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Abstract—This work focuses on the extension of the semi-

implicit SPH scheme [2] to two dimensions for the shallow water
equations. The scheme in [2] was first presented at last year’s
SPHERIC workshop, following the semi-implicit finite volume
and finite difference approach of Casulli [1]. In standard explicit
numerical methods, there is often a severe limitation on the
time step due to the stability restriction imposed by the CFL
condition. To this end, a new semi-implicit SPH scheme is derived,
which leads to an unconditionally stable method. The discrete
momentum equation is substituted into the discrete continuity
equation to obtain a symmetric positive definite linear system
for the free surface elevation. The resulting system can be easily
solved by a matrix-free conjugate gradient method. Once the
new free surface location is known, the velocity at the new time
level can be directly computed and the particle positions can
subsequently be updated. The method is validated on a smooth
inviscid hydrostatic free surface flow for the two dimensional
shallow water equations.

I. INTRODUCTION

This paper focuses on the extension to two dimensions

of the semi-implicit SPH scheme applied to the shallow

water equations [2]. We consider two-dimensional inviscid

hydrostatic free surface flows. These flows are governed by the

shallow water equations which can be derived from the three

dimensional incompressible Navier-Stokes equations with the

assumption of a hydrostatic pressure distribution (see [4],

[13]).

A considerable amount of work has been done for both

structured and unstructured meshes using finite difference,

finite volume and finite element schemes ( [4], [13], [19],

[20], [21]). A major problem of explicit schemes in numer-

ical methods is their severe time step restriction, where the

Courant-Friedrichs-Lewy (CFL) condition imposes the time

step size in terms of the wave propagation speed and the mesh

size. Hence, the major advantage of a semi-implicit approach

is that stable schemes are obtained which allow large time

step sizes at a reasonable computational cost. In a staggered

mesh approach for finite differences and volumes, discrete

variables are often defined at different (staggered) locations.

The pressure term, which is the free surface elevation, is

defined in the cell center, while the velocity components are

defined at the cell interfaces. In the momentum equation,

pressure terms that are due to the gradients in the free surface

elevations and the velocity in the mass conservation are both

discretized implicitly, whereas the nonlinear convective terms

are discretized explicitly. For mesh-based schemes, the semi-

Lagrangian method is one of the techniques to discretize these

terms explicitly (see [14], [15], [16]).

In recent years, some authors have worked on a semi-

implicit method for particle methods. In the specific,

Koshizuka and Oka ( [22], [29]) presented the moving-particle

semi-implicit method (MPS). Ataie-Ashtiani and Farhadi

( [26], [27]) worked in the same direction and presented a

stable MPS method for free surface flows using a fractional

step idea of discretization to split the time step into two steps.

A number of authors modified, extended and improved on the

MPS method of Koshika and Oka (see [23]–[25], [28], [30]),

even more for the enhancement of performance, stability and

accuracy of the MPS method.

In this paper the new semi-implicit Smoothed Particle

Hydrodynamics (SPH) scheme presented [2] for the numerical

solution of the one dimensional shallow water equations at

the 2014 SPHERIC workshop will be extended to the shallow

water equations in two space dimensions. The method is pro-

posed, derived and discussed. The flow variables in this present

study are the particle free surface elevation, particle total

water depth and the particle velocity. The discrete momentum

equations are substituted into the discretized mass conservation

equation to give a discrete equation for the free surface leading

to a system in only one single scalar quantity, the free surface

elevation location. Solving for one scalar quantity in a single

equation distinguishes our method in terms of efficiency from

other methods. The system is solved for each time step as a

linear algebraic system. The components of the momentum

equation at the new time level can be directly computed from

the new free surface. This can be conveniently solved by a

matrix-free version of the conjugate gradient (CG) algorithm

[5]. Consequently, the particle velocities at the new time level

are computed and the particle positions are updated. In this

semi-implicit SPH method, the stability is independent of

the wave celerity. Hence, relatively large time steps can be

permitted to enhance the numerical efficiency [4].
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The remainder of this paper is structured as follows: In

Section II, the numerical models for the two-dimensional

shallow water equations and models used for the particle

approximations are presented. In Section III, the key ideas

of smoothed particle hydrodynamics (SPH) and the proposed

semi-implicit SPH scheme are presented and derived. Two

dimensional numerical results to validate the scheme are pre-

sented in Section IV. Section V provides concluding remarks

along with an outlook to future research.

II. NUMERICAL MODEL

This section details the computational models and their

accompanying particle approximations. Vectors are defined by

reference to Cartesian coordinates. The latin subscript is used

to identify particle locations, where subscripts i denote the

focal particle whereas the subscript j denotes the neighbor of

particle i. Einstein’s summation will be employed for repeated

superscripts.

A. The Kernel Function

We shall use a regular mollifying function W which is

a positive non-increasing, axially symmetric shaped function

with compact support of the generic form

W (r, h) =
1

hd
W

(‖r‖
h

)

. (1)

In the specific, the classical B-spline kernel function of degree

3 is used in this study [7], given as

W (r, h) = Wij = K×


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where the normalisation coefficient K takes the value 2

3
, 10

7π
,

1

π
according to the dimension of the space for (d = 1, 2, or 3),

respectively. In the function W ∈ W 3,∞(Rd), h is the

smoothing length which is related to the particle spacing ∆P

by the relation h = 2∆P for constant h > 0. The smoothing

length h can vary locally according to the relations:

hij =
1

2
[hi + hj ] where hi = σ d

√

mj

ρj
. (3)

In this study, the smoothing length relation in (3) is used, σ is

taken from [1.5, 2.0] which ensures approximately a constant

number of neighbors of between 40 − 50 in the compact

support of each kernel. A popular and efficient approach based

on the Shepard interpolation technique [3]

W ′

ij =
Wij

∑N

j=1

mj

ρj
Wij

is used for the kernel function normalisation, which is espe-

cially useful for particles close to free surfaces. This technique

remedies problems such as numerical instabilities, partition of

unity which affect the convergence of this method.

x

z

η

h

Fig. 1. Sketch of the free surface (light blue) and the bottom bathymetry
(thick black)

The gradient of the kernel function is corrected using the

formulation proposed by Belytschko et al. [17]. Hereafter by

notation, the kernel function W ′

ij and its gradient ∇W ′

ij will

be taken as Wij and ∇Wij , respectively.

B. Governing Equations

The governing equations considered in this paper can be

written as a nonlinear hyperbolic conservation law of the form

Lb(Φ) +∇ · (F (Φ,x, t)) = 0, t ∈ R
+,Φ ∈ R, (4)

together with the initial condition

Φ(x, 0) = Φ0(x), x ∈ Ω ⊂ R
d,Φ0 ∈ R, (5)

where Lb is the transport operator given by

Lb(Φ) =
∂Φ

∂t
+∇ · ((bΦ))

and

x = (x1, ..., xd),F = (F 1, ..., F d), b = (b1, ..., bd),

where b is a regular vector field in R
d, F is a flux vector in

R
d, and x is the position.

Fig. 1 depicts the sketch of the flow domain, i.e., the free

surface elevation and the bottom bathymetry in the present

study. In this configuration, the vertical variation is much

smaller when compared to the horizontal variation, typical of

rivers flowing over long distances, typically hundreds or thou-

sands of kilometers. We consider the frictionless, inviscid two

dimensional shallow water equations in Lagrangian derivatives

given as
Dη

Dt
+∇ · (Hv) = 0, (6)

Dv

Dt
+ g∇η = 0, (7)

Dr

Dt
= v, (8)
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where η = η(x, y, t) is the free surface location, and H =
H(x, y, t) denotes the total water depth which is given as

H(x, y, t) = h(x, y) + η(x, y, t), (9)

where h(x, y) denotes the bottom bathymetry, v = v(x, y, t)
denotes the particle velocity, r = r(x, y, t) denotes the particle

position, and g denotes the constant of gravity acceleration.

III. NUMERICAL METHOD

There are several numerical methods that can be employed

to solve equations (6) - (7). These methods can be finite

differences or finite elements, explicit or implicit, conservative

or non-conservative or meshless methods. In this section,

following the semi-implicit finite volume and finite difference

approach of Casulli [1], we will delve into the derivation of

the semi-implicit SPH scheme applied to the two dimensional

shallow water equations.

In standard explicit numerical methods, there is a severe

limitation due to the stability restriction imposed by the CFL

condition. The restriction requires a much smaller time step

size than permitted by accuracy considerations. Fully implicit

discretization often leads to unconditionally stable methods

but they typically lead to the simultaneous solution of a

large number of coupled nonlinear equations. For accuracy,

the time step cannot be chosen arbitrarily large. To this

effect, a stable, efficient, robust and simple semi-implicit SPH

numerical method is derived in this section.

A. Classical SPH formulation

The standard SPH formulation discretizes the computational

domain Ω(t) by a finite set of N particles, with positions

ri. According to Gingold and Monaghan [10], the SPH

discretization of the shallow water equations (6) - (7) reads:

ηn+1
i − ηni

∆t
+

N
∑

j=1

mj

ρj
Hijvj∇Wij = 0, (10)

vn+1
i − vn

i

∆t
+ g

N
∑

j=1

mj

ρj
ηj∇Wij = 0, (11)

Dri

Dt
= vi, (12)

and the particles are moved by (12), where ∆t is the time step,

mj denotes the particle mass, ρj denotes the particle density,

and ∇Wij is the gradient of the interpolation kernel Wij with

respect to xi. In the scheme [10] by Gingold and Monaghan,

∇ · (Hv), ∇η are explicitly computed.

The gradient formulation used in (10) - (11) follows by

substituting the flow variable with corresponding derivatives,

using integration by parts, the divergence theorem and some

elementary transformations.

B. SPH formulation of Vila and Ben Moussa

Towards the derivation of our semi-implicit SPH scheme,

the SPH formalism of Vila and Ben Moussa ( [6], [9]) is

used. The basic idea in Vila and Ben Moussa in the scheme

comprises of replacing a centered approximation

(F (vi, xi, t) + F (vj , xj , t)) · nij

of (4) by a numerical flux of a finite difference scheme in

conservation form 2G(nij , vi, vj) which should satisfy the

equations

G(n(x), v, v) = F (v, x, t) · n(x)

G(n, v, u) = −G(−n, u, v).

With this formalism, the SPH discretization reads

ηn+1
i − ηni

∆t
+

N
∑

j=1

mj

ρj
2Hijvij∇Wij = 0, (13)

vn+1
i − vn

i

∆t
+ g

N
∑

j=1

mj

ρj
2ηij∇Wij = 0, (14)

Dri

Dt
= vi. (15)

In this formalism, in Fig. 2, for a pair of particles i and j,

we define the free surface elevation ηi, ηj and velocity vi,

vj at each particle i and j, respectively. In our approach, we

artificially define a staggered like velocity vij between two

interacting particles i and j as

vij =
1

2
(vi + vj) · nij (16)

in the normal direction n
d=1,2
ij at the midpoint of the two

interacting particles, where nij is a vector given as

n1
ij =

xj − xi

‖xj − xi‖
and n2

ij =
yj − yi

‖yj − yi‖
in both x and y directions, respectively where we have written

δ1ij = ‖xj − xi‖ and δ2ij = ‖yj − yi‖

denoting the distance between a pair of particles i and j

and d is the spatial dimension. Since we know the value of

the velocities at the midpoint of the particles, we use kernel

summation to update the velocity at the next location.

C. Semi-implicit SPH Scheme

To start with the derivation of the semi-implicit SPH

scheme, let us consider some characteristic analysis of the

governing equations (6) - (7). Writing equations (6) - (7) in a

non conservative quasi-linear form by expanding derivatives in

the continuity equation and momentum equations (assuming

smooth solutions), we obtain

ut + uux + vuy + gηx = 0, (17)

vt + uvx + vvy + gηy = 0, (18)
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ηi vi

ηj vj

nij

vn
ij

Fig. 2. Staggered velocity defined at the midpoint of a pair of interacting
particles i and j.

ηt + uηx + vηy +H(ux + vy) = −uhx − vhy. (19)

Writing (17) - (19) in matrix form, we obtain

Qt + AQx + BQy = C (20)

where

A =





u 0 g

0 u 0

H 0 u



 , B =





v 0 0
0 v g

0 H v



 ,

Q =





u

v

η



 , C =





0
0

−uhx − vhy



 .

Equation (20) is a strictly hyperbolic system with real and

distinct eigenvalues. The characteristic equation is given by

det(qI + rA + sB) = 0. (21)

The characteristic equation is simplified as

(q + ru+ sv)
[

(q + ru + sv)2 − gH(r2 + s2)
]

= 0, (22)

where the solution (r, s, q) of equation (22) are the directions

normal to the characteristic cone at the cone’s vertex. We split

equation (22) and we obtain

q + ru+ sv = 0 (23)

and

(q + ru + sv)2 − gH(r2 + s2) = 0, (24)

where
dx

dt
= u,

dy

dt
= v are the characteristic curves. if the

characteristic cone has a vertex at the point (x, y, t), then this

cone consist of the line passing through vertex (x, y, t) and

parallel to the vector (u, v, 1) which satisfies the equation

((x−x)−u(t− t))2+((y−y)−v(t− t))2−gH(t− t)2 = 0.
(25)

In particlar, the gradient of the left hand side of equation (25)

satisfies equation (24) on the cone surface. After solving (21),

the solution yields

λ1,2 = v ±
√

gH.

When the particle velocity v is far smaller than the particle

celerity
√
gH, i.e., |v| ≪ √

gH, the particle flow is said to be

strictly subcritical and thus the characteristic speeds λ1 and λ2

have opposite directions. The maximum wave speed is given

as

λmax = max(
√

gHi,
√

gHj).

In this case,
√
gH represents the dominant term which orig-

inates from the off diagonal terms g and H in the matrix A

and B.

We now have tracked back where the term
√
gH originates

from in the governing equations. We wish to further point out

that the first part of the characteristic cone in equation (22)

depends only on the particle velocity u and v. Equation (24)

defines the second part depends only on the celerity
√
gH.

As we can see, gH in Equation (22) comes from the off-

diagonal terms g and H in the matrices A and B. The terms

g and H represent the coefficient of the derivative of the free

surface elevation ηx in equation (17), the coefficient of the

derivative ηy in equation (18) in the momentum equations

and the coefficient of velocity ux and vy in the volume

conservation equation (19). Since we do not want the stability

of this method to be dependent on the celerity
√
gH , we

discretize the derivatives ηx, ηy and ux, vy implicitly.

Following the characteristic analysis presented above, we

want to derive the semi-implicit SPH scheme for the two

dimensional shallow water equations. The derivatives of the

free surface elevation ηx and ηy in the momentum equation

and the derivative of the velocity in the continuity equation

are discretized implicitly. The remaining terms such as the

nonlinear advective terms in the momentum equation are

discretized explicitly so that the system to be solved eventually

will be linear.

Let us consider the continuity equation in the original

conservative form given as

ηnt +∇ · (Hnvn+1) = 0. (26)

The velocity v will be discretized implicitly, the total water

depth H is discretized explicitly. For the sake of notation,

by implicitly and explicitly we mean n + 1 and n in the

superscript, respectively:

vn
t + g · ∇ηn+1 = 0

ηnt +∇ · (Hnvn+1) = 0.

Furthermore, we have discretized the particle velocities and

free surface elevation in time by the theta method for the sake

of time accuracy and computational efficiency i.e n + 1 =
n+Θ. So we have

vn
t + g · ∇ηn+Θ = 0 (27)

ηnt +∇ · (Hnvn+Θ) = 0, (28)

where the theta method notation reads:

ηn+Θ = Θηn+1 + (1−Θ)ηn

vn+Θ = Θvn+1 + (1−Θ)vn.
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The factor Θ is called the implicitness factor which should be

taken from
[

1

2
, 1
]

see Casulli and Cattani [4] for details.

The general semi-implicit SPH discretization of (27) - (28)

assumes the form

vn+1
ij − Fvn

ij

∆t
+

g

δij
Θ(ηn+1

j − ηn+1
i )

+
g

δij
(1−Θ)(ηnj − ηni )

= 0,

(29)

ηn+1
i − ηni

∆t
+Θ

N
∑

j=1

mj

ρj
(2Hn

ijv
n+1
ij )∇W ij · nij

+ (1−Θ)

N
∑

j=1

mj

ρj
(2Hn

ijv
n
ij)∇W ij · nij

= 0,

(30)

where

Hn
ij = max(0, hn

ij + ηni , h
n
ij + ηnj ). (31)

In a Lagrangian formalism, the explicit operator Fvn
ij takes

the simple form in (29)

Fvnij =
1

2
(vi + vj), (32)

where vi and vj denotes the velocity of particles i and j at

time tn. The new velocity is computed through simple kernel

summation:

vn+1
i = vn

i +

N
∑

j=1

mj

ρj
(vn+1

ij − vni )Wij . (33)

We should note that in (29) we have not used the gradient of

the kernel function for the discretization of the gradient of η.

We rather used a finite difference discretization for the pressure

gradient. This increases the accuracy, in (29) F corresponds to

an explicit spatial discretization of the advective terms. Since

SPH is a Lagrangian scheme, the nonlinear convective term

is discretized automatically, using the Lagrangian (material)

derivative contained in the particle motion in Eqn. (12).

Equation (32) is used to interpolate the particle velocities from

the particle location to the staggered velocity location.

D. The Free Surface Equation

Let the particle volume ωi in (30) be given as ωi = mi

ρi
.

Irrespective of the form imposed on F , equations (29) - (30)

constitute a linear system of equations with unknowns vn+1
i

and ηn+1
i over the entire particle configuration. We solve this

system at each time step for the particle variables from the pre-

scribed initial and boundary conditions. The cardinal feature

of this present numerical method from the computational point

of view is that the discrete momentum equation is substituted

in the discrete continuity equation. The model is reduced into

a smaller model in ηn+1
i as the only unknown.

Multiplying (30) by ωi and inserting (29) into (30) we obtain

ωiη
n+1
i − gΘ2∆t2

δij

N
∑

j=1

2ωiωj

[

Hn
ij(η

n+1
j − ηn+1

i )∇W ij · nij

]

= bni ,

(34)

where the right hand side bni represents the known values at

time level tn given as

bni = ωiη
n
i −∆t

N
∑

j=1

2ωiωjH
n
ijFvn+Θ

ij ∇W ij · nij

+ gΘ(1−Θ)
∆t2

δij

N
∑

j=1

2ωiωj

[

Hn
ij(η

n
j − ηni )∇W ij · nij

]

,

(35)

where Fvn+Θ
ij = ΘFvn

ij +(1−Θ)vn
ij . Since Hn

ij , ωi, ωj are

non-negative numbers, equations (34) - (35) constitute a linear

system of N equations for ηn+1
i unknowns.

The resulting system is symmetric and positive definite

(SPD). Because of the SPD property, this system admits

a unique solution which can be efficiently obtained by an

iterative method. We obtain the new free surface location by

(34), equation (29) gives readily and uniquely the new particle

velocity vn+1
i .

b

b

b

b

b

b

b

b

b

b
b

b

b
b

b

b

b

b

b

b

bb

b

b

b

b

b

2L

b

Fig. 3. Fictitious Cartesian Grid: Neigboring search is done within the 9 cells
in a two-dimensional space. The smoothing length is constant and the support
domain for the particles is 2L

E. Neighboring Search Technique

The search for surrounding particles j of the focal particle

i at the position xi is a major challenge that must be solved

efficiently, hence we have used the following strategy. We

define a background fictitious Cartesian grid in Fig. 3. This

grid contains the fluid with a mesh size of 2L, the grid is kept

fixed all through the simulation. The grid comprises macrocells

which consist of particles, (see details in [33].) The idea is

analogous to the book-keeping cells as used by Monaghan in
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[31]. To compute the free surface elevation η and the fluid

velocity v, only particles inside the same macro-cell or in the

immediate surrounding macro-cells will contribute. Ferarri et

al [32] explained the efficiency of the neigboring search. The

idea is building the list of particles in a given macro cell and

also the indices pointing to macro-cell containing the particle.

We store the coordinates of each particle to reduce the time

for accessing data in the neighbor search technique. So in our

neighboring search, a particle can only interact with particles

in its macro-cell or in the neigboring macro-cells. In our two

dimensional case in the present study then we will loop over

the bounding box of 9 macro-cells, as we can see in Fig. 3.

IV. NUMERICAL EXAMPLE

In this section, the semi-implicit SPH scheme that has been

derived in Section III will be validated on a simple smooth test

problem for the two-dimensional shallow water equations. In

this section, an academic numerical example will be validated

that has a smooth solution, i.e., a collapsing Gaussian bump.

In the subsequent test problem, the acceleration due to gravity

constant g is set to g = 9.81.

A. Smooth Surface Wave Propagation

In this example, we consider a smooth free surface wave

propagation. We consider the initial value problem

η(x, y, 0) = 1 + 0.1e
−

1

2





r2

σ2





,

u(x, y, 0) = v(x, y, 0) = h(x, y) = 0,

in the domain Ω = [−1, 1] × [−1, 1] with a prescribed flat

bottom bathymetry, i.e., h(x, y) = 0, where σ = 0.1 and

r2 = x2 + y2. The computational domain Ω is discretized

with 124, 980 particles. The final simulation time t = 0.15 is

used and the time step is chosen to be ∆t = 0.0015. We have

used the implicitness factor Θ = 0.65. The smoothing length

is taken as li = α(ωi)
1

d , where α = [1.5, 2] and d = 2. The

numerical solution is shown in Fig. 5. The profiles in Fig. 4

depicts the three dimensional surface plot of the free surface

elevation at times t = 0s, 0.05s, 0.10s, 0.15s. Due to the radial

symmetry of the problem, we obtain a reference solution by

solving the one-dimensional shallow water equations with a

geometric source term in radial direction: a method based

on the high order classical shock capturing total variation

diminishing (TVD) finite volume scheme is employed for

computing the reference solution using 5, 000 points and the

Osher-type flux for the Riemann solver, see [12] for details.

The comparison between our numerical results obtained with

semi-implicit SPH scheme and the reference solution is shown.

A good agreement between the two solutions is observed in

Fig. 5. We attribute the difference in the plot to the fact that

the SPH method has a larger effective stencil, which might

increase the numerical viscosity, and moreover, since a low

order accurate time integration scheme has been used.

The radial cut solutions of the free surface elevation and the

velocity in the x− direction is given in Fig. 5

Fig. 4. 3-D surface plot of the free-surface: SISPH solution at times t =

0.0s, 0.05s, 0.10s, 0.15s with 124, 980 particles.

V. CONCLUSION

The paper presents a new SPH formulation based on a novel

semi-implicit SPH discretization. The semi-implicit algorithm

applied to the two dimensional shallow water equations has

been derived and discussed. The momentum equation is dis-

cretized by a finite difference approximation for the gradient

of the free surface and SPH appoximation for the mass

conservation equation.

Because we substituted the discrete momentum equations

into the discrete mass conservation equations, our scheme

reduces to a linear sparse system for the free surface elevation.

We therefore have one linear scalar value for the free surface

to be solved, we conveniently solve this with the matrix-free

version of the conjugate gradient (CG) algorithm.

This method possesses some key features: the method is

mass conservative, the time step is not restricted by the

stability condition that is dictated by the surface wave speed

thus relatively large timesteps are permitted.

Future research will be devoted to the extension of this

scheme to 3D numerical examples, wetting and drying prob-

lems, application to shock problems and extension to nonhy-

drostatic free surface flows.
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