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Abstract

Computerized tomography allows us to recover bivariate functions from
Radon samples. Well-established reconstruction methods are based on the
filtered back projection (FBP) formula, which yields the analytical inversion
of the Radon transform. The FBP formula is, however, highly sensitive
with respect to noise and, thus, numerically unstable. To overcome this
problem, suitable low-pass filters with compactly supported window func-
tions and of finite bandwidth are employed. The objective of this paper
is to analyse the inherent FBP reconstruction error that is incurred when
using a low-pass filter of finite bandwidth. To this end, we prove L2-error
estimates for target functions from Sobolev spaces of fractional order. The
obtained error bounds are affine-linear with respect to the distance between
the filter’s window function and the constant function 1 in the L∞-norm.
Our theoretical results are supported by numerical simulations, where in
particular the predicted affine-linear behaviour of the error is observed.
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1 Introduction

The term filtered back projection (FBP) refers to a well-known and commonly
used reconstruction technique in computerized tomography (CT), which deals
with the generation of medical images from X-ray scans. The development of
CT had revolutionary impact in diagnostic medicine, since it provided a non-
invasive and safe imaging modality that enabled physicians to view the interior
of the human body at high resolution.
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The measured X-ray data can be interpreted as a finite set of line integrals of
the (unknown) attenuation function of the scanned object, which describes the
amount of energy being absorbed by the medium. Thus, the CT reconstruction
problem of recovering the interior structure of the scanned object from given
X-ray scans requires the reconstruction of the object’s attenuation function. We
can formulate the basic CT reconstruction problem as follows.

Problem 1 (Basic reconstruction problem). Let Ω ⊂ R2 be a bounded domain.
Reconstruct a bivariate function f ≡ f(x, y) with compact support supp(f) ⊂ Ω
from its line integrals ∫

`
f(x, y) dx dy

for all straight lines ` ⊂ R2 passing through Ω. �

To parametrize straight lines in the plane, let `t,θ denote the unique straight
line which passes through the point (t cos(θ), t sin(θ)) ∈ R2, for (t, θ) ∈ R×[0, π),
and is perpendicular to the unit vector nθ = (cos(θ), sin(θ)). In this case, `t,θ
has distance |t| to the origin. Moreover, every straight line ` ⊂ R2 can uniquely
be represented by one parameter pair (t, θ) ∈ R × [0, π), so that ` ≡ `t,θ. This
allows us to reformulate the basic reconstruction problem accordingly.

To this end, we regard for f ∈ L1(R2) its Radon transform Rf , given by

Rf(t, θ) =

∫
`t,θ

f(x, y) dx dy for (t, θ) ∈ R× [0, π).

Note that the Radon transform R maps a bivariate function f ≡ f(x, y) in
Cartesian coordinates onto a bivariate function Rf ≡ Rf(t, θ) in polar coordi-
nates, where Rf(t, θ) represents the line integral of f over `t,θ. Therefore, the
basic reconstruction problem, Problem 1, seeks for the inversion of the Radon
transform Rf from input Radon data

{
Rf(t, θ) | t ∈ R, θ ∈ [0, π)

}
. For a com-

prehensive mathematical treatment of the Radon transform and its inversion,
we refer to the textbooks [3, 8].

The outline of this paper is as follows. In Section 2, we briefly review the in-
version of the Radon transform by the FBP formula. Moreover, we explain how
the FBP can be stabilized by using a suitable low-pass filter with a compactly
supported window function and of finite bandwidth. This stabilization modifies
the FBP formula, leading to an approximate FBP reconstruction formula, whose
evaluation requires a rigorous analysis of the approximation error being incurred
by the application of a low-pass filter. Error bounds depending on the utilized
filter’s window function, along with its bandwidth, and on the regularity of the
target function are of particular interest. To this end, in Section 3 we prove
suitable error bounds with respect to the L2-norm and for target functions from
Sobolev spaces of fractional order. The resulting L2-error estimates, as summa-
rized by Theorem 1 and first presented in [1], are, to the best of our knowledge,
new. Supporting numerical simulations are finally provided in Section 4.
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2 Filtered Back Projection

The analytical inversion of the Radon transformR is well understood. It involves
the (continuous) Fourier transform on R, here taken as

Fg(S, θ) =

∫
R
g(t, θ) e−itS dt for (S, θ) ∈ R× [0, π)

for g ≡ g(t, θ) satisfying g(·, θ) ∈ L1(R) for all θ ∈ [0, π), in combination with
the back projection

Bh(x, y) =
1

π

∫ π

0
h(x cos(θ) + y sin(θ), θ) dθ for (x, y) ∈ R2

for h ∈ L1(R × [0, π)). Note that the back projection operator B is the adjoint
operator of R, which maps a bivariate function h ≡ h(t, θ) in polar coordinates
onto a bivariate function Bh ≡ Bh(x, y) in Cartesian coordinates.

Later in this paper, we also work with the Fourier transform on R2, defined
as

Ff(X,Y ) =

∫
R2

f(x, y) e−i(xX+yY ) dx dy for (X,Y ) ∈ R2,

for f ≡ f(x, y) in Cartesian coordinates, where we assume f ∈ L1(R2).
Now the inversion of the Radon transform is given by the classical filtered

back projection formula (see e.g. [2, Theorem 6.2.])

f(x, y) =
1

2
B
(
F−1[|S|F(Rf)(S, θ)]

)
(x, y) for all (x, y) ∈ R2, (1)

which holds for any function f ∈ L1(R2) ∩ C(R2).
By the application of the filter |S| to the Fourier transform F(Rf) in (1),

especially the high frequency components of Rf are amplified by the magnitude
of |S|. Therefore, the filtered back projection formula is in particular highly
sensitive with respect to noise and, thus, numerically unstable. Needless to say
that this is critical in many relevant applications, where a reconstruction by
FBP would lead to an undesired corruption of the image.

To reduce the sensitivity of the FBP formula with respect to noise, we follow
a standard approach and replace the filter |S| in (1) by a suitable low-pass filter
AL : R −→ R of the form

AL(S) = |S|W (S/L)

with finite bandwidth L > 0 and an even window function W : R −→ R with com-
pact support supp(W ) ⊆ [−1, 1]. Further, we assume W ∈ L1(R). Therefore,
the scaled window function WL(S) = W (S/L) is even and compactly supported
with supp(WL) ⊆ [−L,L]. In particular, WL ∈ L1(R), and so any low-pass filter
of the form AL(S) = |S|WL(S) is in L1(R), unlike |S|.
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When replacing the filter |S| in (1) with the low-pass filter AL, the recon-
struction of f is no longer exact and we only get an approximate FBP recon-
struction, here denoted by fL. In this case, the resulting approximate FBP
formula can be simplified as

fL(x, y) =
1

2
B
(
F−1[AL(S)F(Rf)(S, θ)]

)
(x, y) =

1

2
B
(
F−1AL ∗ Rf

)
(x, y),

where ∗ denotes the convolution product on R, here taken as

(g ∗ h)(S, θ) =

∫
R
g(t, θ)h(S − t, θ) dt for (S, θ) ∈ R× [0, π)

for g ≡ g(t, θ) and h ≡ h(t, θ) in polar coordinates, where we require that both
g(·, θ) and h(·, θ) are integrable on R for all θ ∈ [0, π).

We can further simply this representation of fL by involving the band-limited
function

qL(t, θ) = F−1AL(t) for (t, θ) ∈ R× [0, π),

in which case we get

fL =
1

2
B(qL ∗ Rf). (2)

For the sake of brevity, we call any application of the approximate FBP for-
mula (2) an FBP method. Thus, each FBP method yields one approximation fL
to f , fL ≈ f , whose quality depends on the choice of the low-pass filter AL.

In the following, we analyse the inherent error of the FBP method being
incurred by the chosen low-pass filter AL of finite bandwidth L, i.e., we wish to
analyse the error

eL = f − fL. (3)

We remark that pointwise and L∞-error estimates on eL were proven by Munshi
et al. in [5]. Their results are further supported by numerical experiments in [6].
Error bounds on the Lp-norm of eL, in terms of an Lp-modulus of continuity of
the target function f , were proven by Madych in [4].

We remark that the approach taken in this paper is essentially different from
previous approaches, in particular different from that in [4]. To further explain
this, we prove L2-error estimates on eL for the relevant case of target functions f
from Sobolev spaces of fractional order. Here, the Sobolev space Hα(R2) of order
α ∈ R is defined as

Hα(R2) =
{
f ∈ S ′(R2) | ‖f‖α <∞

}
,

whose norm ‖ · ‖α is given by

‖f‖2α =
1

2π

∫
R

∫
R

(
1 + x2 + y2

)α |Ff(x, y)|2 dx dy,



ANALYSIS OF THE INHERENT RECONSTRUCTION ERROR IN FBP 5

and where S ′(R2) denotes the usual space of tempered distributions on R2, with
respect to the Schwartz space S. It can be shown that for any non-negative
integer α ∈ N0 the Sobolev space Hα(R2) consists of functions, all of whose
(distributional) derivatives up to order α are square-integrable. Thus, for α ∈ N0

the above definition is consistent with the usual definition of Sobolev spaces via
weak differentiability.

In the relevant application of (medical) image processing, Sobolev spaces of
compactly supported functions on a bounded domain Ω ⊂ R2, and of fractional
order α ∈ R,

Hα
0 (Ω) =

{
f ∈ Hα(R2) | supp(f) ⊆ Ω

}
,

play an important role (cf. [7]). In fact, a density function f of an image in
Ω ⊂ R2 has usually jumps along smooth curves, but is otherwise smooth off
these curve singularities. Such functions belong to a Sobolev space Hα

0 (R2) for
α < 1/2. Thus, we can describe the density of an image as a function in a Sobolev
space Hα

0 (Ω) whose order α is close to 1/2.

3 Analysis of the FBP Reconstruction Error

In this section we prove L2-estimates for the intrinsic FBP reconstruction error
eL in (3), where our upper bound on the L2-norm of eL will be split into one error
term depending on the filter’s window function W and another one depending
on its bandwidth L > 0.

Let us first discuss the special case of the Ram-Lak filter, given as

AL(S) =

{
|S| for S ∈ [−L,L],
0 otherwise.

Note that the Ram-Lak filter’s window function W is given by the characteristic
function χ[−1,1] of the interval [−1, 1], so that the scaled window function WL is
the characteristic function χ[−L,L] of the interval [−L,L]. From this observation,
we see that the reconstruction error eL vanishes identically, eL ≡ 0, for target
functions f with band-limited Radon transform Rf , provided that the band-
width L is at least as large as the largest frequency contained in Rf . Indeed, in
this case the approximate Ram-Lak FBP formula (2) coincides with the exact
FBP formula (1), so that f ≡ fL.

Yet it remains to discuss how reasonable it is to assume that the target
function f has a band-limited Radon transform Rf . To further elaborate this,
let us recall the standard central slice theorem (see e.g. [2, Theorem 6.1.]), which
states that for any f ∈ L1(R2) ∩ C(R2) the identity

F(Rf)(S, θ) = Ff(S cos(θ), S sin(θ)) (4)

holds for all (S, θ) ∈ R× [0, π). Hence, the (univariate) Fourier transform of Rf
is entirely determined by the (bivariate) Fourier transform of f , and vice versa.
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Now, Rf is band-limited if and only ifRf has a compactly supported Fourier
transform F(Rf). However, for applications of medical image reconstruction,
it is usually assumed that f 6≡ 0 is compactly supported. But in this case, its
Fourier transform Ff is analytic, due to the well-known Paley-Wiener theorem
(see e.g. [9, Theorem 7.22]), and so is F(Rf) an analytic function, by the central
slice theorem (4). Hence, F(Rf) cannot be compactly supported, i.e.,Rf cannot
be band-limited.

To conclude our discussion on the special case of the Ram-Lak filter, we
see that, for compactly supported f 6≡ 0, the error eL of the Ram-Lak FBP
method cannot be zero for finite bandwidth L > 0. But if we let L go to
infinity, the Ram-Lak FBP method will coincide, in the limit, with the exact,
but numerically unstable filtered back projection formula (1), i.e., e∞ ≡ 0. In
other words, any admissible target function f can be approximated arbitrarily
well by fL for sufficiently large L.

Before we turn to error estimates on eL, it is convenient to rewrite the
approximate reconstruction formula (2) in terms of the target function f . To be
more precise, we seek for a function KL : R2 −→ R satisfying

fL = f ∗KL,

where ∗ now denotes the usual convolution product on R2, defined as

(g ∗ h)(X,Y ) =

∫
R2

g(x, y)h(X − x, Y − y) dx dy for (X,Y ) ∈ R2

for g ≡ g(x, y) and h ≡ h(x, y) in Cartesian coordinates satisfying g, h ∈ L1(R2).
This relation plays a central role in our error analysis. The construction of such a
function KL is based on the following standard relation between the convolution
product ∗, the back projection operator B, and the Radon transform R, as
detailed in the textbook [8] of Natterer (see [8, Theorem II.1.3]).

Lemma 1. Let f ≡ f(x, y) ∈ L1(R2) be a bivariate function in Cartesian coor-
dinates and let g ≡ g(t, θ) be a bivariate function in polar coordinates satisfying
g(·, θ) ∈ L1(R) for all θ ∈ [0, π). Then, the identity

(Bg ∗ f)(X,Y ) = B(g ∗ Rf)(X,Y ) (5)

holds for all (X,Y ) ∈ R2.

Although formula (5) belongs to the standard repertoire of CT techniques,
we give a proof for the reader’s convenience.

Proof. For (X,Y ) ∈ R2, we have

(Bg ∗ f)(X,Y ) =

∫
R

∫
R
Bg(X − x, Y − y) f(x, y) dx dy,
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where, with letting x̄ = X − x and ȳ = Y − y, we obtain

Bg(x̄, ȳ) =
1

π

∫ π

0
g(x̄ cos(θ) + ȳ sin(θ), θ) dθ.

By applying the substitutions

x = t cos(θ)− s sin(θ)

y = t sin(θ) + s cos(θ),

we get dx dy = ds dt and, therefore, with

Rf(t, θ) =

∫
R
f(t cos(θ)− s sin(θ), t sin(θ) + s cos(θ)) ds

and sθ = X cos(θ) + Y sin(θ), we can conclude

(Bg ∗ f)(X,Y ) =
1

π

∫ π

0

∫
R
g(sθ − t, θ)Rf(t, θ) dtdθ

=
1

π

∫ π

0
(g ∗ Rf)(sθ, θ) dθ

= B(g ∗ Rf)(X,Y ),

as stated.

Now for qL ∈ L1(R× [0, π)), we define the convolution kernel KL : R2 −→ R
by

KL(x, y) =
1

2
BqL(x, y) for (x, y) ∈ R2, (6)

so that, from Lemma 1, we obtain the desired representation for the approximate
reconstruction fL by

fL(x, y) =
1

2
B(qL ∗ Rf)(x, y) = (f ∗KL)(x, y) (7)

for all (x, y) ∈ R2.

Let us now turn to the analysis of the reconstruction error in the L2-norm.
To this end, we assume f ∈ L1(R2) ∩ L2(R2), in which case we get

‖f − fL‖2L2(R2) = ‖f − f ∗KL‖2L2(R2) =
1

2π
‖Ff −Ff · FKL‖2L2(R2;C),

from the representation (7) for fL. Further, we applied the Rayleigh-Plancherel
theorem, which states that the Fourier transform F is an isometry on L2(R2),
in our case up to the multiplicative constant (2π)−1/2.

By letting WL(x, y) = WL(r(x, y)) for r(x, y) =
√
x2 + y2 and (x, y) ∈ R2,

we obtain a radially symmetric bivariate function WL : R2 −→ R. It can be
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shown that the Fourier transform of the convolution kernel KL in (6) is given
by the bivariate radial window function WL, i.e., for KL ∈ L1(R2) we have

FKL(x, y) = WL(x, y) for all (x, y) ∈ R2,

in consequence of [8, Theorem II.1.4]. But this implies

‖eL‖2L2(R2) =
1

2π
‖Ff−WL ·Ff‖2L2(R2;C) =

1

2π

∫
R

∫
R
|(Ff−WL ·Ff)(x, y)|2dx dy.

To continue with our analysis, we split the above representation of the L2-norm
‖eL‖L2(R2) of the error eL into a sum of two integrals,

‖eL‖2L2(R2) = I1 + I2,

where

I1 =
1

2π

∫
‖(xy )‖

2
≤L
|(Ff −WL · Ff)(x, y)|2 dx dy,

I2 =
1

2π

∫
‖(xy )‖

2
>L
|Ff(x, y)|2 dx dy.

We now analyse these two error terms separately. Note that the first error term
I1 occurs if the chosen window function W is not constant 1, W 6≡ 1, on [−1, 1].
To estimate the integral I1, we consider a fixed low-pass filter AL(S) = |S|WL(S)
with a bounded window function W ∈ L∞(R). Then, for f ∈ L1(R2) ∩ L2(R2),
the integral I1 can be bounded above by

I1 =
1

2π

∫
r(x,y)≤L

(
1−WL(r(x, y))

)2 |Ff(x, y)|2 dx dy

≤ ‖1−WL‖2∞,[−L,L]
1

2π

∫
R

∫
R
|Ff(x, y)|2 dx dy

= ‖1−W‖2∞,[−1,1]‖f‖
2
L2(R2),

since

‖1−WL‖∞,[−L,L] = ‖1−W‖∞,[−1,1]

and
1

2π
‖f‖2L2(R2;C) = ‖f‖2L2(R2),

where we applied the Rayleigh-Plancherel theorem once more.

The second error term I2 occurs if the target function f is not band-limited.
We recall that this is usually the case for applications of medical image recon-
struction. To estimate the integral I2, we now assume that the target function f
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belongs to a Sobolev space of positive fractional order. In fact, for f ∈ Hα(R2),
with α > 0, the integral I2 can be bounded above by

I2 =
1

2π

∫
r(x,y)>L

(
1 + x2 + y2

)α (
1 + x2 + y2

)−α |Ff(x, y)|2 dx dy

≤ 1

2π

∫
r(x,y)>L

(
1 + x2 + y2

)α
L−2α |Ff(x, y)|2 dx dy

≤ L−2α‖f‖2α.

We can summarize our discussion of this section as follows.

Theorem 1 (L2-error estimate). Let f ∈ L1(R2) ∩ Hα(R2) for some α > 0, let
W ∈ L∞(R) be even and compactly supported with supp(W ) ⊆ [−1, 1], and let
KL ∈ L1(R2). Then, the L2-norm of the FBP reconstruction error eL = f − fL
in (3) is bounded above by

‖eL‖L2(R2) ≤ ‖1−W‖∞,[−1,1] ‖f‖L2(R2) + L−α ‖f‖α (8)

for all L > 0.

We can conclude that the choice of both the window function W and the
bandwidth L are of fundamental importance for the L2-error of the FBP method.
In fact, for any target function f and bandwidth L, the obtained error estimate
is affine-linear with respect to the L∞-distance between the window function W
and the constant function 1 on the interval [−1, 1]. This relation will also be
observed numerically in the following section.

Moreover, the error term ‖1−W‖∞,[−1,1] can be used to evaluate the quality
of the window W . Note that the window function W ≡ χ[−1,1] of the Ram-Lak
filter is the unique minimizer of that quality indicator, and so the Ram-Lak filter
is in this sense the optimal low-pass filter.

Finally, note that the smoothness α of f determines the decay rate of the
second error term by

L−α ‖f‖α = O(L−α) for L −→∞.

However, our L2-error bound in (8) can only tend to zero if we choose the Ram-
Lak filter with window W = χ[−1,1] and let L go to∞. This observation complies
with the derived conditions under which we achieve an exact reconstruction of
the target function f by the FBP formula (1), as this is explained at the outset
of this section.

4 Numerical Experiments

In this section, we finally present selected numerical examples to evaluate the
FBP reconstruction error numerically and to validate our L2-error estimate (8).
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First note that the approximate FBP reconstruction formula assumes the
Radon dataRf(t, θ) to be available for all (t, θ) ∈ R×[0, π). In practice, however,
only finitely many Radon samples are given. For parallel beam geometry (cf. [2])
the input Radon data are usually of the form

(Rf)j,k = Rf(tj , θk) (9)

for −M ≤ j ≤M and 0 ≤ k ≤ N−1 for M,N ∈ N. The reconstruction of f from
Radon data (9) requires a suitable discretization of the FBP method (2), leading
to inevitable discretization errors that are not covered by our error analysis.

To implement the approximate FBP reconstruction formula

fL =
1

2
B
(
F−1AL ∗ Rf

)
,

we need to discretize the back projection B, the inverse Fourier transform F−1,
the convolution product ∗ and the Radon transform R. For the sake of brevity,
we refrain from explaining their discretizations. Instead, we rather refer to [2,
Chapter 8]. For the purpose of this paper, it is sufficient to say that we rely on
parallel beam geometry (9), where the parameter M depends on the bandwidth
L of the low-pass filter AL, according to the Nyquist sampling theorem (cf. [2]).

In our numerical experiments, we used the popular Shepp-Logan phantom.
For this test case, the Radon transform can be calculated analytically. Therefore,
the Shepp-Logan phantom’s Radon data are exact, so that the observed errors
are due to the discretized approximate reconstruction method. The Shepp-
Logan phantom consists of ten ellipses of constant densities, but different sizes,
eccentricities and locations, see Figure 1(a). The phantom was introduced by
Shepp and Logan [10] to simulate a cross-section of the human head. For our
numerical experiments, we modified the densities of the different ellipses from
the original Shepp-Logan phantom in order to get a higher contrast in the image
for a better visual perception.

Figure 1(c) shows the corresponding sinogram, i.e., the Radon data of the
phantom in the (t, θ)-plane. The FBP reconstruction based on this test case is
displayed in Figure 1(b), where we used the Shepp-Logan filter with window

W (S) = sinc(πS/2) · χ[−1,1](S),

bandwidth L = 20 and N = 60 for the number of angles.
To measure the reconstruction error, we used the standard root mean square

error (RMSE), which is defined for images with J ×K pixels as

RMSE =

√√√√ 1

J ×K

J∑
j=1

K∑
k=1

(
fj,k − (fL)j,k

)2
.

In our numerical experiments, we evaluated the Shepp-Logan phantom and its
FBP reconstructions on a square grid with 256× 256 pixels.



ANALYSIS OF THE INHERENT RECONSTRUCTION ERROR IN FBP 11

(a) Phantom (b) Reconstruction

θ

t

(c) Sinogram

Figure 1: Reconstruction of the Shepp-Logan phantom.

For the numerical evaluation of the FBP method (2), the intrinsic error of
the reconstruction, which is incurred by the application of the low-pass filter AL
with finite bandwidth L, is of primary interest.

Our L2-error estimate (8) states that, for any target f ∈ L1(R2) ∩ Hα(R2)
with smoothness α > 0, the FBP reconstruction error is bounded above by

‖f − fL‖L2(R2) ≤ ‖1−W‖∞,[−1,1] ‖f‖L2(R2) + L−α ‖f‖α.

Here, we see that, for fixed function f and bandwidth L, the performance of the
chosen low-pass filter AL is governed by the L∞-distance between its window
function W and the constant function 1 on the interval [−1, 1]. Moreover, the
error formula predicts an affine-linear behaviour of the error eL with respect to
to the quality indicator ‖1−W‖∞,[−1,1]. To investigate the error eL numerically,
we have employed four commonly used low-pass filters AL(S) = |S|W (S/L):
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Name W (S) for |S| ≤ 1 ‖1−W‖∞,[−1,1] Parameter

Ram-Lak 1 0 –

Shepp-Logan sinc(πS/2) 1− 2/π –

Hamming β + (1− β) cos(πS) 2 (1− β) β ∈
[
1
2 , 1
]

Gaussian exp
(
−(πS/β)2

)
1− exp(−π2/β2) β > 1

Note that each window function W has compact support supp(W ) = [−1, 1],
and so we have supp(WL) = [−L,L].

In addition to the popular Ram-Lak and Shepp-Logan filters, we applied
the Hamming filter for different choices of parameters β ∈

[
1
2 , 1
]
, namely for

β ∈ {0.5 + 0.05 · j | 0 ≤ j ≤ 10} ∪ {0.92}. This decision was taken in order to
work with a sequence of filters of the same form, but with different values for
the quality indicator ‖1−W‖∞,[−1,1].

As suggested in [6], we also included the Gaussian filter for different choices of
the parameter β > 1, here for β ∈ {2, 4.7, 7.5, 10, 15}. For β = 4.7, the Gaussian
filter and the Shepp-Logan filter have the same value for ‖1−W‖∞,[−1,1]. Hence,
the corresponding reconstruction errors should behave similarly due to our error
estimate (8). Figure 2 shows, for the test case of the Shepp-Logan phantom, the
RMSE as a function of ‖1−W‖∞,[−1,1] for different choices of the bandwidth L
and number of views N .

We can explain the results of our numerical experiments as follows.

First we observe an increasing RMSE when increasing the quality indicator
‖1−W‖∞,[−1,1] in all of our numerical experiments. This is exactly the behaviour
we expected, due to the first error term in our L2-error estimate, given as

‖1−W‖∞,[−1,1] ‖f‖L2(R2).

Moreover, the predicted affine-linear behaviour of the RMSE with respect to
‖1−W‖∞,[−1,1] is clearly visible (see Figure 2). As expected, the RMSE of the
Gaussian filter with β = 4.7 and the Shepp-Logan filter are nearly the same in
all our test case scenarios.

Secondly, we see that the RMSE decreases at increasing bandwidth L. This
behaviour complies with the second error term in our L2-error estimate,

L−α ‖f‖α for α > 0.

In more details, comparing our numerical results for an equal number of
views N = 30 but for different bandwidths, L = 12 (Figure 2(a)) and L = 16
(Figure 2(b)), we see that the RMSE decreases for all filters, as predicted by our
error estimate. Further, the affine-linear behaviour of the RMSE with respect to
‖1−W‖∞,[−1,1] is clearly visible for the parameter choices L = 12 and N = 30.
For L = 16 and N = 30, however, the affine linearity is slightly disturbed.
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(b) L = 16, N = 30
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(c) L = 16, N = 45
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Figure 2: RMSE for the Shepp-Logan phantom.

When increasing the number of views from N = 30 to N = 45, at fixed
bandwidth L = 16, we see that the RMSE decreases further (see Figure 2(c)).
Moreover, the affine-linear behaviour of the RMSE is more pronounced.

We remark that the value of N does not contribute to the intrinsic FBP re-
construction error, but it rather affects the discretization error. By increasing N ,
the discretization error is reduced. This is necessary for larger bandwidths L,
since in that case the intrinsic error is small, so that a finer discretization can
contribute more to the reduction of the RMSE. This can be seen in Figure 2(d),
where we chose the bandwidth L = 20 and the number of views N = 90.

5 Conclusion

In this paper, we considered the inherent FBP reconstruction error eL = f − fL
being incurred by the use of a low-pass filter AL with a compactly supported
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window function W and of finite bandwidth L. We proved the L2-error estimate

‖eL‖L2(R2) ≤ ‖1−W‖∞,[−1,1] ‖f‖L2(R2) + L−α ‖f‖α,

which consists of two error terms: The first one only depends on the choice of
the filter’s window function W , whereas the second one is only dependent on the
filter’s bandwidth L. Here, the smoothness α of the target function f determines
the decay rate of the second error term. Moreover, the obtained error estimate is
affine-linear with respect to the magnitude of ‖1−W‖∞,[−1,1] and this term can
be used to evaluate the approximation quality of the window W . Our results are
supported by numerical experiments using the Shepp-Logan phantom, where the
affine-linear behaviour of the error with respect to ‖1−W‖∞,[−1,1] is observed.
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