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Abstract. Filtered back projection (FBP) methods are the most widely used
reconstruction algorithms in computerized tomography (CT). The ill-posedness of
this inverse problem allows only an approximate reconstruction for given noisy data.
Studying the resulting reconstruction error has been a most active field of research in
the 1990s and has recently been revived in terms of optimal filter design and estimating
the FBP approximation errors in general Sobolev spaces.

However, the choice of Sobolev spaces is suboptimal for characterizing typical CT
reconstructions. A widely used model are sums of characteristic functions, which are
better modelled in terms of Besov spaces B2?(R?). In particular B! (R?) with o ~ 1
is a preferred model in image analysis for describing natural images.

In case of noisy Radon data the total FBP reconstruction error

If =1l < If = foll + e = f2

splits into an approximation error and a data error, where L serves as regularization
parameter. In this paper, we study the approximation error of FBP reconstructions
for target functions f € L'(R?) N B2 ?(R?) with positive « ¢ N and 1 < p,q < oo,
We prove that the LP-norm of the inherent FBP approximation error f — fr can be
bounded above by

1f = frllLe®e) < caqw L™ | flBgr(m2)
under suitable assumptions on the utilized low-pass filter’s window function W. This
then extends by classical methods to estimates for the total reconstruction error.

Keywords: Filtered back projection, error estimates, convergence rates, Besov spaces

1. Introduction

We consider the classical inverse problem of reconstructing a function f : 2 — R,
) C R?, from its line integrals, which is the mathematical model underlying X-ray
computerized tomography (CT). The line integrals of f are defined by the Radon
transform Rf = Rf(t,0), given by

Rf(t,0) = flz,y)d(z,y) for (¢,0) € R x [0,m),

Lo
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where the set
fo = {(2,9) | cos(6) + ysin(6) = 1} C B

denotes the unique straight line that is orthogonal to the unit vector ny = (cos(), sin(6))
and has (signed) distance ¢ to the origin, i.e., ¢, o passes through (¢ cos(f), tsin()) € R

For f € L}(R?) N C(R?) with Ff € L*(R?) an analytical inversion formula is given
by

1
f=3BLRS).
Here B denotes the back projection operator, which is the L?-adjoint of R given by
1 ™
Bh(z,y) = —/ h(z cos(f) + ysin(h),0) df  for (x,y) € R?
T™Jo

and I denotes the Riesz potential defined via the one-dimensional Fourier transform
acting on the t-variable, i.e.,

Fg(S,0) / g(£,0)e S dt  for (S,60) € R x [0, 7)
R

and
F(1g) (S,0) = [5]Fg(5,0).

The assumption of a continuous f is necessary in order to ensure that the inversion
formula holds pointwise, cf. [20, 3]. However, the continuity assumption is not needed
for error estimates concerning regularized reconstruction algorithms as discussed in the
sequel of this paper.

The analytical inversion is unstable with respect to highly oscillating variations of
g = Rf, which motivates the introduction of a regularized inversion formula, the so-
called method of filtered back projection (FBP). FBP is based on introducing a window
function

W:R—-R
S — W(S)

with ||W]|o < 0o, which has either bounded support or decays fast enough at infinity.
The window function W is scaled by a parameter L and we introduce the low-pass filter

Ar(S) = |S|W(S/L) for S e R

to replace the Fourier multiplier |S| in the Riesz potential leading to the approzimate
FBP formula

ol y) = 5 BF M ALS)FRA)(S,6))(w,9) for (2,y) € B

Here, L serves as regularization parameter and will be adapted depending on the noise
level in the data. Window functions of typical low-pass filters are displayed in Table 1.
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In case of noisy data g° with ||¢° — Rf|| < d we compute the reconstruction

1
[z, y) = 53(?1[&(5)?(95)(5, 0)))(x,y)
and the total reconstruction error

1 = F2ll < IF = Fell +11fz = £2

splits into an approximation error
€L = f - fLa

whose analysis is the main target of the present paper, and a data error f; — fo.

Such FBP methods are the most widely used reconstruction algorithms in X-ray
computerized tomography (CT) and can also be applied to other imaging modalities
such as proton CT [29, 30]. Studying the resulting reconstruction error has been a most
active field of research in the 1990s and has recently been revived in terms of optimal
filter design and estimating the approximation errors in general Sobolev spaces [2, 3, 4].
We will review the state of research in more detail in the next section.

For motivation of the present paper, we note that the choice of Sobolev spaces
is suboptimal for characterizing typical CT reconstructions. A widely used model for
CT reconstructions are sums of characteristic functions, which are better modelled in
terms of Besov spaces BJ?(R?). In particular, B! (R?) with o close to 1 is a preferred
model in image analysis for describing natural images [6, 22]. In general, piecewise
smooth functions with jumps only along smooth curves can be described as functions in
Bo?(R?) for o < 1/p. Choosing ¢ = oo even allows for the limiting case o = 1/p, which
is not achievable in the Sobolev scale and makes Besov spaces particularly well-suited
for inverse problems related to image processing [7, 11, 32]. For more information on
Besov spaces and its relation to Sobolev spaces we refer the reader to [8, 10].

Therefore, in this paper we focus on extending the analysis of the approximation
error of FBP reconstructions to target functions f € L'(R*) N ByP(R?) with positive
a ¢ Nand 1 < p,q < oo. Weprove that the LP-norm of the inherent FBP approximation
error f — fr can be bounded above by

1f = frllir@e) < caqw L™ | flar )

under suitable assumptions on the utilized low-pass filter’s window function W. This
then extends by classical methods to estimates for the total reconstruction error.

Name W(S) for |S| <1 | Parameter
Ram-Lak 1 -
Shepp-Logan sinc(m5/2) -
Cosine cos(™5/2) -
Hamming B+ (1—p)cos(nS) | B € [Y21]

Table 1. Window functions of commonly used low-pass filters, where W (S) = 0 for
all |S| > 1 in all cases.
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The transition from error estimates in Sobolev spaces to Besov spaces requires
substantially different techniques. The Sobolev space estimates in [2, 3, 4] are implicitly
based on Plancherel’s formula, which states that the Fourier transform is an isometry
between L2-spaces, which is not the case for LP-spaces with p # 2. Hence, the definition
of Besov spaces in terms of moduli of smoothness requires different analytical tools for
estimating the reconstruction error with respect to the target function’s Besov norm.

The paper is organized as follows. In Section 2 we review the state of the art
concerning approximation errors of FBP reconstruction for functions on unbounded
domains. We then introduce the definition of Besov spaces used in this paper along
with some technical Lemmata, which will be needed later for estimating || f — fz[|Lr2).-

Section 4 then contains the main results of the paper. The proofs are split into the
cases 0 < a < 1,1 < pg< ocand 1 < o, ¢ N, 1 < p, g < oo. We also include a
straight forward result on how these results on e;, = f — f1 extend to an estimate of the
total approximation error for noisy data.

Section 5 contains some numerical experiments confirming the theoretical findings
of the previous section.

2. State of the art

Although the FBP method has been one of the standard reconstruction algorithms in
CT for decades, its error analysis and convergence behaviour are not completely settled
so far. We shortly summarize the available literature on estimating total reconstruction
and approximation errors for FBP reconstructions. For a general reference we refer to
the standard textbooks [20, 21] and to the introductory chapters of [3], which contains an
in-depth description and comparison of the results by Madych, which are most relevant
for our approach. Indeed, the description of the state of the art in [3] serves as the main
reference for the following summary.

FBP algorithms and their approximation properties were explicitely or at least
implicitely addressed already in the very first papers and textbooks [9, 20] on the
mathematics of computerized tomography. Arguably the first paper addressing an
analysis of e;, = f — f, in a classical function space setting is [23]. There, Popov showed
pointwise convergence however with a restriction to a small class of piecewise smooth
functions. Pointwise convergence and L*>-error estimates for ey are also discussed by
Munshi et al. in [17, 16]. Their results are supported by numerical experiments in [18].

The approach of Rieder and Schuster [28] leads to L2-convergence with suboptimal
rates for compactly supported Sobolev functions. In contrast to this, in [25, 26] Rieder
et al. prove optimal L2-convergence rates for sufficiently smooth Sobolev functions.
However, the authors verify their assumptions only for a restricted class of filters based
on B-splines. More recently, Qu [24] showed convergence without rates in the L2-norm
for compactly supported L*°-functions and in points of continuity under additional
assumptions. Note that [24] deals with the continuous problem, while [25, 28, 26] discuss
discrete settings.
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More relevant for our present paper is the approach described by Madych, who
proves error bounds on the LP-norm of e; in terms of LP-moduli of continuity of the
target function f, see [14]. Madych chooses a convolution kernel K : R? — R as
an approximation of the identity and computes the convolution product f % K to
approximate the target function f, where, for L > 0, the scaled kernel K is given by

Ki(z,y) = L* K(Lz,Ly) for (x,y) € R%.

If K is chosen to be a uniform sum of ridge functions, the convolution f x K can be
expressed in terms of the Radon data R f as in the approximate FBP formula (1), see [14,
Proposition 1]. The assumptions on K for proving these results are rather restrictive,
in particular they require continuous filter functions, which e.g. excludes the case of a
ramp filter. Using an essentially different approach, [2, 3, 4] then proved Sobolev space
estimates in a more general setting with substantially weaker assumptions on the filter,
including all classical choices. We remark that an experimental study of the Sobolev
regularity of natural images can be found in [15].

To some extend, the approach of Madych is a special case of the mollifier approaches
used in [12, 13, 27]. However, neither Sobolev nor Besov space error estimates for the
continuous case are derived in these papers.

3. Besov spaces and technical Lemmata

The focus of the paper is on analysing the LP-norm of the inherent FBP reconstruction
error ep = f — fr, for target functions f € L'(R?) N B$?(R?) with positive o ¢ N and
1 <p,q < oo, where

ByP(R?) = {f € L"(R?) | |f|ngr(me) < oo}

with
0 e\ 7
</ (t™w,(f,1))? —) for 1 < ¢ < oo,
|f|B§1"’p(R2) = 0 ¢
supt™“wy(f,t) for ¢ = o0
t>0
for 0 < a < 1, where
wp(f,0) = sup ||f(- =X, =Y) = fllirwey ford >0,
1(X,Y)]lg2 <o

and

’f|Bg¢,p(R2) = Z ( J ) ‘f(J)‘Bg’p(RQ) — Z ‘f(]l:]Q)’Bg,p(RQ)

gl=n jgan J102!
for « =n+60 withn € Nand 0 < 6 < 1. As a general reference for properties of Besov
spaces we refer to [10].

We start by proving some technical Lemmata, which will be needed in the
subsequent sections for estimating e;. The critical part in these estimates is to control
the LP-, resp. L*°-norm of the modulus of smoothness in the definition of the Besov
semi-norm.
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We start with an LP-estimate.

Lemma 1 Let 1 < g < p < o0 and a > 0. Further, let g : [0,00) — [0,00) be an
increasing function. Then, for any ¢ > 1,

(/Ooo (t=>g(t))? %)% < ¢ log(c) P (/OOO (= g(1))" %>1/q.

The proof of this Lemma is mostly technical and has been moved to Appendix A.
We now use the previous Lemma for proving an L*>-estimate, which is equivalent to an
embedding into the LP-setting.

Lemma 2 Let 1 < g < 0o and a > 0. Further, let g : [0,00) — [0,00) be an increasing
function. Then, for any c > 1,
>0 e\’

sipr= () < tox(e) ("o F)

>0 0 t
The proof of this lemma can be found in Appendix B. The classical estimates are only
concerned with fixed o and qualitative estimates of the constant involved in the Besov-
norm estimates. However, the asymptotic behaviour for o N\, 0 is needed for a refined
analysis in the next section.

Lemma 3 Let 1 < g < oo and let g : [0,00) — [0,00) be increasing and bounded from
above. Further, assume that there exists some o € (0,1) such that

([ @y %)/ < 0.

lin (aq JRGO) %)/ — lim g(t)

a\0 t—oo

Then,

Again, the proof of this lemma has been moved to the appendix, see Appendix C.

4. Approximation error in Besov spaces

We now turn to estimating the approximation error e;, = f — fr, of FBP reconstructions
in LP-norms under the assumption that f € L'(R?*) NB$?(R?). We will discuss the cases
0 < a < 1and a > 1 separately. These estimates are then used for deriving a bound
on the total FBP reconstruction error f — f¢ for noisy data g°.

As already stated, we consider the approzimate filtered back projection (FBP)
formula

fulz,y) = %B(-FI[AL(S)]:<RJC)(57 O (z.y) for (x,y) € R®
with a given low-pass filter
ApL(S) = |S|W (/L) for SeR
of finite bandwidth L > 0 and with even window function W € L*(R) satisfying
[-|W(:) € LY(R) NL*(R).
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Recall that for target functions f € L!(R?) the approximate FBP reconstruction

fr € Ll _(R?) is defined almost everywhere on R? and can be rewritten as

1
fL:§B(F_1AL*Rf):f*KL7 (1)
where the convolution kernel K, € L*(R?) is given by

1
Ki(w,y) =3 B(FAL)(z,y) for (z,y) € R

4.1. Error Estimate for 0 < a < 1

Several papers, see e.g. [6, 22|, have argued, that natural images including cross sections
of the human body can be modelled by Besov spaces with o < 1. This also includes the
case of functions which are superpositions of characteristic functions of smooth domains,
which serves as a standard model for simulation in tomography.

Hence, we start with analyzing the case 1 < p,q < oo and 0 < a < 1.

Theorem 4 Let f € L'(R?) NB?(R?) for 1 <p,q < 0o and 0 < a < 1. Furthermore,
let W € L*>®(R) be even with W(0) = 1 such that the corresponding filter A = A, satisfies
A € LYR)NLA(R) and the convolution kernel K = K, satisfies K € L'(R?) as well as

[ 1l G o) < o

Then, the LP-norm of the inherent FBP reconstruction error er, = f — fr is bounded
above by

lealhoen < og ([ 1)l 1Ko )] .90 ) 27 flsgore,

where

Caq

(2eaq) for 1 < g < oo,
1 for ¢ = oo.

Proof First note that due to f € BS?(R®) C LP(R®) and K € L'(R?), we have
K € L}(R?) and

fo=f*K,elP(R*) VL>O0.
Furthermore, K and W are related via

FK(z,y) = W(M) for (z,7y) € R?

so that
Ki(x,y)d(z,y) = FKL(0,0) = W(0) = 1.

R2
Thus, for (x,y) € R? holds that
fu(@,y) = f(z,y) = (f * Kp)(z,y) — f(z,y)

= [ 1= Xy =¥) = Fla )] KX, V) d(X.Y),
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For p = oo follows that

If = frllie@e) < sup [f(z =X,y =Y) = fle,y) [KL(X, V)] d(X,Y)

(z,y)€R? JR?

< [ s 1= Xy =) = S [Kp(X V)X V)

z,y)ER?

Thus, with the L>*-modulus of continuity

weo(f,0)= sup  sup |[fx—X,y—Y)— flz,y)| ford>0
H(X7Y)||R2 <é (%y)e]R?

we obtain
1f = frllieme) < /RQ woo (f [[(X,Y)[[r2) [K (X, Y)| d(X,Y).

For 1 < p < oo Minkowski’s integral inequality gives
p /p
)

1f = frllure) = </R2

l/p
< /R?( . |f(x—X,y—Y)—f(x,y)|pd(x,y)) IKL(X,Y)]d(X,Y).

Thus, with the L”-modulus of continuity

/Rg[f(:”_X’?J—Y) — flz,y)] K(X,Y) d(X,Y)

1/p
)= sw ([ Ife=Xy-1) - fapraen)  foriso
(X, Y)[[g2 <6 \JR2

we obtain
1f = frllome) < /u@ wy(f5 (X, Y ) [lre) [KL (X, Y)] d(X,Y).

Consequently, for all 1 < p < oo we have
If = frllieee) < /R2 wp(f (X, V) |lg2) | KL (X, Y[ A(X,Y)

=22 [ (105 Y ) [K(LX LY 4(X.Y),

where we use the scaling property
KL(xay) :LzK(anLy) V(ﬂf,y) €R2'

Recall further that the convolution kernel K is radially symmetric, i.e., there exists a
univariate function k£ : R — R such that

K(z,y) = k(I(z,y)lle2) ¥ (z,y) € R™

Thus, transforming to polar coordinates gives

If = frlluo@e) < 27 LQ/ wy(f, ) t|k(Lt)] dt.
0

For ¢ = oo we can conclude that

1 = Fulliwe) < 27 L2 (supta walf. t>) JAZIRT

t>0 0

- </R2 I w)llge 1K (. 9)] d(x,y)) L= |f|B§<’f’(R2).
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Now, let 1 < ¢ < oo. Since the LP-modulus of continuity is monotonically increasing in
0 > 0, we can apply Lemma 2 to obtain

00 q /a
supt™“wp(f,t) < < IOg(C)il/q (/0 (™ wp(f, t)) @)

t>0 t
for any ¢ > 1. Consequently,

If = Sl < 2022 (supt= (18] [ 5 o)l a
>

0 0
< e og(0) Y ([ 1l 1K) dGo) ) 12 oo,
It remains to optimize the constant
Cog(c) = * log(c)™*  for ¢ > 1,
which satisfies
Caqlc) > 00 forc -1 and Cp,yc) = 00 for ¢ — oo.

For ¢ > 1, we have

¢t <2alog(c) — %) B
Crql0) = log(c T =0 <+ c=exp(2a9)7")
as well as
Chqlc) <0 V1<e<exp((2aq)™h), Cha(c) >0 Ve>exp((209)7").
Consequently, the unique minimizer of C,, , on R is given by ¢* = exp ((2aq)™") and
Icn>1{1 Cag(c) = Coylc?) = (2eaq) .

Hence, for 1 < ¢ < oo, we have

I = fuluscen < Geaa)? ([ e )l 1 o)l o)) 27 g,
which completes the proof. U

Note that for fixed 1 < ¢ < oo the constant c, 4 in Theorem 4 goes to 0 for o ™\, 0
as '/, However, an application of Lemma 3 to the LP-modulus of continuity wy(f,-)
shows that in this case the Besov semi-norm |f|ga»g2) goes to oo for a ™\, 0 as =
and, in particular, we have

lim (avg) 7* |flor@ey= sup |If(- =X, =Y) = flle@e) < 21 fllir2).
a0 (X,Y)€ER2

Thus, for a \, 0, the LP-error estimate in Theorem 4 reduces to
I1f = frllis@zy < 2(2€) 7)1 K |2y || flluo@2)

and, for ¢ — oo, we obtain
If = frller@ey < 2||K L2y || fllLe@2),

which is consistent with simply applying Young’s inequality, as for f € LP(R?) we have
If = fellee@e) < A llr@e) + 1K @) [ flle@e) < 20K ]u @) [[f]e @2)-
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4.2. Error Estimate for a > 1

Convergence results in the general regularization theory for inverse problems typically
depend on additional smoothness assumptions on f. Hence, we now consider the case
a > 1,1i.e., functions f which are slightly smoother than sums of characteristic functions.
We assume that f € L'(R?) N Bg?(R?) for « = n+6 withn € N, 0 < 6 < 1 and
1 <p,q<oo.

Theorem 5 Let f € L'(R*) N BYP(R?) fora = n+60 withn € N, 0 <0 <1 and
1 < p,qg < oo. Furthermore, let W € L>®(R) be even with W(0) = 1 such that the
corresponding filter A = A; satisfies A € L'(R) N L*(R) and the convolution kernel
K = K, satisfies K € L'(R?) and

/ Py K(2,y) d(e,y) =0 ¥1< i <n
RQ
as well as

[ e )l K )] ) < o

Then, the LP-norm of the inherent FBP reconstruction error e, = f — fr is bounded
above by

(0 +1 i B
ety < o gy ([ 1)l Gl o)) 27 g

where

(2e6q) " for 1 < ¢ < o0,
Coq =
1 for ¢ = o0.

Proof To start with, we recall that due to f € B{?(R*) C LP(R?) and K € L'(R?) we
have

fo=f*K,€lP(R?) VL>0.

Furthermore, K and W are related via

FKp(z,y) = W(M) for (z,y) € R?

so that

Ki(X,Y)d(X,Y) = FK.(0,0) = W(0) = 1.

RQ
Hence, for (z,y) € R? follows that

(fL - f)<x7y) = (f * K[)(.I,@/) - f(*r?y)
= [ [# = Xy =Y) ~ fa )] Ku(X.Y)d(X,Y),
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To continue, we first assume that f € B¥?(R?*) N C>(R?). Then, Taylor’s theorem
gives

f(ZL‘—X,y—Y)—f(.’L',y)
( 1|.7|

Z (z,y) Xhyde
1<]jl<n
1
+Z it / —7')"’1 f(j)(yg—7'X,y—7'Y)Xj1Yj2 dr
l7l=n

and, thus, for (1) := (fr — f)(z,y) follows that

—1)ld o
(t)z/RQ( P 9 (@,9) XPY") K1 (X,Y) d(X,Y)

|
1<ll<n I

n(_l)n 1 n—1 ¢ 1y iz
+/RQ(|; ! /O (1= 7)™ S () XY ) K (X, Y) d(X,Y),

where we set f(a ) (z,y) = f9(z — a,y — b) for a,b € R, for the sake of brevity.
By using the assumed moment conditions on K and its scaling property
Kp(w,y) = L* K(Lz,Ly) ¥ (z,y) € R?,
we have

XMY? KL(X,Y)d(X,Y) = L""/ 2y K(z,y) d(z,y) =0 V1< [ <n.
R2

R2
Consequently, we obtain

(fr = £)(z.y)
I L GV AP G) @D () XY .
|;L 7! /0<1 ) /Rz(f@xm fIN(z,y) XY K (X,Y)d(X,Y)d
(=" [ n—1_-n J j 1y de
X [ =t [~ ) X0 Ky (V) A Y

Thus, for the L”-norm of the inherent FBP reconstruction error e;, = f — f;, follows that

ler||rr (R2)

< 38 [y [ a6V (V)40 Y
lgl=n K
where, for 1 < p < oo, we applied Minkowski’s integral inequality as in the proof of
Theorem 4.
Recall that the convolution kernel K is radially symmetric, i.e., there exists a
univariate function k£ : R — R such that

K(z,y) = k(I (z,y)lle2) ¥ (2,y) € R™
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Hence, transforming to polar coordinates gives

o0 . [
2 -1 7 2 ) n+1
lerl|trrey < 27 L E J‘/ /0 wy(fY )t ‘k<_7t>‘dtd7

l7l=n
k(ét) ‘ dt dr.

o ? Y o / (1—7) 2/ 70w, (f9, 1) >

0
l3l=n

For ¢ = oo we can conclude that

les]iem2)
1 00
< 2r L? Z n (supt_ewp(f(j),t)> (/ (1—7)" e 2/ otk ‘dth)
Gt N 0
—x n ! n— (6%
=27 L Z T (/ (1—1) 17"9d7') (/ ot K (t) ]dt) Fa \BepRg)
i ' \Jo 0

-1 EITF”+9+1(/|| 5 1] 40 17

and, thus,
9 T+1) »
levlhoter < fe gt ([ Nl Gl o)) 27 o
For 1 < ¢ < oo we can apply Lemma 2 and obtain, as in the proof of Theorem 4,
1 9 +1) »

et < ety L ([ )l 1ol o)) 27 g

To prove the result also for functions f € BZ"”(R2) that are not smooth, let
¢ € C(R?) be a standard mollifier function, i.e., let ¢ > 0 satisfy supp(¢) C B;(0) and

/R? (e, y) d(z,y) = 1.
Moreover, for € > 0, we define
O (z,y) =2 w(%, g) for (z,y) € R?
and
fo=Fxe
Then, we have f* € ByP(R?*) N C>(R?) with | f*|gor ey < |f|por ey and
| follr ey = | fllrmey for e \, O as well as |f€|Bg’P(R2) — |f|Bg’P(R2) for e \, 0.
Furthermore, we have already proven that
167 = il < coa o) ([ W)l 1K)l ) ) 272 g,
For all L > 0 we now have

Jo=ti= " = ([ )« Kp=(f =[x KL)x " = (f — fL),
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so that

1f* = fille@e) = [I(f = fo) o2y = If = frlleme) = llecllieme) for e \, 0.
Thus, taking the limit € \, 0 gives

ro+ 1) : .
ety < o gy ([ 1)l Kol o)) 27 g

for any f € L'(R?) N B?(R?) and the proof is complete. O

We remark that the bound on the inherent FBP reconstruction error in Theorem 5
is proportional to

cose = [ Nzl K ()] )

Therefore, this quantity can be used to evaluate the approximation quality of window
functions of the same category (specified by parameter «). Similar observations in the
Sobolev framework were made in [2, 3, 4, 16, 18, 17] and experimentally justified in [19].

4.8. Error estimates for noisy data

We now consider the case of noisy Radon data. To this end, we follow a deterministic
approach and assume that the Radon data Rf € L?(R x [0,7)), 1 < p < o0, is known
only up to a noise level § > 0 so that we have to reconstruct the target function f from
given noisy measurements ¢° € LP(R x [0, 7)) satisfying

IRf = g llLoxiomy < 6.
By applying the approximate FBP formula to the noisy data ¢°, we obtain the
reconstruction

1
fi =5 BF AL xg")

and the overall FBP reconstruction error €3 = f— f2 can be split into an approximation
error term and a data error term,

5 5
e, =f—Jfu+fL—[i
In the following, we assume that f is supported in a compact set Q C R? and

analyse the LP-norm of the overall FBP reconstruction error ej on € with respect to
the noise level 9. By the triangle inequality, we have

legllue) < I = el + 12 = F2lluee)
and, consequently, we can treat the approximation error and the data error separately.

The analysis of the data error f; — f? is based on the fact that the back projection
B defines a mapping

B:LP(R x [0,7)) — L

IOC(RQ)'
For p = oo, the definition of B reveals that
1Byl m2) < [|glle@xom) Vg€ LR x [0,7)).

The case 1 < p < oo is discussed in the following lemma.
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Lemma 6 Let g € LP(R x [0,7)) with 1 < p < oo. Then, for any compact subset
Q C R? we have

1Bg|lL» Q) < m diam(Q)l/p ||g||LP(RX[0,7r))
and, in particular, Bg satisfies Bg € LI, (R?).

Proof Let g € LP(R x [0,7)) with 1 < p < co. For any compact subset 0 C R? we
have

ol = [ 1Bote. )l dte) = [ 1Bote. ) xa(o.9) d(e.o)
1

pXQ<5U>y) d(z,y).

. /O7r g(z cos(0) + ysin(6), 0) do

An application of Holder’s inequality yields

IBaltey < = [ (/(/ (o cos(0) + ysin(0), ) a0 /p>p>m<x,y>d<x,y>.

By using Fubini’s theorem for non-negative functions and the transformation

t =xcos(f) +ysin(d) and s= —xsin(d) + ycos(d),
i.e., drdy = dsdt and
x =tcos(f) —ssin(f#) and y=tsin(f) + scos(h),

we finally obtain

1 s
1Bl e < = /O /R /R 19(, 0)[P Xt cos(6) — ssin(6), ¢ sin(0) + s cos(6)) ds dt df

_ %/OW/R\g(t,e)jp(/ew Xo(z.y) d(z,9)) dtdo

1.
< —dlam( ) HgHLP (®x[0,m) < O

Consequently, Bg is defined almost everywhere on R? and satisfies Bg € LY (R?). O

loc
We are now prepared to analyse the data error fr, — f2 in the LP-norm for target
functions f € LP(Q) satisfying Rf € L?(R x [0, 7)), where
1 1
Ju= §B(QL *Rf) and f) = §B(QL xg°)
with noisy measurements ¢° € LP(R x [0, 7)).

Theorem 7 (Data error) For compact domain Q C R? and 1 < p < oo let f € LP(Q)
satisfy Rf € LP(R x [0,7)). Furthermore, let W € L>*(R) be even such that the
corresponding filter A = A, satisfies A € LY(R) N L2(R) as well as F'A € LY(R).
Finally, for § >0, let ¢° € LP(R x [0, 7)) be given with

IRf = ¢’ llLr@xpom) < 6.
Then, the LP-norm of the data error fr — f2 on Q is bounded above by

1fe = follne) < 5 diam(Q)"” | F Al iy L6

2m
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Proof We first consider the case 1 < p < oco. By the linearity of the back projection B
and Lemma 6 we obtain

1 _
£z = fillire) = 5 IB(F PAp* (R = 9"l

1. _
S 271'1/” dlam(Q)l/” H.F 1AL * e(SHLp(RX[O,Tr)))
where we set es = Rf — ¢°. By definition of the low-pass filter A;, for t € R we have
1 , L? .
FlAL(t) = — / S| W (S/L) et dS = = / |S|W(S)er5tdS = L? FLA(Lt)
2 Jr 2 Jr
so that

| F ALl = L2/R|f1A(Lt)| dt = L||F Al ).
Consequently, an application of Young’s inequality gives

1F AL * €517 p mxfo,m) = / IF7 AL x €5, 0)7 e 49
0

< / I A2 o s, 6) 2y 46
=Lr |"F_1A‘|€1(R) leslTomx(om < L ‘|F_1A"€1(R) or.

By combining the estimates we can conclude that

1
0
I1f2 = Flle < 577

Now, let p = co. Following along the lines from before, we obtain

diam ()7 | F Al L 6.

1. 1 _
1 = i@ < 5 | F 1AL % es|| e ®x o) < 5 L F Al lles||ne ®xo.n)
I
<5IF "Allpiwy L6
and the proof is complete. 0
By combining the above result for the data error with our previous findings for the

approximation error we can now estimate the LP-norm of the overall FBP reconstruction
error ¢ = f — f? via

et ey < I1f = fulluey + 1z = fillre)-

Corollary 8 (Convergence rates for noisy data) Let f € L'(R*) N BY?(R?) for
a=n+0 withn € N, 0 <0 <1andl < p,qg < o0 be supported in a compact
domain Q C R2. Furthermore, let W € L>*(R) be even with W (0) = 1 such that the
corresponding filter A = A satisfies A € LY(R) NL2(R) as well as F'A € LY(R) and
the convolution kernel K = K satisfies K € L'(R?) and

/ iy K (z,y) d(z,y) =0 V1< || <n
R2
as well as

LI )l 1K ] (o) < .
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Finally, let ¢° € LP(R x [0,7)) be given with

IRf = ¢ llr@xpom) < 0.
Then, the LP-norm of the overall FBP reconstruction error ¢5 = f— f2 on 2 is bounded
above by

Hf fLHLP () < (CWaq—i_CWQp)’f’g;lp Rg)d"‘il,
where the bandundth L is chosen as

L= |fl5

BS P (R2)

and the involved constants are given by

. _
—pdlam(Q)l/p ||..F 1A||L1(R)

CW7Q7p = 27T1/

and

r@+1) o
ewna = coa o) ([ Vo)l o)l die) )
with
(2e6q) " for 1 < ¢q < oo,
Co,q =
1 for ¢ = 00

In particular,

If = fillo@y = O(5T)  for 6 \,0.

Proof According to Theorem 5 the LP-norm of the approximation error f — fr is
bounded above by

If = frllie@) < f = frllie@e) < ewag L% [ flBor @)

and by Theorem 7 the LP-norm of the data error f; — f2 can be estimated in terms of
the noise level 4 via

I f2 = follur < ewap L.

Thus, the LP-norm of the overall FBP reconstruction error f — f¢ can be bounded
above by

1f = fillr@ < ewag L7 flogr@e) + cwap L6
and choosing the bandwidth L as

L= |fl5

B0< p(Rz
we obtain
1
||f fLHLp (CWaq+CWQp) ’f’Bap R2)5a+1

as stated. O
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Note that the decay rate of the LP-error bound in Corollary 8 is independent of
1 <p< oo, as

If = fllny = O(6a+1)  for  §\,0,
where the filter’s bandwidth L > 0 has to go to oo as the noise level 6 > 0 goes to 0
with rate

L=0(@"7) for &§\,0.

To close this section we give an example of a filter function Ay, depending on a
parameter v € Ny, which fulfils the assumptions of Theorems 4, 5 and 7 for suitable v.
We remark that these assumptions especially imply continuity of the window W on R so
that they are not satisfied for the typical choices summarized in Table 1. More precisely,
if a kernel K fulfils the assumptions of Theorem 5, its window W satisfies W € C"(R).

Example 9 We define the smooth filter of order v € Ny as A, = |- | W, (/L) with
1— |3 for |S| <1,
sy [ QISP s <
0 for |S] > 1.

It is easy to wverify that W, € L>®(R) is an even function with W(0) = 1 and
A, € LYR) N LA(R) for all v € Ny and L > 0. In the following, we analyse the
inverse Fourier transform of Ar, and the corresponding convolution kernel K, .

The inverse Fourier transform of Ar, involves the generalized hypergeometric

function 1 Fy and is given by
2

L
F 1AL, (s) = o B(v+1,1)1F(1;1/2,v + 2;-L*%/1)  for s € R.
T
It can be verified that F~'Ar, € LY(R) for allv € N, but F'AL, & L}(R) for v =0.
The corresponding convolution kernel K, can be computed as
L2

A7 (v +1
KL,V(’:I:?y) = 2( )

L
— 2T 1
2m (v+1)

for [|(z,y)|r> = 0,

Jur1(L [ (2, y)|[r2)
(L [z, y)[|re)
where J,,1 denotes the Bessel function of the first kind of order v + 1 defined by

Jy(t) = %/Oﬂ cos(tsin(p) — (v +1)p)dp  fort eR.

For fized a > 0 we now develop a condition on v € Ny such that the integral

Lo = [ @)l Ko, )] da.0)
is finite, where we set K, = K, for the sake of brevity. To this end, first observe that
* [y (r)]

I,,=2"T(v+1) / — = dr.
0 TV—a

Since | J,41(r)| r™Y is bounded on [0,n] for alln > 0 due to [1, 9.1.7 € 9.1.60], we have

@ v = JV r
[Nl el die) <+ 2T+ [P0,
n

for [|(z, y)[r> > 0,

r
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According to [1, 9.2.1], the Bessel function J,.1 may be written as

Jyi1(t) = \/% (cos(t —=Yorv —=3Mam)+O(t|))  for |t| — oo

Therefore, choosing n sufficiently large yields

N v/ > |cos(r —Yemv —3/am)|
[ Vel el ) < €+ =) o

and the latter integral converges for v > a + 1/2.
We now prove divergence of 1, for v < a+1/2. For sufficiently large N € N we

have
N vt/ > cos?(r — V2w —3/am)
[l el de) = =) [ B gy
If a =12 <v < a+1/2, we obtain
/ Iz, 9)lIg 1K (2, 9) d(z,y) > 2777 /ET(v + 1) Y ((n+ Dm) 77,
R? n=N

which diverges as we have v < a+1/2 & —v+a—12> —1. Ifv < a—1/2, we obtain

o0

L)l Kool ) = 27 VR 1) 3 ()4

n=N
which diverges as well because v < o —1/2 & —v +a — 12> 0. In summary, we have

[l Kl d@n) <o = vsati
R

In particular, we have proven that K, € LY(R?) if and only if v > /2. It remains to
determine the maximal n € N such that

/ 2y K (z,y) d(z,y) =0 V1<|j| <n.
RQ
By transforming to polar coordinates the above integral can be rewritten as
L 1 27 4 4 0o Jy
leyJQ KV(x7 y) d(xy y) - 2V F(l/ —+ 1) COS‘h (SO) Sin‘jg(g@) dg@ +1 (T)
- 2m 0 o vl
For v >n —1/2 we have

/ Joein() 4 20 vi<|j) <n
0

rV—|j|

dr.

and, moreover,
/chosjl(go) sin?(p)dp =0 V1<|j|<n <= n=1
Consequently, t(l)ze smooth filter of order v € N satisfies the moment conditions
| v Ko den =0 Vi<l <n
only for n = I.R

Summarizing the results of Example 9, the smooth filter of order v € Ny satisfies
the assumptions of our error theory in Theorems 4, 5 and 7 for all a < 2 iff v > o+ 1/2.
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5. Numerical experiments

We now present selected numerical examples to illustrate our theoretical results. To
this end, we assume that the target function f is compactly supported with

supp(f) C Bi(0) = {(2,y) € R? | 2” +y* < 1}
and that the Radon data are given in parallel beam geometry
{Rf)mn=Rf(md,n7/N) | —M <m <M, 0<n<N —1},

where d is the spacing of 2M + 1 parallel lines per angle and N is the number of angles.
The reconstruction of f from discrete Radon data requires a suitable discretization
of the approximate FBP reconstruction formula

fr= %B(]—"_lAL xR f).

We follow a standard approach [21] and apply the composite trapezoidal rule to discretize
the convolution * and back projection B, leading to the discrete convolution *p and
discrete back projection Bp, respectively. Moreover, we apply an interpolation method Z
to reduce the computational costs. This yields the discrete FBP reconstruction formula

S = 5Bp(ZIF Ay xp RA)).

For target functions f of low regularity it is sufficient to use linear spline interpolation.
To exploit a higher regularity we apply cubic spline interpolation. Furthermore, we
couple the parameters d > 0 and M, N € N with the bandwidth L via
T 1
d=—, M=-, N=|[1tM
L’ d [m M
and choose L to be a multiple of 7, i.e., L = kn for some k € N.

In our numerical experiments, we use the Shepp-Logan phantom with attenuation

function
10

fsL = ZC]‘ fis

j=1

where each function f; is of the form of the characteristic function of an ellipse given by
fa(% y) = XBi1(0) (Xa,b,h,k,gp(% y))

with

(&= h)cos(p) + (y = K)sin(g) — (@ — h)sin(p) + (y — k) cos(y)
Xa,b,h,k,<p($,y) = , .
a b
The parameters of the ellipses used in the Shepp-Logan phantom can be found in [31].
For illustration, the Shepp-Logan phantom and its sinogram are shown in Figure 1.
According to [5], the function fsy belongs to the Besov space B3?(R?) for a < 1/p,
which determines the decay rate of the FBP approximation error e, = f — f;, in the
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8 =

) Phantom (b) Sinogram

Figure 1. The Shepp-Logan phantom and its sinogram.

LP-norm according to Theorem 4. To observe higher rates of convergence we consider
the function

1) (1— 2% —9?)° for 22 +y? < 1,
X =
bel ¥ 0 for 22 +y* > 1

with parameter o > 0, which is in B]‘}’p(]RQ) for @« < o +1/p. Adapting the approach
in [25], we then define the smooth phantom of order o via

3 1
smooth fl f; + §f§f S Bg’p(RQ) \V/Oé < o+ 5,

where each function ff is of the form

fo(2,Y) = Po(Xaphke(T,Y))-

The parameters used in the definition of the smooth phantom can be found in [25]. For
illustration, Figure 2 shows the smooth phantom of order ¢ = 1 along with its sinogram.

]

) Phantom (b) Sinogram

[N}

s

o

Figure 2. The smooth phantom of order ¢ = 1 and its sinogram.
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o £

a) Shepp-Logan phantom ) Smooth phantom of order 1

Figure 3. FBP reconstructions with smooth filter of order » =5 and L = 100m.

The FBP reconstructions of both phantoms are displayed in Figure 3, where we use
the smooth filter from Example 9, i.e.,

4,(5) = S| (1 — L7282 for |S| < L,
B0 for |[S| > L,

with v = 5 and L = 100w. This corresponds to M = 100 and N = 315 so that

(2M + 1)N = 63315 Radon samples are taken. In our numerical experiments, we

evaluate the phantoms and reconstructions on a square grid with 1024 x 1024 pixels.
We start with illustrating our theoretical results concerning the approximation error

er, = f— fr.
To this end, Figure 4 shows the discrete LP-norm of the FBP approximation error of

the Shepp-Logan phantom for p € {1,4/3,2,4} as a function of the bandwidth L in
logarithmic scales for the smooth filter with v € {5,7}. In this case, Theorem 4 gives

lezlluoee) < (2eap)” (/ 1z, )52 K (2, )] d(z, y)) L™ [ flegr2)-

In all cases, the plots in Figure 4 show that the discrete LP-norm of the FBP
approximation error decreases with increasing bandwidth L with rate L=* for both
v =5 and v = 7. This is exactly the behaviour we expect as we have fg1, € By” (R?) for
any « < /p. Moreover, we see that the error is smaller for v = 5 than for v = 7. This
observation also fits to our expectations because the constant

cose = [ Nl K ,)] o)

is smaller for v = 5 for all corresponding values of o € {1,3/4,1/2,1/4}, see Table 2. Note
that this behaviour of the error can also be observed for other choices of 1 < p < oo and
the smooth filter with alternative parameter v € N. However, for the sake of readability,
we refrain from reporting our numerical experiments with other parameter choices.
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Figure 4. Plots of the LP-approximation error as a function of L in logarithmic scales
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for the Shepp-Logan phantom and the smooth filter of order v € {5,7}.
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Figure 5. Plots of the LP-approximation error as a function of L in logarithmic scales

for the smooth phantom of order o = 1 and the smooth filter of order v € {5, 7}.
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Figure 6. Plots of the LP-approximation error as a function of L in logarithmic scales
for the smooth phantom of order ¢ = 2 and the smooth filter of order v = 5.

Figure 5 now shows the discrete LP-norm of the FBP approximation error of the
smooth phantom of order o = 1 for p € {1,4/3,2,4} as a function of the bandwidth L in
logarithmic scales for the smooth filter with v € {5,7}. In this case, Theorem 5 gives

117_F(6+1) @ —a
/ F(a + 1) (/]R? ”(I?y)”RQ |K($,y)’ d(l',y>> L ‘f’B;,p(]}@),

where § = o — || is the fractional part of a > 1.

lerllurg2) < (2¢6p)

In all cases, the plots in Figure 5 show that the discrete LP-norm of the
approximation error decreases as L~(*"?) for both v = 5 and v = 7. This is exactly the
behaviour we expect, as we have fi .. € B2P(R?) for any o < 14 1/p. Moreover, we
see that the error is smaller for v = 5 than for v = 7. This again fits to our expectations
as the constant ¢, x is smaller for v =5 for a € {2,7/4,3/2,5/1}, see Table 2.

Recall that the smooth filter of order v > 3 satisfies the moment conditions

/ 2y K (2, ) d(z,y) =0 V1< |jl<n
]R2

only for n = 1 so that Theorem 5 can only predict a decrease of the error with rate L2 at
most. Thus, our theory predicts saturation of the error decay rate if the smoothness « of
the target function is larger than 2. To illustrate this saturation numerically, we use the
2 € BYP(R?) for any a < 2+ 1/p.

smooth phantom of order o = 2, which satisfies f2 .

Figure 6 shows the discrete LP-norm of the corresponding FBP approximation error
exemplarily for p € {1,4}, where we use the smooth filter with v = 5. We indeed

@ 1/4 /2 3/4 1 5/4 3/2 /4 2
v
1.4273 2.0329 2.9484 4.3460 6.5018 9,8643 15.1708 23.6530
7 1.4538 2.1409 3.2078 4.8797 7.5234 11.7401 18.5234 29.5256

Table 2. Numerical approximation of ¢, g for smooth filter of order v € {5,7}.
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observe that the error decreases as L~2. This is true for all 1 < p < oo and v > 3.
Hence, the predicted saturation of the decay rate is observable in numerical experiments.

In summary, our reported numerical results totally comply with our theoretical
findings concerning the FBP approximation error.

In our second set of numerical experiments we investigate the FBP data error
fo— 1
on the rectangular imaging domain 2 = [—1, 1]?, where
£ = 5 BF AL o)
denotes the approximate FBP reconstruction from noisy Radon measurements g° with
noise level 6 > 0. To this end, we assume that we are given noisy measurements
{(Bon | - M <m <M, 0<n<N-—1}
that satisfy
IRf = g°ler < 6.

More precise, in our numerical simulations we use additive white Gaussian noise
with noise-level

0=0.1- mry,
where
M N-1
1
MRS = DAL )N m;M ;) (Rf)muml

is the arithmetic mean of the absolute values of the Radon samples of f. For illustration,
Figure 7 shows the sinogram of the Shepp-Logan phantom fs;, along with noisy data g&;
satisfying

HRfSL - ggLHfl =0.1- MR fsr,-

-

(a) Sinogram R fsr, (b) Noisy measurements g3

Figure 7. Sinogram of the Shepp-Logan phantom and its noisy measurements.
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Moreover, we again use the smooth filter with parameter v € {5,7}. Recall that,
according to Theorem 7, the L”-norm of the data error can be estimated as

I1fe = fEll@ < diam ()7 | F Al L 6,

— oxl/r
where we have ||F ' A||p1ge) = 0.2976 for v = 5 and ||F ' Al[11 ey = 0.2541 for v = 7.
Consequently, we expect the error to be smaller for v = 7 and that the error increases
with increasing L with rate L', which is independent of the integrability parameter p.
Figure 8 shows the discrete LP-norm of the FBP data error for the Shepp-Logan
phantom for p € {1,4/3,2,4} as a function of the bandwidth L in logarithmic scales.
The results for the smooth phantom of order 0 = 1 are summarized in Figure 9. In all
cases, we observe that the data error increases with L with rate L2, which is indeed
independent of p. However, the growth rate is overestimated in Theorem 7, where the
error bound increases with rate L'. Moreover, our numerical experiments show that the
data error is indeed smaller for v = 7 than for v = 5, as suggested by our error estimate.
We wish to remark that the reported error behaviour can also be observed in
numerical experiments with other choices of p, v and §. Moreover, we note that the
correct growth rate LY? of the FBP data error was derived in [3] for the case p = 2.

6. Conclusion

In this paper, we have analysed the approximation and the total reconstruction error of
the FBP method for CT reconstructions from parallel beam data. Our results depend
on the smoothness and the flatness of the filter’s window function near 0. Moreover,
the rate of convergence depends on the smoothness of the true solution f € B$?(R?).

The convergence results cover the cases 1 < p,¢g < oo and 0 < a < 1, resp.
1 < a < oo, a¢ N Integer values for v require slightly different definitions of the
Besov spaces. This case is not covered by our analysis.

The numerical examples with phantoms of different Besov smoothness confirm the
theoretical convergence rates of the approximation error, which require to link the
flatness of the window function at 0 with the smoothness of the target function for
optimal convergence rates. The data error, however, is overestimated by our theory and
requires further in-depth research.
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Figure 8. Plots of the LP-data error as a function of L in logarithmic scales for the
Shepp-Logan phantom and the smooth filter of order v € {5, 7}.
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Figure 9. Plots of the LP-data error as a function of L in logarithmic scales for the
smooth phantom of order ¢ = 1 and the smooth filter of order v € {5, 7}.
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Appendix A

We include the proof of Lemma 1.

Y

Proof Let ¢ > 1. Then, we can partition (0,00) into the disjoint intervals (¢=*~1, ¢7*]

k € Z, and obtain

([ wsor ) - (Z [ ey %) "

Since g is monotonically increasing, we have

g(c_k_1> < g(t> < g(c_k) Vitc (kafl’cfk]

c—ka — ta — (k1o
such that
/oo( pdt Z/ g pdt Z(g(c—k)>p/ck " dt
- — cC -
a k— 1 a —ka
0 kel C( t ez C c—k—1 t
o glcM)\p
- Zcp lOg ( c—ka > '
kEZ

On the other hand, we have

q dt q dt < g(eR) \a dt
/0 ( ta Z/ t - é/{:k <c(fk+1)a> ?

“Fyne . dt o k)N 4
-y (“’ﬁiﬁ) /ck S ) (1))

keZ

Thus, using the fact that 7 C ¢ for all 1 < p < ¢ < oo with ||a||e < ||al|e for all a € €9,
we finally obtain

([0 )" < (5 s 22y)

keZ
s g\
= 2@ log(c) fp="/a Zc_qo‘ log(c) ( —ha )
keZ
< @ log(c)"r= /OO ( g(t ))q dt
- 0 to t ’
as stated. O

Appendix B

We include the proof of Lemma 3.
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Proof Let ¢ > 1. Assume that

0< (/OOO (t= g(t))? %)% < .

Otherwise, the stated estimate is trivially true. Then, by Lemma 1 forall1 < g < p < o0

holds that
[y " < e log(eyie [y ”
, N\ ) ) = , Ve )

— > log(c) ( /0 ) (%)q %)% < oo

for p — oo and it suffices to prove that

* rg(t)\e dt\ " t
/ <&>p— — sup& for p— oo.
o Vo) ¢ 150 1o

Since ¢ is monotonically increasing and

00 1/q
([ C%)" <
o Vo) ¢
we have that

t
Mzsup&a)<oo.
>0
Now fix 0 < § < M and consider
D:{t>0|%2M—5}.

By definition, we have A\(D) > 0 and obtain

00 > (/OOO <9t(j>>q%)l/q > </D (%)qt—l dt)l/q > (M — §) (/Dt_l dt)l/q.

In particular, we have

0</t1dt<oo
D

l/p
(/t_ldt) —1 for p— 0.
D

This shows that

0o p
lim inf (/ (ﬂ)p @) > (Sup @) -0
p—=oo \ Jo t t >0 ¢

and, since 0 < 0 < M was arbitrary,

oo p
lim inf (/ (@y ﬁ) > sup @
p—o0 0 te t t>0 te

so that
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On the other hand, for p > ¢ we have
(/“ (@)@)% - (sup@)l‘% (/°° (@)@)%’ S sup 20
o Vet ) v ) = o te o Nt ) ¢ 50 1o
for p — oo, since
* rg(t)ye dt
0< / (w) — < 00.
o Nt ) ¢
Consequently, we also have
© rg(t)\e dt\ " t
lim sup & — < sup &
te t te
p—00 0 t>0
so that in total
0o 1
i ([ (240 & " 20
p—o \ Jo t t >0 1o

Hence, with Lemma 1 we can conclude that

gt <ot ([ o )

t>0

l/q

and the proof is complete. 0

Appendix C

We include the proof of Lemma 3.

Proof Since g is increasing and bounded from above, g is Lebesgue measurable and
convergent for t — oo, i.e., there exists [ € [0,00) such that | = lim;_,o g(t). If I =0,
we have g = 0 and the statement is trivially true. Thus, assume that [ € (0,00). To
prove the statement, we show

oo 1/q 00 1/q
. g(t)yr dt - / QAR R
(1) han\%lf (Ocq/o ( 2o ) t) >1, (2 llril\sélp (aq ; ( fa > + g

ad (1): Fix 0 < ly < [. Then, there is Ty > 0 such that

With this, for 0 < a < o, we obtain

o ) [ ) Y [ ()
with

To )\ dt _ ® rg(t)\e dt
OSIl—aq/ o= (%))q7 < aqT\’ a>q/ (%)"7%0 for o\, 0
0 0

and

r1Nedt
1220“158/ <—)q—:l8Taaq—>l8 for a\,0.

7, \to)
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In particular, taking the limit [y 7 [ gives

lim/I; =0 and liminfl, > 9.
a\,0 a\0

ad (2): Fix [; > [. Then, there is 7} > 0 such that

With this, for 0 < a < o, we obtain

o [ (A0 2 o [ () [ ()

1

with

T 0o
! t)\e dt o t)\e di
I = aq/ tlo—ala <@> — < 04qu( )q/ <@> — =0 for a0
o tr ) ¢ o Nto ) ot

and

1 N\adt
Iggaqlf/ < )q—:li’Tfo‘q—M'f for o\, 0.

o \te)
In particular, taking the limit {; \ [ gives

lim/l; =0 and limsupl, <[
aN\0 a\0

With (1) and (2) we now have

00 1/q 00 1/q
[ < liminf aq/ <&t>>q ﬁ < lim sup aq/ (g(t))q ﬁ <1
a0 0 te t a\,0 0 te t

so that
o g(t)\a dt\
lim (aq/ (ﬁy —) =1 = lim g(t),
a\,0 0 te t t—00
as stated. O
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