sobolev space Hα(R2) of order α ∈ R, defined as

(2.6) Hα(R2) =
{
f ∈ S ′(R2) | ‖f‖α <∞

}
,

is equipped with the norm ‖ · ‖α, where

‖f‖2α =
1

4π2

∫
R

∫
R

(
1 + x2 + y2

)α |Ff(x, y)|2 dx dy,

and where S ′(R2) in (2.6) denotes the Schwartz space of tempered distributions on R2.
In relevant applications of (medical) image processing, Sobolev spaces of compactly supported

functions,
Hα

0 (Ω) =
{
f ∈ Hα(R2) | supp(f) ⊆ Ω

}
,

on an open and bounded domain Ω ⊂ R2, and of fractional order α > 0 play an important role
(cf. [16]). In fact, the density function f of an image in Ω ⊂ R2 has usually jumps along smooth
curves, but is otherwise smooth off these curve singularities. Such functions belong to the Sobolev
space Hα

0 (R2) for α < 1
2 . Consequently, we can consider the density of an image as a function in a

Sobolev space Hα
0 (Ω) whose order α is close to 1

2 .

3. Summability Methods, Approximate Inverse, and Other Related Approaches

Before we develop our L2-error estimates and convergence rates, we first discuss related methods,
where we explain how their results differ from ours. We adapt the notations to our setting.

3.1. Summability Methods. In [11], Madych describes the reconstruction of functions from
Radon data based on summability formulas. The basic idea is to choose a convolution kernel
K : R2 −→ R as an approximation of the identity and to compute the convolution product f ∗KL

to approximate the target function f , where, for L > 0, the scaled kernel KL is given by

KL(x, y) = L2K(Lx,Ly) for (x, y) ∈ R2.

If K is chosen to be a uniform sum of ridge functions, the convolution f ∗ KL can be expressed
in terms of the Radon data Rf as in the approximate FBP formula (2.2), see [11, Proposition 1].
Convolution kernels K that can be represented as uniform sums of ridge functions are characterized
in [11, Section 2.2]. Moreover, for target functions f ∈ Lp(R2), 1 ≤ p ≤ ∞, the reconstruction error

f − f ∗KL
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is estimated in terms of the Lp-modulus of continuity ωp(f ; δ), where, for δ > 0,

ωp(f ; δ) = sup
‖(X,Y )‖2≤δ

(∫
R

∫
R
|f(x−X, y − Y )− f(x, y)|p dx dy

)1/p

for 1 ≤ p <∞

and
ω∞(f ; δ) = sup

‖(X,Y )‖2≤δ
ess sup
(x,y)∈R2

|f(x−X, y − Y )− f(x, y)|.

Under the assumption that KL, for L > 0, is a family of integrable convolution kernels satisfying∫
R

∫
R
KL(x, y) dxdy = 1∫

R

∫
R
|KL(x, y)| dxdy ≤ c0∫

R

∫
R

√
x2 + y2 |KL(x, y)| dx dy ≤ c1 L−1

for some constants c0, c1 ∈ R≥0 independent of L, it is shown in [11, Proposition 7] that

(3.1) ‖f − f ∗KL‖Lp(R2) ≤ c ωp(f ;L−1),

where the constant c ∈ R≥0 is independent of f and L. The proof is based on direct calculations in
the cases p = 1 and p =∞, and on the integral variant of Minkowski’s inequality for 1 < p <∞.

To exploit a higher order moment condition on the convolution kernel KL,∫
R

∫
R

√
x2 + y2

k
|KL(x, y)| dxdy ≤ ck L−k

for some integer k ≥ 2 and a constant ck ∈ R≥0 independent of L, the modified kernels

K̃k
L(x, y) =

k−1∑
j=0

(−1)k−j−1
k!

(k − j)! j!
(k − j)−2KL(x/(k−j), y/(k−j)) for (x, y) ∈ R2

are defined and the corresponding reconstruction error

f − f ∗ K̃k
L

is estimated in terms of the k-th order Lp-modulus of smoothness ωkp(f ; δ) of f via

(3.2) ‖f − f ∗ K̃k
L‖Lp(R2) ≤ c ωkp(f ;L−1),

where the constant c ∈ R≥0 is again independent of f and L, see [11, Proposition 8].
The constant c in the estimates (3.1) and (3.2) depends on the L1-norm of the convolution

kernel KL, so that the assumption KL ∈ L1(R2) is essential and cannot be omitted. However, the
integrability of KL implies that its Fourier transform FKL is continuous on R2.

In our setting the condition KL ∈ L1(R2) would imply that the univariate window function
W ∈ L∞(R) is continuous on R, due to formula (2.4). But unlike in [11], we merely require that
W has compact support with supp(W ) ⊆ [−1, 1], where we essentially want to allow discontinu-
ities for W at the boundary points of [−1, 1]. Therefore, the assumptions on KL in [11] lead, in
comparison with this paper, to more restrictive conditions on W .

In [12], Madych considers two particular choices for the convolution kernelKL, where the first one
yields a natural approximation of Radon’s classical reconstruction formula from [18], whereas the
second one leads to an approximation of an alternative inversion formula derived in [11, Corollary 2].
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For these two choices of kernels KL and for target functions f ∈ L∞(R2) that are Hölder continuous
of order α > 0 at (x, y) ∈ R2, the pointwise reconstruction error

f(x, y)− (f ∗KL)(x, y)

is in [12] estimated in terms of the parameter L of the scaled kernelKL and the Hölder exponent α of
the target function f . Again, the so obtained estimates in [12] rely on the assumption KL ∈ L1(R2),
and so they do not apply to the setting of this paper.

3.2. Approximate Inverse. The method of approximate inverse was developed by Louis and
Maass in [9] to solve ill-posed linear operator equations of the form

Af = g

for f ∈ X , where A : X −→ Y is a continuous linear operator between Hilbert spaces X and Y, and
where g ∈ Y are viewed as input measurements. In the setting of this paper, the operator A is the
Radon transform R.

Now the basic idea of the approximate inverse [9] is to select a smoothing operator Eγ : X −→ X ,
for γ > 0, to compute a smoothed version

fγ = Eγf

of the target function f . If X is a space of real-valued functions on a domain Ω, this is done by
calculating the moments

fγ(x) = (f, eγ(x, ·))X for x ∈ Ω

with a suitable family of mollifiers eγ : Ω× Ω −→ R satisfying

lim
γ→0
‖f − fγ‖X = 0.

The computation of fγ from the given data g ∈ Y is achieved by approximating eγ(x, ·) in the range
of the adjoint operator A∗ by the reconstruction kernel vγ(x) ∈ Y solving

min
v∈Y
‖A∗v − eγ(x, ·)‖X

so that
fγ(x) = (f, eγ(x, ·))X ≈ (g, vγ(x))Y for x ∈ Ω.

The mapping Sγ : Y −→ X , defined as

Sγg(x) = (g, vγ(x))Y for x ∈ Ω,

is then called the approximate inverse of the operator A.
Now the application of the approximate inverse to the Radon transform, i.e., A = R, yields a

reconstruction formula of the filtered back projection type. For detailed investigations on properties
of the approximate inverse and its relation to other regularization methods we refer to Louis [7, 8].

Jonas and Louis [6] consider the case where X and Y are L2-spaces and where A is an operator
with smoothing index α > 0 in the Sobolev scale, i.e., there exist constants c1, c2 > 0 satisfying

c1 ‖f‖L2 ≤ ‖Af‖Hα ≤ c2 ‖f‖L2 ∀ f ∈ N (A)⊥.

For mollifiers eγ of convolution type,

eγ(x, y) = eγ(x− y) ∀x, y ∈ Ω,

sufficient conditions are then derived under which the approximate inverse Sγ yields a regularization
method of optimal order, cf. [6, Theorems 3.2 & 5.3]. The proofs in [6] rely on similar techniques
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that we use in §5 to obtain our refined error estimates. Moreover, in the proof of [6, Theorem 5.3],
the estimate

(3.3) ‖f − fγ‖L2 ≤ cβ γθ
β
α ‖f‖Hβ ∀ f ∈ Hβ

is shown for all 0 < β ≤ β∗, for some constant cβ > 0. To this end, it is assumed that there are
positive constants θ, β∗, cβ∗ > 0 satisfying

(3.4) sup
ξ

{(
1 + ‖ξ‖22

)−β∗/2 ∣∣(2π)
n/2 Feγ(ξ)− 1

∣∣} ≤ cβ∗ γθ β∗α ∀ γ > 0.

But (3.4) is in [6] verified merely for one prototypical case, where the mollifier eγ is a sinc function.
In contrast to this, we develop concrete and easy-to-check conditions on the window function W

which guarantee that the inherent FBP reconstruction error eL in (2.5) behaves in the fashion of
estimate (3.3). Moreover, our estimates in §6 and §7 allow for nontrivial statements concerning the
behaviour of the reconstruction error in the case β > β∗.

Louis and Schuster [10] apply the method of approximate inverse to the Radon transform R
to derive inversion formulas for the parallel beam geometry in computerized tomography. They
consider both the continuous and discrete setting, where they explain how to compute the recon-
struction kernel for a chosen mollifier. This yields inversion formulas of filtered back projection
type. The approach in [10] relies, for finite data sets, on a truncation of the singular value decom-
position of R. But [10] contains no results concerning error estimates or convergence rates, unlike
this paper.

Rieder and Schuster [23, 24] focus on semi-discrete systems

Anf = gn,

where the semi-discrete operator An : X −→ Cn and the measurements gn ∈ Cn are defined via an
observation operator Ψn : Y −→ Cn by

An = ΨnA and gn = Ψng.

Their work in [23, 24] proposes a technique for approximating the discrete reconstruction kernel for
a given mollifier. Moreover, they prove convergence for the resulting discrete version of the approxi-
mate inverse. Finally, they apply their results to the Radon transform to obtain convergence rates
for the discrete filtered back projection algorithm in parallel beam geometry, as the discretization
parameters go to zero. Concrete examples of mollifier/reconstruction kernel pairs for the Radon
transform are given in [20].

Since the approach in [23, 24] considers the semi-discrete setting, the method parameter γ > 0 is
necessarily coupled with the discretization parameters. Therefore the intrinsic approximation error

f − fγ
for the continuous approximate inverse reconstruction fγ of f (i.e., for complete Radon data) is not
considered explicitly, unlike in this paper.

In particular, the results of this paper are not covered by the theory of Rieder and Schuster.
Moreover, in [23, 24] the mollifier is required to have compact support. In contrast, we assume
the window function W to be compactly supported with supp(W ) ⊆ [−1, 1]. Due to formula (2.4)
and the Paley-Wiener theorem this implies that the convolution kernel KL cannot have compact
support. Therefore, the setting of this paper is essentially different from that in [23, 24].

The results in [24] lead to suboptimal convergence rates for the discrete filtered back projection
algorithm, as this is explained in [24] (cf. the paragraph after [24, Corollary 5.6]). But Rieder and



8 MATTHIAS BECKMANN AND ARMIN ISKE

Faridani [21] prove optimal L2-convergence rates for a semi-discrete filtered back projection algo-
rithm in parallel beam geometry, where no discretization of the back projection operator B is consid-
ered. This is incorporated by Rieder and Schneck in [22] leading to optimal L2-convergence rates for
a fully discrete version of the filtered back projection algorithm, and for sufficiently smooth f . We
remark that the resulting representation of the discretized approximate FBP formula depends on
the utilized filter function, the interpolation method and the discretization parameters. Therefore,
the inherent FBP reconstruction error

eL = f − fL,
incurred by a low-pass filter of finite bandwidth L, is not estimated in [21, 22], unlike in this paper.

3.3. Other related Approaches. Raviart [19] analyses the reconstruction error

f − f ∗KL

for target functions f from Sobolev spaces of integer order, i.e., f ∈ Hm,p(R2) for some m ∈ N0 and
1 ≤ p ≤ ∞, where

Hm,p(R2) =
{
f ∈ Lp(R2) | ‖f‖m,p <∞

}
with

‖f‖m,p =


(∑

α+β≤m

∥∥∥ ∂α

∂xα
∂β

∂yβ
f
∥∥∥p
Lp(R2)

)1/p

for 1 ≤ p <∞

maxα+β≤m

∥∥∥ ∂α

∂xα
∂β

∂yβ
f
∥∥∥
L∞(R2)

for p =∞.

In the approach taken in [19], the convolution kernel K is required to satisfy K ∈ C(R2) ∩ L1(R2)
and, for some integer k ∈ N, ∫

R

∫
R
K(x, y) dxdy = 1∫

R

∫
R
xα yβK(x, y) dx dy = 0 ∀α, β ∈ N0 : 1 ≤ α+ β ≤ k − 1(3.5) ∫

R

∫
R

√
x2 + y2

k
|K(x, y)| dxdy <∞.(3.6)

For f ∈ Hk,p(R2), 1 ≤ p ≤ ∞, [19, Lemma I.4.4] then yields error estimates of the form

(3.7) ‖f − f ∗KL‖Lp(R2) ≤ C L−k |f |k,p
for some constant C > 0 and where

|f |k,p =


(∑

α+β=k

∥∥∥ ∂α

∂xα
∂β

∂yβ
f
∥∥∥p
Lp(R2)

)1/p

for 1 ≤ p <∞

maxα+β=k

∥∥∥ ∂α

∂xα
∂β

∂yβ
f
∥∥∥
L∞(R2)

for p =∞.

We remark that the proof for (3.7) in [19] relies on a Taylor expansion of f . Further, the required
differentiability order of f is coupled with the k-th order moment conditions on K in (3.5) and (3.6).
But the moment condition in (3.6), in combination with the integrability of the kernel K, implies
that the Fourier transform FK is k-times continuously differentiable on R2. In the setting of this
paper, this would require the univariate window function W ∈ L∞(R) to be k-times continuously
differentiable on R, due to formula (2.4).

Therefore, the assumptions on K in [19] lead, in comparison with the approach of this paper, to
rather restrictive conditions on W . Indeed, in §6 and §7 we prove error estimates on eL, where we
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only assume that the compactly supported windowW ∈ L∞(R), with supp(W ) ⊆ [−1, 1], is k-times
continuously differentiable on [−1, 1], but otherwise allow discontinuities for W at the boundary
points of [−1, 1]. Moreover, in our approach, the target function f lies in a fractional Sobolev space
Hα(R2), for α > 0, where the smoothness α of f is not coupled with the differentiability order k
of W . The constants appearing in our error estimates on eL = f − fL are given explicitly, unlike
for the error estimate (3.7) from [19].

Finally, we prove saturation for the decay rate of the error bound at order k. In the saturation
case, the constant cα,k, as explicitly given in our error bound, is strictly monotonically decreasing
in α > k. Therefore, a smoother target function f ∈ Hα(R2), allows for a better approximation,
even in the case of saturation. This behaviour is not covered by the estimates proven in [19].

We finally discuss the related approach of Schomburg [25], who analyses the convergence rates
of certain delta sequences in Sobolev spaces of negative fractional order. For a tempered distribu-
tion φ ∈ H−α(R2) with α > 1, which satisfies further assumptions specified in [25, Theorem 1],
asymptotic estimates for the error

φn − δ
are derived in the H−α-norm. Here, δ ∈ H−α(R2) denotes the Dirac delta distribution, given by

〈δ, ψ〉 = ψ(0) for ψ ∈ S(R2)

with the duality pairing 〈·, ·〉 on H−α(R2)×Hα(R2), and the sequence (φn)n∈N ⊂ H−α(R2) is defined
via

〈φn, ψ〉 = 〈φ, ψ(·/n, ·/n)〉 for ψ ∈ S(R2).

For an even convolution kernel K ∈ L2(R2) the scaled kernels KL, for L > 0, given by

KL(x, y) = L2K(Lx,Ly) for (x, y) ∈ R2,

can be considered as tempered distributions in H−α(R2) with

〈KL, f〉 =

∫
R

∫
R
KL(X,Y ) f(X,Y ) dx dy =

∫
R

∫
R
K(X,Y ) f(X/L, Y/L) dxdy = 〈K, f(·/L, ·/L)〉.

Observing this, the results from [25] can be used to prove asymptotic pointwise error estimates on

f − f ∗KL

for functions f ∈ Hα(R2), with α > 1, in the Hα-norm of f . Indeed, for fixed (x, y) ∈ R2, we have

〈KL(x− ·, y − ·), f〉 =

∫
R

∫
R
KL(x−X, y − Y ) f(X,Y ) dxdy = (f ∗KL)(x, y)

and
‖KL(x− ·, y − ·)− δ(x− ·, y − ·)‖−α = ‖KL − δ‖−α,

so that
|f(x, y)− (f ∗KL)(x, y)| ≤ ‖KL − δ‖−α ‖f‖α ∀ (x, y) ∈ R2.

The constants from the asymptotic error estimates of [25] are generic and not given explicitly.
Further, we are interested in error estimates on f − f ∗KL for target functions f ∈ Hα(R2), where
the smoothness α of f is only assumed to be positive. Especially the case 0 < α ≤ 1 is of particular
interest, as explained at the end of §2, so that the assumption α > 1 is too restrictive for our setting.

We finally remark that pointwise and L∞-error bounds on eL = f − fL, along with asymptotic
pointwise error formulas, are discussed by Munshi in [13] and by Munshi et al. in [14]. Their
theoretical results are supported by numerical experiments in [15]. But they assume certain moment
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conditions on the convolution kernel K, along with rather restrictive differentiability conditions on
the target function f , that we can avoid in this paper.

4. Error Analysis

In this section we prove an L2-error estimate for eL = f − fL, where the upper bound on the
L2-norm of eL is split into two error terms, a first term depending on the filter’s window function
W and a second one depending on its bandwidth L > 0. Although the results of this section are
already published in [1], it will be quite instructive for the following analysis in this paper to recall
the details of our previous error estimates in [1]. We remark that in the present form of Theorem 4.1
we can omit the assumption KL ∈ L1(R2), which implies that the window function W has to be
continuous on R.

Theorem 4.1 (L2-error estimate, see [1, Theorem 1]). Let f ∈ L1(R2) ∩Hα(R2), for some α > 0,
and let W ∈ L∞(R) be even with supp(W ) ⊆ [−1, 1]. Then, the L2-norm of the FBP reconstruction
error eL = f − fL is bounded above by

(4.1) ‖eL‖L2(R2) ≤ ‖1−W‖∞,[−1,1] ‖f‖L2(R2) + L−α ‖f‖α.

Since we will use some parts of the proof for a refined error analysis, we recall the proof of the
theorem for the reader’s convenience.

Proof. For f ∈ L1(R2) ∩ L2(R2), we get, by using the Rayleigh–Plancherel theorem,

‖eL‖2L2(R2) = ‖f − f ∗KL‖2L2(R2) =
1

4π2
‖Ff −Ff · FKL‖2L2(R2;C)

=
1

4π2
‖Ff −WL · Ff‖2L2(R2;C),

since, by letting WL(x, y) := WL(r(x, y)) for r(x, y) =
√
x2 + y2 and (x, y) ∈ R2, we have the

identity
FKL(x, y) = WL(x, y) for almost all (x, y) ∈ R2

in consequence of [2, Proposition 4.1].
We split the above representation of the L2-error into a sum of two integrals,

(4.2) ‖eL‖2L2(R2) = I1 + I2,

where we let

I1 :=
1

4π2

∫
r(x,y)≤L

|(Ff −WL · Ff)(x, y)|2 d(x, y),(4.3)

I2 :=
1

4π2

∫
r(x,y)>L

|Ff(x, y)|2 d(x, y).(4.4)

For W ∈ L∞(R), integral I1 can be bounded above by

I1 ≤
1

4π2
‖1−WL‖2∞,[−L,L] ‖Ff‖

2
L2(R2;C) = ‖1−W‖2∞,[−1,1] ‖f‖

2
L2(R2)

and, for f ∈ Hα(R2), with α > 0, integral I2 can be bounded above by

I2 ≤
1

4π2

∫
r(x,y)>L

(
1 + x2 + y2

)α
L−2α |Ff(x, y)|2 d(x, y) ≤ L−2α ‖f‖2α,

which completes the proof. �
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The above theorem shows that the choices of both the window function W and the bandwidth L
are of fundamental importance for the L2-error of the FBP method. In fact, for fixed target function
f and bandwidth L, the obtained error estimate is affine-linear with respect to the distance between
the window function W and the constant function 1 in the L∞-norm on the interval [−1, 1]. This
behaviour has also been observed numerically in [1].

Moreover, the error term ‖1 −W‖∞,[−1,1] can be used to evaluate the quality of the window
function W . Note that the window W ≡ χ[−1,1] of the Ram–Lak filter is the unique minimizer of
that quality indicator, so that the Ram–Lak filter is in this sense the optimal low-pass filter.

Finally, the smoothness of the target function f determines the decay rate of the second error
term by

L−α‖f‖α = O(L−α) for L −→∞.
However, the right hand side of our L2-error estimate can only tend to zero if we choose the Ram–
Lak filter, W ≡ χ[−1,1], and let the bandwidth L go to ∞.

Nevertheless, the following theorem of Madych [11] shows that we get convergence of the FBP
reconstruction fL in the Lp-norm under weaker assumptions, for target functions f ∈ Lp(R2) with
1 ≤ p <∞.

Theorem 4.2 (Convergence in the Lp-norm, see [11, Proposition 5]). Let the convolution kernel
K ≡ K1 : R2 −→ R satisfy K ∈ L1(R2) with∫

R

∫
R
K(x, y) dxdy = 1.

Then, for f ∈ Lp(R2), 1 ≤ p <∞,

‖eL‖Lp(R2) −→ 0 for L −→∞.

For the reader’s convenience, we give a proof of the theorem, which relies on Lebegue’s theorem
on dominated convergence.

Proof. For f ∈ Lp(R2), 1 ≤ p <∞, and (X,Y ) ∈ R2, we define

∆f (X,Y ) = ‖f(· −X, · − Y )− f‖Lp(R2).

Then, we have
∆f (X,Y ) −→ 0 for (X,Y ) −→ (0, 0),

since this holds for continuous functions f with compact support, i.e., f ∈ Cc(R2), and Cc(R2) is
dense in Lp(R2) for 1 ≤ p <∞.

Relying on the scaling property

(4.5) KL(x, y) = L2K(Lx,Ly) ∀ (x, y) ∈ R2

we get ∫
R

∫
R
KL(x, y) dxdy =

∫
R

∫
R
K(x, y) dx dy = 1,

and can rewrite the pointwise error

eL(x, y) = (f − fL)(x, y) for (x, y) ∈ R2

as
eL(x, y) = (f − f ∗KL)(x, y) =

∫
R

∫
R

[f(x, y)− f(x−X, y − Y )]KL(X,Y ) dX dY.
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Using Minkowski’s integral inequality we can estimate the Lp-norm of eL by

‖eL‖Lp(R2) =

(∫
R

∫
R

∣∣∣∣∫
R

∫
R

[f(x−X, y − Y )− f(x, y)]KL(X,Y ) dX dY

∣∣∣∣p dxdy

)1/p

≤
∫
R

∫
R

(∫
R

∫
R
|f(x−X, y − Y )− f(x, y)|p |KL(X,Y )|p dxdy

)1/p

dX dY

=

∫
R

∫
R

(∫
R

∫
R
|f(x−X, y − Y )− f(x, y)|p dxdy

)1/p

|KL(X,Y )| dX dY

=

∫
R

∫
R

∆f (X,Y ) |KL(X,Y )| dX dY.

Again, by using the scaling property (4.5), we get

‖eL‖Lp(R2) ≤
∫
R

∫
R

∆f (X/L, Y/L) |K(X,Y )| dX dY.

Since
|∆f (X/L, Y/L)| |K(X,Y )| ≤ 2 ‖f‖Lp(R2) |K(X,Y )|

and, by assumption, ∫
R

∫
R
|K(X,Y )| dX dY <∞,

in combination with
∆f (X/L, Y/L) −→ 0 for L −→∞,

we finally obtain

‖eL‖Lp(R2) ≤
∫
R

∫
R

∆f (X/L, Y/L) |K(X,Y )| dX dY −→ 0 for L −→∞

by Lebesgue’s theorem on dominated convergence. �

5. Refined Error Analysis

According to Theorem 4.2, the L2-norm of the FBP reconstruction error f − fL tends to zero as
L goes to ∞. On the grounds of our error estimate in (4.1), however, convergence follows only for
the Ram–Lak filter, where W ≡ χ[−1,1]. To obtain convergence under weaker conditions, we need
to refine our error estimate.

As in Theorem 4.1 we assume f ∈ L1(R2) ∩ Hα(R2), for α > 0, and consider even window
functions W ∈ L∞(R) with compact support supp(W ) ⊆ [−1, 1].

For the sake of brevity, we set r(x, y) =
√
x2 + y2 for (x, y) ∈ R2. Recall the representation of

the FBP reconstruction error eL = f − fL with respect to the L2-norm in (4.2), by the sum of two
integrals, I1 in (4.3) and I2 in (4.4), where integral I2 can be bounded above by

(5.1) I2 ≤ L−2α ‖f‖2α.

In Theorem 4.1 we derived an upper bound for integral I1 in terms of the L2-norm of the target
function f . To obtain convergence for a larger class of window functions, we bound I1 from above,
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now also with respect to the Hα-norm of f . Indeed, for f ∈ Hα(R2), with α > 0, we can estimate
integral I1 in (4.3) by

I1 =
1

4π2

∫
r(x,y)≤L

|1−WL(x, y)|2 |Ff(x, y)|2 d(x, y)

=
1

4π2

∫
r(x,y)≤L

|1−WL(x, y)|2

(1 + x2 + y2)
α

(
1 + x2 + y2

)α |Ff(x, y)|2 d(x, y)

≤

(
sup

S∈[−L,L]

(1−WL(S))2

(1 + S2)
α

)
1

4π2

∫
R

∫
R

(
1 + x2 + y2

)α |Ff(x, y)|2 dxdy.

Now note that

sup
S∈[−L,L]

(1−WL(S))2

(1 + S2)
α = sup

S∈[−L,L]

(1−W (S/L))2

(1 + S2)
α = sup

S∈[−1,1]

(1−W (S))2

(1 + L2S2)
α .

Therefore, with letting

Φα,W (L) = sup
S∈[−1,1]

(1−W (S))2

(1 + L2S2)
α for L > 0

we can express the above bound on I1 as

I1 ≤

(
sup

S∈[−1,1]

(1−W (S))2

(1 + L2S2)
α

)
‖f‖2α = Φα,W (L) ‖f‖2α.

Combining our bounds for integrals I1 and I2, this finally leads us to the L2-error estimate

‖eL‖2L2(R2) ≤

(
sup

S∈[−1,1]

(1−W (S))2

(1 + L2S2)
α + L−2α

)
‖f‖2α =

(
Φα,W (L) + L−2α

)
‖f‖2α.

In summary, we have just established the following result.

Theorem 5.1 (Refined L2-error estimate). Let f ∈ L1(R2)∩Hα(R2), for α > 0, and letW ∈ L∞(R)
be even with supp(W ) ⊆ [−1, 1]. Then, the L2-norm of the FBP reconstruction error eL = f − fL
is bounded above by

(5.2) ‖eL‖L2(R2) ≤
(

Φ
1/2
α,W (L) + L−α

)
‖f‖α.

Our next result shows that, under suitable assumptions on the windowW , the function Φα,W (L)
tends to zero as L goes to ∞.

Theorem 5.2 (Convergence of Φα,W ). Let the window W be continuous on [−1, 1] and W (0) = 1.
Then, for any α > 0,

Φα,W (L) = max
S∈[−1,1]

(1−W (S))2

(1 + L2S2)
α −→ 0 for L −→∞.

Note that we require continuity of the compactly supported window functionW only on the interval
[−1, 1]. But we allow discontinuities of W at the boundary points of [−1, 1].
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Proof. For the sake of brevity, we define the function Φα,W,L : [−1, 1] −→ R via

Φα,W,L(S) =
(1−W (S))2

(1 + L2S2)
α for S ∈ [−1, 1].

Because W is continuous on [−1, 1] and even, Φα,W,L attains a maximum on [−1, 1], and we have

Φα,W (L) = sup
S∈[−1,1]

Φα,W,L(S) = max
S∈[−1,1]

Φα,W,L(S) = max
S∈[0,1]

Φα,W,L(S).

In the following, let S∗α,W,L ∈ [0, 1] be the smallest maximizer of the even function Φα,W,L on [0, 1].

Case 1: S∗α,W,L is uniformly bounded away from 0, i.e.,

∃ c ≡ c(α,W ) > 0 ∀L > 0 : S∗α,W,L ≥ c,
in which case we get

0 ≤ Φα,W,L
(
S∗α,W,L

)
=

(
1−W (S∗α,W,L)

)2(
1 + L2(S∗α,W,L)2

)α ≤ ‖1−W‖2∞,[−1,1]
(1 + L2c2)

α
L→∞−−−−→ 0.

Case 2: S∗α,W,L tends to 0 as L goes to ∞, i.e.,

S∗α,W,L −→ 0 for L −→∞.

Because W is continuous on [−1, 1] and satisfies W (0) = 1, we have

W (S∗α,W,L) −→W (0) = 1 for L −→∞
and, consequently,

0 ≤ Φα,W,L
(
S∗α,W,L

)
=

(
1−W (S∗α,W,L)

)2(
1 + L2(S∗α,W,L)2

)α ≤ (1−W (S∗α,W,L)
)2 L→∞−−−−→ 0.

Hence, in both cases we have

Φα,W (L) = Φα,W,L
(
S∗α,W,L

)
−→ 0 for L −→∞,

which completes our proof. �

By combining Theorems 5.1 and 5.2, we can now conclude convergence of the FBP reconstruction
fL in the L2-norm for a larger class of window functions W .

Corollary 5.3. Let f ∈ L1(R2) ∩ Hα(R2), for some α > 0, and W ∈ C([−1, 1]) with W (0) = 1.
Then, the L2-norm of the FBP reconstruction error eL = f − fL satisfies

‖eL‖2L2(R2) ≤
(
Φα,W (L) + L−2α

)
‖f‖2α −→ 0 for L −→∞.

In particular,
‖eL‖L2(R2) = o(1) for L −→∞.

We are now interested in the rate of convergence for the FBP reconstruction error ‖eL‖L2(R2) as
L goes to∞. Thus, we need to determine the decay rate of Φα,W (L). To this end, let S∗α,W,L ∈ [0, 1]

again denote the smallest maximizer in [0, 1] of the even function

Φα,W,L(S) =
(1−W (S))2

(1 + L2S2)
α for S ∈ [−1, 1].

In the following analysis, we rely on the following assumption.
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Assumption 5.4. S∗α,W,L is uniformly bounded away from 0, i.e., there exists a constant cα,W > 0,
such that

S∗α,W,L ≥ cα,W ∀L > 0.

Under this assumption, we can conclude

Φα,W (L) = Φα,W,L
(
S∗α,W,L

)
≤
‖1−W‖2∞,[−1,1](

1 + L2 c2α,W
)α ≤ c−2αα,W ‖1−W‖

2
∞,[−1,1] L

−2α,

in which case we obtain

‖eL‖2L2(R2) ≤
(
c−2αα,W ‖1−W‖

2
∞,[−1,1] + 1

)
L−2α ‖f‖2α,

i.e.,
‖eL‖2L2(R2) = O(L−2α) for L −→∞.

In summary, we can, under the above assumption, establish asymptotic L2-error estimates for
the FBP reconstruction with convergence rates as follows.

Theorem 5.5 (Rate of convergence). Let f ∈ L1(R2)∩Hα(R2), for α > 0, and W ∈ C([−1, 1]) with
W (0) = 1. Further, let Assumption 5.4 be satisfied. Then, the L2-norm of the FBP reconstruction
error eL = f − fL is bounded above by

(5.3) ‖eL‖L2(R2) ≤
(
c−αα,W ‖1−W‖∞,[−1,1] + 1

)
L−α ‖f‖α,

i.e.,
‖eL‖L2(R2) = O(L−α) for L −→∞.

Note that the decay rate of the L2-error in (5.3) is determined by the smoothness α of the target f .
Further, for fixed target function f and bandwidth L, the obtained error estimate is again affine-
linear with respect to ‖1−W‖∞,[−1,1], as in (4.1) and observed numerically in [1].

We remark that Assumption 5.4 is satisfied for a large class of window functions. For example,
let the window function W ∈ C([−1, 1]) satisfy

W (S) = 1 ∀S ∈ [−ε, ε]

for ε > 0 and
∃R ∈ [0, 1] : W (R) 6= 1.

Then, Assumption 5.4 is fulfilled with cα,W = ε.

Numerical Observations. We investigate the behaviour of S∗α,W,L and Φα,W numerically for the
following commonly used choices of the filter function AL(S) = |S|W (S/L):

Name W (S) for |S| ≤ 1 Parameter
Shepp–Logan sinc(πS/2) -
Cosine cos(πS/2) -
Hamming β + (1− β) cos(πS) β ∈ [1/2, 1]

Gaussian exp
(
−(πS/β)2

)
β > 1

Note that each of these window functions W is compactly supported with supp(W ) = [−1, 1].
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Figure 1. Decay rate of Φα,W for the Shepp–Logan filter.

In our numerical experiments, we calculated S∗α,W,L and Φα,W (L) as a function of the bandwidth
L > 0 for the above mentioned window functions W and for different parameters α > 0, reflecting
the smoothness of the target function f ∈ Hα(R2). Figure 1 shows the behaviour of Φα,W in log-
log scale for the Shepp–Logan filter and for smoothness parameters α ∈ {0.5, 1, 2, 2.5, 3, 4}. For
α ∈ {0.5, 1, 2} we observe that Φα,W (L) behaves exactly as L−2α, see Figure 1(a)–(c), whereas for
α ∈ {2.5, 3, 4} the behaviour of Φα,W (L) corresponds to L−4, see Figure 1(d)–(f). In the latter
case, however, Φα,W (L) decreases at increasing values α > 2. We remark that the same behaviour
was observed in our numerical experiments for the other window functions W mentioned above.

We summarize our numerical experiments (for all windows W listed above) as follows.
For α < 2, we see that Assumption 5.4, i.e.,

∃ cα,W > 0 ∀L > 0 : S∗α,W,L ≥ cα,W ,

is fulfilled, where in particular,

Φα,W (L) = O(L−2α) for L −→∞.

For α ≥ 2, we have
S∗α,W,L −→ 0 for L −→∞

and the convergence rate of Φα,W stagnates at

Φα,W (L) = O(L−4) for L −→∞.



ERROR ESTIMATES AND CONVERGENCE RATES FOR FILTERED BACK PROJECTION 17

6. Error Analysis for C2-Windows

Note that all window functionsW mentioned above are in C2([−1, 1]). Therefore, in the following
analysis we consider even window functions W with compact support in [−1, 1] that additionally
satisfy W ∈ C2([−1, 1]) and W (0) = 1.

Note that we require differentiability of the compactly supported window function W only on
the interval [−1, 1]. But we allow discontinuities of W at the boundary points of [−1, 1]. As a first
result, we obtain the following convergence rate.

Theorem 6.1 (Convergence rate of Φα,W for C2-windows). Let the window function W satisfy
W ∈ C2([−1, 1]) with W (0) = 1. Moreover, let α > 0. Then, we have

Φα,W (L) ≤

Cα ‖W
′′‖2∞,[−1,1] L

−4 for α > 2 ∧ L ≥
√
2√

α−2

1
4 ‖W

′′‖2∞,[−1,1] L
−2α for α ≤ 2 ∨

(
α > 2 ∧ L <

√
2√

α−2

) ∀L > 0,

i.e.,
Φα,W (L) = O

(
L−min{4,2α}

)
for L −→∞,

where the constant

Cα =
(α− 2)α−2

αα

is strictly monotonically decreasing in α > 2.

Proof. Since the window function W is assumed to be continuous on [−1, 1], we have

Φα,W (L) = max
S∈[−1,1]

(1−W (S))2

(1 + L2S2)
α = max

S∈[−1,1]
Φα,W,L(S).

Let S ∈ [−1, 1] be fixed. By assumption, W satisfies W ∈ C2([−1, 1]) with W (0) = 1. Thus, we can
apply Taylor’s theorem and obtain

W (S) = W (0) +W ′(0)S +
1

2
W ′′(ξ)S2 = 1 +

1

2
W ′′(ξ)S2

for some ξ between 0 and S, where we use that the windowW is even and, consequently,W ′(0) = 0.
This leads to

Φα,W,L(S) =
(W ′′(ξ))2

4

S4

(1 + L2 S2)
α ≤

‖W ′′‖2∞,[−1,1]
4

S4

(1 + L2 S2)
α .

Hence,

Φα,W (L) ≤
‖W ′′‖2∞,[−1,1]

4
max

S∈[−1,1]

S4

(1 + L2 S2)
α =

‖W ′′‖2∞,[−1,1]
4

max
S∈[−1,1]

φα,L(S).

We now need to analyse the function

φα,L(S) =
S4

(1 + L2 S2)
α for S ∈ [−1, 1],

which is independent of the window function W . Since φα,L is an even function, we have

max
S∈[−1,1]

φα,L(S) = max
S∈[0,1]

φα,L(S)

and so it suffices to consider S ∈ [0, 1]. A necessary condition for a maximum of φα,L on (0, 1) is

φ′α,L(S) = 0.



18 MATTHIAS BECKMANN AND ARMIN ISKE

From the first derivative

φ′α,L(S) =
2S3

(
2 + (2− α)L2 S2

)
(1 + L2 S2)

α+1

it follows that φ′α,L can vanish only for S = 0 or for (α− 2)L2 S2 = 2.
Now since φα,L(0) = 0 and φα,L(S) > 0, for all S > 0, it follows that S = 0 is the unique global

minimizer of φα,L on [0, 1].

Case 1: For 0 ≤ α ≤ 2 the equation
(α− 2)L2 S2 = 2

has no solution in [0, 1] and, moreover,

φ′α,L(S) > 0 ∀S ∈ (0, 1].

This means that φα,L is strictly monotonically increasing on (0, 1] and, thus, it is maximal on [0, 1]
for S∗ = 1, i.e.,

max
S∈[0,1]

φα,L(S) = φα,L(1) =
1

(1 + L2)
α ≤ L−2α.

Case 2: For α > 2 the unique positive solution of the equation

(α− 2)L2 S2 = 2

is given by

S∗ =

√
2

L
√
α− 2

,

where

S∗ ∈ [0, 1] ⇐⇒ L ≥
√

2√
α− 2

.

For convenience, we define the function gα,L : R −→ R via

gα,L(S) = 2 + (2− α)L2 S2.

Then, gα,L is a down open parabola with vertex in S = 0 and we obtain

gα,L(S1) > gα,L(S2) ∀ 0 ≤ S1 < S2.

In particular, we have

gα,L(S2) < gα,L(S∗) = 0 < gα,L(S1) ∀ 0 < S1 < S∗ < S2

and, consequently,

φ′α,L(S2) < φ′α,L(S∗) = 0 < φ′α,L(S1) ∀ 0 < S1 < S∗ < S2.

Thus, φα,L is strictly monotonically increasing on (0, S∗) and strictly monotonically decreasing on
(S∗,∞). Therefore, S∗ is the unique maximizer of φα,L and it follows that

arg max
S∈[0,1]

φα,L(S) =

1 for L <
√
2√

α−2
√
2

L
√
α−2 for L ≥

√
2√

α−2 .

Since

φα,L(S∗) =

( √
2

L
√
α−2

)4
(

1 + L2
( √

2
L
√
α−2

)2)α = 4
(α− 2)2−α

αα
L−4
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we finally obtain (for α > 2)

max
S∈[0,1]

φα,L(S) =

φα,L(1) for L <
√
2√

α−2

φα,L(S∗) for L ≥
√
2√

α−2

≤

L
−2α for L <

√
2√

α−2

4 (α−2)2−α
αα L−4 for L ≥

√
2√

α−2 .

Combining our results yields

Φα,W (L) ≤ 1

4
‖W ′′‖2∞,[−1,1] max

S∈[0,1]
φα,L(S)

≤ 1

4
‖W ′′‖2∞,[−1,1]


4 (α−2)2−α

αα L−4 for α > 2 ∧ L ≥
√
2√

α−2

L−2α for α ≤ 2 ∨
(
α > 2 ∧ L <

√
2√

α−2

)
=


(α−2)2−α

αα ‖W ′′‖2∞,[−1,1] L
−4 for α > 2 ∧ L ≥

√
2√

α−2

1
4 ‖W

′′‖2∞,[−1,1] L
−2α for α ≤ 2 ∨

(
α > 2 ∧ L <

√
2√

α−2

)
,

as stated.
Let us finally regard the constant

Cα = C(α) =
(α− 2)α−2

αα

as a function of α > 2. Then,

d

dα
C(α) =

(α− 2)α−2

αα
log

(
1− 2

α

)
< 0 ∀α > 2

and, consequently, Cα is strictly monotonically decreasing in α > 2. �

We remark that the results of Theorem 6.1 comply with our numerical observations from the
previous section. We have in particular observed saturation of the convergence rate of Φα,W for
α > 2 at

Φα,W (L) = O(L−4) for L −→∞
through our numerical experiments. Therefore, our numerical results show that the proven order
of convergence for Φα,W is optimal for C2-windows.

By combining Theorems 5.1 and 6.1, we finally get the following result for the convergence order
of FBP reconstruction with C2-windows.

Corollary 6.2 (L2-error estimate for C2-windows). For α > 0 let f ∈ L1(R2)∩Hα(R2). Moreover,
let W ∈ C2([−1, 1]) with W (0) = 1. Then, the L2-norm of the FBP reconstruction error eL = f−fL
is bounded above by

‖eL‖L2(R2) ≤


( cα,2

2 ‖W
′′‖∞,[−1,1] L−2 + L−α

)
‖f‖α for α > 2 ∧ L ≥ L∗(

1
2 ‖W

′′‖∞,[−1,1] L−α + L−α
)
‖f‖α for α ≤ 2 ∨ (α > 2 ∧ L < L∗)

with the critical bandwidth L∗ =
√
2√

α−2 , for α > 2. Moreover, the constant

cα,2 =
2

α− 2

(
α− 2

α

)α/2
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is strictly monotonically decreasing in α > 2. In particular,

‖eL‖L2(R2) ≤
(
c ‖W ′′‖∞,[−1,1] L−min{2,α} + L−α

)
‖f‖α = O

(
L−min{2,α}

)
.

We close this section by the following two remarks.
Firstly, note that the bound on the inherent FBP reconstruction error in Corollary 6.2 is affine-

linear with respect to ‖W ′′‖∞,[−1,1]. Therefore, the quantity in the upper bound can be used to
evaluate the approximation quality of the chosen C2-window function W .

Secondly, for α ≤ 2 the convergence order of the approximate reconstruction fL is given by the
smoothness of the target function f . But for α > 2 the convergence rate of the error bound saturates
at O(L−2). Nevertheless, the FBP reconstruction error continues to decrease at increasing α > 2,
since the involved constant cα,2 is strictly monotonically decreasing in α > 2. This matches our
perceptions, as the approximation error should be smaller for target functions of higher regularity.

7. Error Analysis for Ck-Windows

In this section, we generalize our results from the previous section to Ck-windows whose first
k − 1 derivatives vanish at the origin. Therefore, we now consider even window functions W with
compact support in [−1, 1] that additionally satisfy W ∈ Ck([−1, 1]) for some k ≥ 2 and

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1.

According to Theorem 5.2, Φα,W (L) tends to zero for L → ∞. In Theorem 6.1 we obtained
convergence rates for Φα,W with C2-windows W . We can prove convergence rates for Ck-windows
by following along the lines of the presented proofs for k = 2, see Theorem 6.1 and Corollary 6.2.
We formulate our results for k ≥ 2 as follows.

Theorem 7.1 (Convergence rate of Φα,W for Ck-windows). Let the window function W satisfy
W ∈ Ck([−1, 1]), for k ≥ 2, with

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1.

Moreover, let α > 0. Then, Φα,W (L) can be bounded above by

Φα,W (L) ≤


c2α,k
(k!)2 ‖W

(k)‖2∞,[−1,1] L
−2k for α > k ∧ L ≥ L∗

1
(k!)2 ‖W

(k)‖2∞,[−1,1] L
−2α for α ≤ k ∨ (α > k ∧ L < L∗)

with the critical bandwidth L∗ =
√
k√

α−k , for α > k, and the strictly increasing constant

cα,k =
( k

α− k

)k/2(α− k
α

)α/2
for α > k.

In particular,

Φα,W (L) = O
(
L−2min{k,α}

)
for L −→∞.

Combining Theorems 5.1 and 7.1, we obtain the following result concerning the convergence
order of the FBP reconstruction with Ck-windows.
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Corollary 7.2 (L2-error estimate for Ck-windows). For α > 0 let f ∈ L1(R2)∩Hα(R2). Moreoever,
let W ∈ Ck([−1, 1]), for k ≥ 2, with

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1.

Then, the L2-norm of the inherent FBP reconstruction error eL = f − fL is bounded above by

‖eL‖L2 ≤


( cα,k
k! ‖W

(k)‖∞,[−1,1] L−k + L−α
)
‖f‖α for α > k ∧ L ≥ L∗(

1
k! ‖W

(k)‖∞,[−1,1] L−α + L−α
)
‖f‖α for α ≤ k ∨ (α > k ∧ L < L∗) .

In particular,

‖eL‖L2(R2) ≤
(
c ‖W (k)‖∞,[−1,1] L−min{k,α} + L−α

)
‖f‖α = O

(
L−min{k,α}

)
.

Note that our concluding remarks after Corollary 6.2 concerning the approximation order of the
FBP reconstruction fL continue to apply in the situation of Ck-windowsW . Indeed, the convergence
order in Corollary 7.2, for α ≤ k, is determined by the smoothness of the target function f , whereas
for α > k the convergence rate saturates at O(L−k). But in this case the error bound decreases
at increasing α, since the involved constant cα,k is strictly monotonically decreasing in α > k.
Thus, a smoother target function allows for a better approximation, as expected. Nevertheless, the
attainable convergence rate is limited by the differentiability order k of the filter’s Ck-window W .

Finally, note that the bound on the inherent FBP reconstruction error in Corollary 7.2 is affine-
linear with respect to ‖W (k)‖∞,[−1,1] and this quantity can be used to evaluate the approximation
quality of the chosen Ck-window function W .

Numerical Experiments. We investigate the behaviour of Φα,W numerically for the generalized
Gaussian filter AL(S) = |S|W (S/L) with the window function

W (S) = exp

(
−
(
πS

β

)k)
for S ∈ [−1, 1]

for an even k ∈ N≥2 and β > 1. In this case, W ∈ Ck([−1, 1]) is even and compactly supported
with supp(W ) ⊆ [−1, 1]. Moreover,

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1 and W (k)(0) = −k!

(
π

β

)k
6= 0.

In our numerical experiments, we evaluated Φα,W (L) as a function of the bandwidth L > 0 for
the Gaussian’s window W , using various combinations of parameters k ∈ N≥2, β > 1, and α > 0.
Figure 2 shows the behaviour of Φα,W in log-log scale for the generalized Gaussian filter with k = 4
and β = 4, for the smoothness parameters α ∈ {2, 3, 4, 4.5, 5, 6}. For α ∈ {2, 3, 4} we observe that
Φα,W (L) behaves as L−2α, see Figure 2(a)–(c), whereas for α ∈ {4.5, 5, 6} the behaviour of Φα,W (L)
corresponds to L−8, see Figure 2(d)–(f). But Φα,W (L) continues to decrease at increasing α > k.

We can summarize the results of our numerical experiments as follows. For α < k, we observe

Φα,W (L) = O(L−2α) for L −→∞.

For α ≥ k, the convergence rate of Φα,W saturates at

Φα,W (L) = O(L−2k) for L −→∞.
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Figure 2. Decay rate of Φα,W for the generalized Gaussian filter with k = 4, β = 4.

Note that the results of Theorem 7.1 entirely comply with our numerical observations (for the
generalized Gaussian filters). So have we, in particular, observed the saturation of the convergence
rate of Φα,W for α > k at

Φα,W (L) = O(L−2k) for L −→∞.

Our numerical results show that the proven convergence order of Φα,W is optimal for Ck-windows.

Asymptotic Error Estimates. In this subsection, we take a different approach to prove asymp-
totic error estimates for the proposed FBP reconstruction method with window functions which
are k-times differentiable only at the origin. To this end, we now consider an even window function
W ∈ L∞(R), with compact support on [−1, 1]. Moreover, W is required to have k derivatives at
zero, for some k ≥ 2, with

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1.

As in the previous sections, we consider target functions f ∈ L1(R2) ∩ Hα(R2), for some α > 0.
For the sake of brevity, we again set r(x, y) =

√
x2 + y2 for (x, y) ∈ R2.

Recall the representation of the FBP reconstruction error eL = f − fL with respect to the
L2-norm in (4.2), by the sum of two integrals, I1 in (4.3) and I2 in (4.4), where integral I2 can be
bounded above by (5.1), i.e.,

I2 ≤ L−2α ‖f‖2α.
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As regards integral I1, we have

I1 =
1

4π2

∫
r(x,y)≤L

|1−WL(r(x, y))|2 |Ff(x, y)|2 d(x, y)

=
1

4π2

∫
r(x,y)≤L

∣∣∣∣1−W(r(x, y)

L

)∣∣∣∣2 |Ff(x, y)|2 d(x, y).

Because W : R −→ R is k-times differentiable at zero, we can apply Taylor’s theorem and, thus,
there exists a function hk : R −→ R satisfying

W (S) =

k∑
j=0

W (j)(0)

j!
Sj + hk(S)Sk ∀S ∈ R

and
lim
S→0

hk(S) = 0.

By assumption, W satisfies

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1.

Hence, for (x, y) ∈ R2 and L > 0 follows that

1−W
(
r(x, y)

L

)
= −

(
W (k)(0)

k!

(
r(x, y)

L

)k
+ hk

(
r(x, y)

L

) (
r(x, y)

L

)k)
,

so that we obtain the representation

I1 =
1

4π2

∫
r(x,y)≤L

(
W (k)(0)

k!
+ hk

(
r(x, y)

L

))2(
r(x, y)

L

)2k

|Ff(x, y)|2 d(x, y).

For convenience, we define

φ∗α,L,k = max
r(x,y)≤L

(
r(x,y)
L

)2k
(1 + r(x, y)2)

α = max
S∈[0,1]

S2k

(1 + L2 S2)
α .

Then, I1 can be bounded above by

I1 ≤ φ∗α,L,k
1

4π2

∫
r(x,y)≤L

(
W (k)(0)

k!
+ hk

(
r(x, y)

L

))2 (
1 + r(x, y)2

)α |Ff(x, y)|2 d(x, y).

We now regard the integral∫
R

∫
R

(
hk

(
r(x, y)

L

))2 (
1 + r(x, y)2

)α |Ff(x, y)|2 dx dy.

For S 6= 0, the function hk can be written as

hk(S) = (W (S)− 1)S−k − W (k)(0)

k!
.

Since the window function W is compactly supported in [−1, 1], we obtain

hk(S) = −S−k − W (k)(0)

k!
∀ |S| > 1,
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which implies

hk(S) −→ −W
(k)(0)

k!
for S −→ ±∞.

From W ∈ L∞(R) and
hk(S) −→ 0 for S −→ 0

it follows that hk is bounded on R, so that there exists some constant M > 0 satisfying∣∣∣∣hk(r(x, y)

L

)∣∣∣∣2 ≤M ∀ (x, y) ∈ R2, L > 0.

Hence, for all L > 0, the integrand

hk,L(x, y) =

(
hk

(
r(x, y)

L

))2 (
1 + r(x, y)2

)α |Ff(x, y)|2

is bounded on R2 by the function

Φ(x, y) = M
(
1 + r(x, y)2

)α |Ff(x, y)|2,

which is integrable over R2 due to the assumption f ∈ Hα(R2). Moreover, we have

hk

(
r(x, y)

L

)
−→ 0 for

r(x, y)

L
−→ 0,

which implies that, for any (x, y) ∈ R2, hk,L(x, y) tends to zero as L goes to∞. Thus, we can apply
Lebesgue’s theorem on dominated convergence to get

lim
L→∞

∫
R

∫
R

(
hk

(
r(x, y)

L

))2 (
1 + r(x, y)2

)α |Ff(x, y)|2 dxdy = 0,

i.e., ∫
R

∫
R

(
hk

(
r(x, y)

L

))2 (
1 + r(x, y)2

)α |Ff(x, y)|2 dxdy = o(1) for L −→∞.

This leads us to the estimate

I1 ≤ φ∗α,L,k
1

4π2

∫
r(x,y)≤L

(
W (k)(0)

k!
+ hk

(
r(x, y)

L

))2

︸ ︷︷ ︸
≤2
(
W (k)(0)

k!

)2
+2
(
hk( r(x,y)L )

)2
(
1 + r(x, y)2

)α |Ff(x, y)|2 d(x, y)

≤ 2φ∗α,L,k
1

4π2

∫
r(x,y)≤L

(
W (k)(0)

k!

)2 (
1 + r(x, y)2

)α |Ff(x, y)|2 d(x, y)

+ 2φ∗α,L,k
1

4π2

∫
r(x,y)≤L

(
hk

(
r(x, y)

L

))2 (
1 + r(x, y)2

)α |Ff(x, y)|2 d(x, y)

≤ 2φ∗α,L,k

(
W (k)(0)

k!

)2

‖f‖2α + φ∗α,L,k o(1).

Using the same technique as in the proof of Theorem 6.1, we can bound φ∗α,L,k by

φ∗α,L,k ≤


(

k
α−k

)k(α−k
α

)α
L−2k for α > k ∧ L ≥ L∗

L−2α for α ≤ k ∨ (α > k ∧ L < L∗)
= O

(
L−2min{k,α}

)
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with the critical bandwidth L∗ =
√
k√

α−k for α > k. Thus, it follows that

I1 ≤


2

(k!)2 c
2
α,k |W (k)(0)|2 L−2k ‖f‖2α + o

(
L−2k

)
for α > k ∧ L ≥ L∗

2
(k!)2 |W

(k)(0)|2 L−2α ‖f‖2α + o
(
L−2α

)
for α ≤ k ∨ (α > k ∧ L < L∗) ,

where the constant

cα,k =
( k

α− k

)k/2(α− k
α

)α/2
for α > k

is strictly monotonically decreasing in α > k (cf. Theorem 7.1).
By combining our derived bounds for the integrals I1 and I2, we finally get the L2-error estimate

‖eL‖2L2(R2) ≤
(

2
(
Cα,k |W (k)(0)|

)2
L−2min{k,α} + L−2α

)
‖f‖2α + o

(
L−2min{k,α}

)
.

In conclusion, we have proven the following error theorem for the FBP reconstruction method.

Theorem 7.3 (Asymptotic L2-error estimate). For α > 0 let f ∈ L1(R2) ∩Hα(R2). Moreover, let
W ∈ L∞(R) be even, with supp(W ) ⊆ [−1, 1], and k-times differentiable at the origin, k ≥ 2, with

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1.

Then, for α ≤ k, the L2-norm of the FBP reconstruction error eL = f − fL is bounded above by

‖eL‖L2(R2) ≤

(√
2

k!
|W (k)(0)|L−α + L−α

)
‖f‖α + o(L−α).(7.1)

If α > k, the L2-norm of eL can be bounded above by

‖eL‖L2(R2) ≤


(√

2
k! cα,k|W

(k)(0)|L−k + L−α
)
‖f‖α + o(L−k) for L ≥ L∗(√

2
k! |W

(k)(0)|L−α + L−α
)
‖f‖α + o(L−α) for L < L∗

(7.2)

with the critical bandwidth L∗ =
√
k√

α−k and the strictly monotonically decreasing constant

cα,k =
( k

α− k

)k/2(α− k
α

)α/2
for α > k.

In particular,

‖eL‖L2(R2) ≤
(
c |W (k)(0)|L−min{k,α} + L−α

)
‖f‖α + o

(
L−min{k,α}

)
.

We wish to draw the following conclusions from Theorem 7.3.
Firstly, the flatness of the filter’s window functionW determines the convergence rate of the error

bounds (7.1), (7.2) for the inherent FBP reconstruction error. Indeed, if W is k-times differentiable
at the origin such that the first k − 1 derivatives of W vanish at zero, then the convergence rate
in (7.1) is given by the smoothness α of the target function f as long as α ≤ k. But for α > k the
order of convergence in (7.2) saturates at O(L−k).

Secondly, the quantity |W (k)(0)|, i.e., the k-th derivative of W at the origin, dominates the error
bound in both (7.1) and (7.2). Therefore, the value |W (k)(0)| can be used as an indicator to predict
the approximation quality of the proposed FBP reconstruction method.
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To conclude our discussion, we finally consider the following special case. Let the window function
W fulfil the assumptions of Theorem 7.3 with k ≥ 2 and let the smoothness α of f ∈ Hα(R2) satisfy

α > k.

Then, the asymptotic L2-error estimate of the FBP method reduces to

‖f − fL‖L2(R2) ≤
√

2

k!
cα,k |W (k)(0)|L−k ‖f‖α + o(L−k).

Consequently, the intrinsic FBP reconstruction error is proportional to |W (k)(0)|, if we neglect the
higher order terms. For k = 2, this observation complies with the results of Munshi [13] and Munshi
et al. [14, 15], where they assumed certain moment conditions on the convolution kernel K and
differentiability of the target function f in a strict sense.

8. Convergence Rates for Noisy Data

We finally turn to the important case of noisy data. In fact, for many relevant applications, the
Radon data g = Rf ∈ L2(R × [0, π)) is not known exactly, but only up to an error δ > 0, so that
we wish to reconstruct f from given noisy measurements gδ ∈ L1(R× [0, π))∩L2(R× [0, π)), where∥∥g − gδ∥∥

L2(R×[0,π)) ≤ δ.

Applying the approximate FBP formula (2.2) to the noisy data gδ, this yields the reconstruction

(8.1) fδL =
1

2
B
(
qL ∗ gδ

)
.

Using standard concepts from inverse problems and regularization theory, we see that the overall
FBP reconstruction error

(8.2) eδL = f − fδL
can be split into an approximation error term and a data error term,

eδL = f − fL︸ ︷︷ ︸
approximation

error

+ fL − fδL︸ ︷︷ ︸
data
error

.

In the following of this section, we analyse the L2-norm of the overall FBP reconstruction error eδL
in (8.2) with respect to the noise level δ as well as the filter’s window function W and bandwidth L.
To this end, we first show that the noisy FBP reconstruction fδL in (8.1) also satisfies fδL ∈ L2(R2).
By the triangle inequality we have

‖eδL‖L2(R2) ≤ ‖f − fL‖L2(R2) + ‖fL − fδL‖L2(R2).

Hence, we will estimate the data error (in Section 8.1) and the approximation error (in Section 8.2)
separately. In preparation, we first need to collect a few relevant results concerning the Radon
transform. Since the following results are well-known, we omit the proofs and refer to the literature
instead. We first recall that for f ∈ L1(R2) the Radon transform Rf is in L1(R× [0, π)).

Lemma 8.1. The Radon transform R : L1(R2) −→ L1(R× [0, π)) is continuous. In particular, for
f ∈ L1(R2) we have

‖Rf‖L1(R×[0,π)) ≤ π ‖f‖L1(R2).

Next we recall that the L2-norm of Rf is bounded for f ∈ L2
c(R2), i.e., for f square integrable

and compactly supported.
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Lemma 8.2. Let f ∈ L2
c(R2) be supported in a compact set K ⊂ R2 with diameter

diam(K) = sup{‖(x−X, y − Y )‖R2 | (x, y), (X,Y ) ∈ K} <∞.

Then, Rf ∈ L2(R× [0, π)), where

‖Rf‖2L2(R×[0,π)) ≤ π diam(K) ‖f‖2L2(R2).

By Lemma 8.2 the Radon transform R is a densely defined unbounded linear operator from
L2(R2) to L2(R× [0, π)) with domain L2

c(R2). Next we turn to the adjoint operator R# of R.

Lemma 8.3 (see [26, Theorem 12.3]). The adjoint operator R# of R : L2
c(R2) −→ L2(R × [0, π))

is given by

R#g(x, y) =

∫ π

0

g(x cos(θ) + y sin(θ), θ) dθ for (x, y) ∈ R2.

For every g ∈ L2(R× [0, π)), R#g is defined almost everywhere on R2 and satisfies

R#g ∈ L2
loc(R2).

Lemma 8.3 shows that, up to the constant 1
π , the back projection operator B is the adjoint

operator of the Radon transform R, i.e.,

B =
1

π
R#.

In particular, for g ∈ L2(R× [0, π)) the function Bg is defined almost everywhere on R2 and satisfies

Bg ∈ L2
loc(R2).

Finally, recall the standard Schwartz space

S(R2) = {f ∈ C∞(R2) | ∀α, β ∈ N2
0 : |f |α,β <∞}

of all rapidly decaying C∞-functions on R2, where

|f |α,β = sup
(x,y)∈R2

|(x, y)α Dβf(x, y)| for α, β ∈ N2
0.

Likewise, the Schwartz space S(R× [0, π)) can also be defined on R× [0, π), in which case, for any
f ≡ f(S, θ) ∈ S(R× [0, π)), its rapid decay is only with respect to the radial variable S ∈ R. The
next lemma shows that the Radon transform of any f ∈ S(R2) lies in S(R× [0, π)) ⊂ L2(R× [0, π)).

Lemma 8.4 (see [5, Theorem 4.1]). The Radon transform R : S(R2) −→ S(R×[0, π)) is continuous.

Recall that the back projection operator B is (up to constant 1/π) the dual operator of R by

(Rf, g)L2(R×[0,π)) = π (f,Bg)L2(R2) ∀ f ∈ S(R2), g ∈ S(R× [0, π)).

Therefore, we conclude from Lemma 8.4 that Bg is a tempered distribution on R2, Bg ∈ S ′(R2),
for all g ∈ S ′(R× [0, π)). Moreover, since L2(R× [0, π)) ⊂ S ′(R× [0, π)), we have

(8.3) Bg ∈ S ′(R2) ∀ g ∈ L2(R× [0, π)).
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8.1. Analysis of the data error. Now we analyse the data error fL−fδL in the L2-norm. To this
end, we first show that

RLg =
1

2
B
(
qL ∗ g

)
defines a continuous linear regularization operator

RL : L1(R× [0, π)) ∩ L2(R× [0, π)) −→ L2(R2).

Theorem 8.5. Let g ∈ L1(R× [0, π)) ∩ L2(R× [0, π)). Then, we have RLg ∈ L2(R2), where

‖RLg‖L2(R2) ≤
1√
2π

(
sup

S∈[−1,1]
|S| |W (S)|2

)1/2

L
1/2 ‖g‖L2(R×[0,π)).

Proof. Since AL ∈ L1(R) ∩ L2(R), for all L > 0, the band-limited function qL is well-defined on
R× [0, π) and we have qL ∈ L2(R× [0, π)). Therefore, for all θ ∈ [0, π) the Fourier inversion formula

AL(S) = F(F−1AL)(S) = FqL(S, θ)

holds in the L2-sense, in particular for almost all S ∈ R. Since g ∈ L1(R× [0, π)), we obtain

AL(S)Fg(S, θ) = F(qL ∗ g)(S, θ) for almost all S ∈ R

by the Fourier convolution theorem. Moreover, Young’s inequality yields (qL ∗ g)(·, θ) ∈ L2(R), for
any θ ∈ [0, π). This in combination with the Fourier inversion formula (in the L2-sense) gives

(qL ∗ g)(S, θ) = F−1[AL(S)Fg(S, θ)] for almost all S ∈ R.

In particular, we have (qL ∗ g) ∈ L2(R× [0, π)). Therefore,

RLg =
1

2
B
(
qL ∗ g

)
is well-defined almost everywhere on R2 and satisfies RLg ∈ L2

loc(R2), due to Lemma 8.3.
On the other hand, we have RLg ∈ S ′(R2) by (8.3). This allows us to determine the (distribu-

tional) Fourier transform of RLg, as being defined via the duality relation

〈F(RLg), w〉 = 〈RLg,Fw〉 =
1

2
(B(qL ∗ g),Fw)L2(R2) ∀w ∈ S(R2).

Now for any Schwartz function w ∈ S(R2), we have

〈RLg,Fw〉 =
1

2π

∫
R

∫
R

∫ π

0

(qL ∗ g)(x cos(θ) + y sin(θ), θ) dθFw(x, y) dxdy

by the definition of the back projection B. From this, and by using the parameter transformation

x = t cos(θ)− s sin(θ) and y = t sin(θ) + s cos(θ),

we obtain

〈RLg,Fw〉 =
1

2π

∫
R

∫
R

∫ π

0

(qL ∗ g)(t, θ)Fw(t cos(θ)− s sin(θ), t sin(θ) + s cos(θ)) dθ dtds

=
1

2π

∫ π

0

∫
R

(qL ∗ g)(t, θ)R(Fw)(t, θ) dtdθ

by Fubini’s theorem and by the definition of the Radon transform R. Now Parseval’s identity gives∫
R
F−1f(x)h(x) dx =

∫
R
f(x)F−1h(x) dx ∀f, h ∈ L1(R).
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Recall that, for any θ ∈ [0, π), we have

(qL ∗ g)(t, θ) = F−1[AL(t)Fg(t, θ)] for almost all t ∈ R,

where AL(·)Fg(·, θ) ∈ L1(R), since AL ∈ L2(R) and g ∈ L2(R × [0, π)). Further recall that the
two operators F : S(R2) −→ S(R2) and R : L1(R2) −→ L1(R× [0, π)) are continuous, respectively.
Moreover, since S(R2) ⊂ L1(R2), we have

R(Fw)(·, θ) ∈ L1(R) ∀w ∈ S(R2)

for any θ ∈ [0, π). Therefore, the application of Parseval’s identity yields

〈RLg,Fw〉 =
1

2π

∫ π

0

∫
R
AL(t)Fg(t, θ)F−1(R(Fw))(t, θ) dtdθ.

To continue our analysis, we note that the Fourier transform F and its inverse F−1 are related via

F−1f = (2π)−n Ff∗ ∀ f ∈ L1(Rn),

where ∗ : L1(Rn) −→ L1(Rn) denotes the parity operator, defined as

f∗(x) = f(−x) for x ∈ Rn.

Since Fw ∈ L1(R2), the Fourier slice theorem gives

F−1
(
R(Fw)

)
(t, θ) = (2π)−1 F

(
(R(Fw))∗

)
(t, θ) = (2π)−1 F

(
R((Fw)∗)

)
(t, θ)

= (2π)−1 F
(
R((2π)2 F−1w)

)
(t, θ) = 2πF

(
R(F−1w)

)
(t, θ)

= 2πF(F−1w)(t cos(θ), t sin(θ)) = 2π w(t cos(θ), t sin(θ))

for any (t, θ) ∈ R× [0, π), by using the Fourier inversion formula on S(R2). So we finally obtain

〈RLg,Fw〉 =
1

2π

∫ π

0

∫
R
AL(t)Fg(t, θ) 2π w(t cos(θ), t sin(θ)) dtdθ

=

∫ π

0

∫
R
WL(t)Fg(t, θ)w(t cos(θ), t sin(θ)) |t| dtdθ.

Transforming back to Cartesian coordinates, i.e., (x, y) = (t cos(θ), t sin(θ)), we have

F(RLg)(S cos(θ), S sin(θ)) = WL(S)Fg(S, θ) for almost all (S, θ) ∈ R× [0, π).

Since W ∈ L∞(R) is compactly supported with supp(W ) ⊆ [−1, 1] and g ∈ L2(R × [0, π)), we
can conclude that F(RLg) ∈ L2(R2). Indeed, from transformation to polar coordinates we obtain

‖F(RLg)‖2L2(R2) =

∫
R

∫
R
|F(RLg)(X,Y )|2 dX dY

=

∫ π

0

∫
R
|F(RLg)(S cos(θ), S sin(θ))|2 |S| dS dθ

=

∫ π

0

∫
R
|WL(S)|2 |S| |Fg(S, θ)|2 dS dθ.
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Because the scaled window function WL has compact support in [−L,L], we finally obtain

‖F(RLg)‖2L2(R2) ≤

(
sup

S∈[−L,L]
|S| |WL(S)|2

)∫ π

0

∫
R
|Fg(S, θ)|2 dS dθ

= 2π L

(
sup

S∈[−1,1]
|S| |W (S)|2

)
‖g‖2L2(R×[0,π) <∞.

By the Rayleigh-Plancherel theorem, we also have RLg ∈ L2(R2) with

‖RLg‖2L2(R2) =
1

4π2
‖F(RLg)‖2L2(R2) ≤

L

2π

(
sup

S∈[−1,1]
|S| |W (S)|2

)
‖g‖2L2(R×[0,π),

i.e.,

‖RLg‖L2(R2) ≤
1√
2π

(
sup

S∈[−1,1]
|S| |W (S)|2

)1/2

L
1/2 ‖g‖L2(R×[0,π)),

which completes our proof. �

We are now in a position, where we can analyse the data error fL− fδL in the L2-norm for target
functions f ∈ L1(R2) ∩Hα(R2) with some α > 0 satisfying Rf ∈ L2(R× [0, π)), where

fL =
1

2
B
(
qL ∗ Rf

)
and fδL =

1

2
B
(
qL ∗ gδ

)
with noisy measurements gδ ∈ L1(R× [0, π)) ∩ L2(R× [0, π)).

Theorem 8.6. For α > 0 let f ∈ L1(R2)∩Hα(R2) satisfy Rf ∈ L2(R× [0, π)). Further, for δ > 0
let gδ ∈ L1(R× [0, π)) ∩ L2(R× [0, π)) satisfy

‖Rf − gδ‖L2(R×[0,π)) ≤ δ.

Then, the L2-norm of the data error fL − fδL is bounded above by

‖fL − fδL‖L2(R2) ≤ cW L
1/2 δ,

where
c2W =

1

2π
sup

S∈[−1,1]
|S| |W (S)|2.

Proof. Due to Lemma 8.1, f ∈ L1(R2) implies Rf ∈ L1(R× [0, π)). Moreover, Rf ∈ L2(R× [0, π))
and gδ ∈ L1(R×[0, π))∩L2(R×[0, π)) by assumption. This allows us to use the linear regularization
operator RL : L1(R× [0, π)) ∩ L2(R× [0, π)) −→ L2(R2), satisfying

RLg =
1

2
B
(
qL ∗ g

)
,

to obtain the representation

fL − fδL = RL(Rf)−RLgδ = RL(Rf − gδ) ∈ L2(R2).

Finally, by using Theorem 8.5, this gives the error estimate

‖fL − fδL‖L2(R2) ≤
1√
2π

(
sup

S∈[−1,1]
|S| |W (S)|2

)1/2

L
1/2 ‖Rf − gδ‖L2(R×[0,π)) ≤ cW L

1/2 δ,

as stated. �
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8.2. Analysis of the approximation error. For convenience, we recall two relevant estimates
on the approximation error eL = f − fL from §5 and §7, which we use in the analysis of the overall
FBP reconstruction error. We first rely on the basic assumption that the smallest maximizer
S∗α,W,L ∈ [0, 1] of the even function

Φα,W,L(S) =
(1−W (S))2

(1 + L2S2)α
for S ∈ [−1, 1].

is uniformly bounded away from 0, i.e., there exists a constant cα,W > 0 satisfying

(A) S∗α,W,L ≥ cα,W ∀L > 0.

Theorem 8.7 (see Theorem 5.5). For α > 0 let f ∈ L1(R2)∩Hα(R2) and let W ∈ C([−1, 1]) satisfy
W (0) = 1. Then, the L2-norm of the approximation error f − fL is under the assumption (A)
bounded above by

‖f − fL‖L2(R2) ≤
(
c−αα,W ‖1−W‖∞,[−1,1] + 1

)
L−α ‖f‖α.

Our second L2-error estimate on eL from §7 works only with conditions on W , stated as follows.

Theorem 8.8 (see Corollary 7.2). For α > 0 let f ∈ L1(R2)∩Hα(R2) and let W ∈ Ck([−1, 1]), for
k ≥ 2, satisfy

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1.

Then, the L2-norm of the approximation error f − fL is bounded above by

‖f − fL‖L2(R2) ≤
(
cα,k ‖W (k)‖∞,[−1,1] + 1

)
L−min{k,α} ‖f‖α

with some constant cα,k > 0 independent of W and f .

8.3. Analysis of the overall FBP reconstruction error. Starting from the decomposition

‖eδL‖L2(R2) ≤ ‖f − fL‖L2(R2) + ‖fL − fδL‖L2(R2)

we combine the results of this section to estimate the FBP reconstruction error eδL in (8.2).
On the one hand, combining Theorem 8.6 with Theorem 8.7, gives the estimate

‖eδL‖L2(R2) ≤
(
c−αα,W ‖1−W‖∞,[−1,1] + 1

)
L−α ‖f‖α + cW L

1/2 δ.

By coupling the bandwidth L with the noise level δ via L = δ−
2

2α+1 ‖f‖
2

2α+1
α we obtain

‖eδL‖L2(R2) ≤
(
c−αα,W ‖1−W‖∞,[−1,1] + cW + 1

)
‖f‖

1
2α+1
α δ

2α
2α+1 ,

i.e.,
‖f − fδL‖L2(R2) = O

(
δ

2α
2α+1

)
for δ ↘ 0.

This gives our first result concerning convergence rates for noisy data.

Corollary 8.9 (Convergence rates for noisy data I). Let f ∈ L1(R2) ∩ Hα(R2), for α > 0, satisfy
Rf ∈ L2(R × [0, π)). Furthermore, suppose W ∈ C([−1, 1]) with W (0) = 1 and, moreover, let
gδ ∈ L1(R× [0, π))∩L2(R× [0, π)) satisfy ‖Rf − gδ‖L2(R×[0,π)) ≤ δ. Then, the L2-norm of the FBP
reconstruction error eδL = f − fδL is under assumption (A) bounded above by

‖eδL‖L2(R2) ≤
(
c−αα,W ‖1−W‖∞,[−1,1] + cW + 1

)
‖f‖

1
2α+1
α δ

2α
2α+1 ,

where L = δ−
2

2α+1 ‖f‖
2

2α+1
α . In particular, we have

‖eδL‖L2(R2) = O
(
δ

2α
2α+1

)
for δ ↘ 0.
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On the other hand, the combination of Theorem 8.6 and Theorem 8.8 yields the estimate

‖eδL‖L2(R2) ≤
(
cα,k ‖W (k)‖∞,[−1,1] + 1

)
L−min{k,α} ‖f‖α + cW L

1/2 δ.

By choosing L = δ−
2

2min{k,α}+1 ‖f‖
2

2min{k,α}+1
α we now obtain

‖eδL‖L2(R2) ≤
(
cα,k ‖W (k)‖∞,[−1,1] + cW + 1

)
‖f‖

1
2min{k,α}+1
α δ

2min{k,α}
2min{k,α}+1 ,

i.e.,

‖f − fδL‖L2(R2) = O
(
δ

2min{k,α}
2min{k,α}+1

)
for δ ↘ 0.

This finally yields another result concerning convergence rates for noisy data.

Corollary 8.10 (Convergence rates for noisy data II). Let f ∈ L1(R2)∩Hα(R2), for α > 0, satisfy
Rf ∈ L2(R× [0, π)). Moreover, suppose that W ∈ Ck([−1, 1]), for k ≥ 2, with

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1,

and let gδ ∈ L1(R× [0, π)) ∩ L2(R× [0, π)) satisfy ‖Rf − gδ‖L2(R×[0,π)) ≤ δ. Then, the L2-norm of
the FBP reconstruction error eδL = f − fδL is bounded above by

‖eδL‖L2(R2) ≤
(
cα,k ‖W (k)‖∞,[−1,1] + cW + 1

)
‖f‖

1
2min{k,α}+1
α δ

2min{k,α}
2min{k,α}+1 ,

where L = δ−
2

2min{k,α}+1 ‖f‖
2

2min{k,α}+1
α . In particular, we have

‖eδL‖L2(R2) = O
(
δ

2min{k,α}
2min{k,α}+1

)
for δ ↘ 0.

9. Conclusion

We have analysed the inherent FBP reconstruction error which is incurred by the use of a low-
pass filter with a compactly supported window W and finite bandwidth L. We refined our L2-error
estimate from [1] to prove, under reasonable assumptions, convergence of the FBP reconstruction
fL to the target function f as the bandwidth L goes to infinity. Moreover, we developed asymptotic
convergence rates in terms of the bandwidth L and the smoothness α of the target function f .

By deriving an asymptotic error estimate, we observed that the flatness of the filter’s window
function is of fundamental importance. Indeed, if the window W is k-times differentiable at the
origin, such that the first k−1 derivatives vanish at zero, then the convergence rate of the obtained
error bound saturates at O(L−k), and the quantity |W (k)(0)| determines the approximation quality
of the chosen low-pass filter. The estimates provided for the approximation error can be combined
with error estimates on the data error to obtain convergence rates for noisy data.
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