ZMP Seminew, Hashing
An Introduction to Hitchin Systems
This talk is based m the first six chapters of
[Hit] Nigel Hitching (1987), Self-Duality Equations on a Riemann Suffice, Procedingo of the London Mathematical Society 53-55:59-126
Section 1: A puce reminder of gauge theory

- Classical gauge theories can be formulated in the eangnay of principal bundles.
- Recall khat a principal bundle is a bundle $P \rightarrow M$ witharighar pa cp action R if a group G which is fibre preserving and fibravise free and transitive.
- Physical interpretation: Miss spa airtime. Pentodes "internal degrees of frolic"
- The group G is called the structure group of the principal bundle. We will denote its lie algelsa by of. (In this tall: $G:=s o(3)$).
- There is an important canovial action of G on of which is given by

$$
A d g X:=\left.\frac{d}{d+t}\right|_{t=0}\left(g \exp / t+1 g^{-1}\right)
$$

This is called the adjoint action.

- There is an important vector bundle associated to P_{1} called the adjoint bundle

$$
\text { AdP: }=(p \times g) / \sim \text { where }(p, g, x) \sim(p, A d g x)
$$

The typical fibre of $A d P$ is O therefore any form with values in $A d P$ can be descisbed locally as a form with values in the lie ageless of.

- The gauge group of P lo r group of gale transformations) is

$$
G a n(P):=\left\{\varphi: P \rightarrow P \text { diff } \mid \Pi_{0} \varphi=\varphi, R_{g} \circ \varphi=\varphi \circ \log \right\}
$$

This is a lie group with lie algebra of an $(P)=\Omega^{0}(M ; A d P)$.

- Physical ganger fields are modelled using connections (unnection 1-fomms):

A of-valued 1 -form $A \in \Omega^{1}(P ; g)$ is a connection 1-form if
(1) $R_{g}^{*} A=A d_{g}-10 A$ for all $g \in G$
(2) $A(\bar{x})=x$ focal $X_{\text {Eg }}$ (here $\bar{x}_{p}:=\frac{d}{d \|_{t}}=0(\operatorname{pexp} \mid+x)$ denotes the fuadmentel rector field loo infinitesimal action) corroponding to the lie algebra element X)

- Interpretation: 4-potential
- One canshrothat avery principal bundle hes a connection.
- Moreover, the set of connections (own (P) is an affine space veer $\Omega^{1}\left(M_{i} A D P\right)$
- The mst impotent quantity that an be derived from ∇ is its avvature

$$
F^{A}:=d A+\frac{1}{2}[A \wedge A] \in \Omega^{2}(P ; g)
$$

The physical intuppetation is the Faraday field strength tenser field.
-We have the Bianchi inentily $d_{A}{ }^{F}=0$, where d_{A} is the axterion covariant derivative arresponding to A

- The dynamicical equation is called the vacuum Yang-Mills equation:

$$
\begin{equation*}
d_{A} * F^{A}=0 \quad \text { (in vacuum) } \tag{Y/M}
\end{equation*}
$$

Here * is the Hodge stow operator coreeporuling to the spacetime metric.

Section 2: The seff-duclity equations
-The goal of gangethery is to dusily solutions of (y / μ) up to gauge trenofmations since F^{A} is invariant under gang transformations

- (IM) is a sydem of undixam PDEs \leadsto this is umplicated!
- Incifful approach: look for special solutions. Assume $\operatorname{dim} M=4$. A connection A is called a sufi, dual connection if $* F^{A}=F^{A} . \quad F^{p 9} \varepsilon_{\text {paiL }}=F_{i k}$ These solve (YM) andomabically since $d_{A} \times F^{A}=\quad d_{A} F^{A}=0$. $=0$ Brandi
- Funner simplification: acsume $M=\mathbb{R}^{4}$ with the standers Piemamuian metric Then P can be trivialised globally and we can wite

$$
A=A_{1} d x^{1}+A_{2} d x^{2}+A_{3} d x^{3}+A_{4} d x^{4}
$$

where $A_{k}: \mathbb{R}^{4} \rightarrow \mathrm{~g}$.

- Assume furthermore that all wefficients are independent of x_{3} and x_{4}. Then we an do a kind of dimensitual reduction from $M=R^{4}$ to $C=I \mathbb{R}^{2}$ and define a new connection $\widetilde{A}:=A_{1} d x^{1}+A_{2} d x^{2}$. This is well defined by assumption.
- Of course wi dorset want to loot the information that wars encoded in A_{3} and A_{4} t will be woeful to consider $\mathbb{R}^{2} \simeq \mathbb{C}$ and affine $d z:=d x^{1}+i d x^{2}, d \bar{z}:=d x^{1}-i d x$? Then we may define $\phi=\frac{1}{2}\left(A_{3}-i A_{4}\right) d z$ and $\phi^{*}=\frac{1}{2}\left(A_{3}+i A_{4}\right) d z$. Highs field in terms of \tilde{A} and ϕ_{1}, the equation $* \Phi^{A}=F^{A}$ can be mitten as

$$
\left\{\begin{array}{r}
F^{\tilde{A}}+[\phi \wedge \phi]=0 \tag{SD}\\
\partial_{\bar{A}} \phi=0
\end{array}\right.
$$

notilde from now m

- Note hat these equations are coordinate independent and they are alpo conformably iwwainet. Hence we can consider them on a Riemann surface C instead of ©. (Recall that a Riemum surface con be dessibbed using hulomoshic coordinates and that conformal and holomorphic tramfermations coincides
- Finally.ve can define the problem. Lat $P \rightarrow C$ be a G-principal bundle over a Riemann suface C of genus $g>1$. We are in crested in the volutions of the seff-dululity equation

$$
\left.\begin{array}{rl}
F^{A}+\left[\phi \wedge \phi^{\prime}\right] & =0, \tag{SD}\\
\bar{\partial}_{A} \phi & =0,
\end{array}\right\}
$$

(or Hitunir's equations)
where A_{ϵ} Coon P is an irreducible connection and $\phi \in \Omega^{10}(C ; A P P C C)$ is a things fill.

- We take the adjoint worst. a hermestion metric -more on that in the haxttalk
- we will wo r the notation Hippo): $=\Omega^{10}(c ; A P P \otimes C)$ for the set of thigh fields

Section 3: The thitchir moduli' space M_{H}

- we are interested in the set of volutions of (SD) up to gangetr.
- This set will turn out to be astonishingly well-behwed.
- Wevill use the notation $H:=\operatorname{Crum} P \times H i m p(P)$.

This is an infinite dimunimal affine apace over

$$
\Omega^{1}\left(C_{i} A_{A} P\right) \times \Omega^{10}\left(C_{i} A P Q \mathbb{C}\right) \simeq \Omega^{\wedge}\left(C_{i} A P Q C\right) .
$$

- Moreover, we will use the notation

$$
\tilde{M}:=\{(A, \phi) \in H \mid(A, d) \text { solves }(S D)\}
$$

$$
\mu_{H^{\prime}}=\tilde{M} / \operatorname{San}(P)
$$

Hithoin modulispace

- In oder to detmine a candidate for $\operatorname{dim} M_{H}$, we limacine the $(S D)$ equations lemmas 1 A wave $(A t, \phi t)$ Satisfies the SD equations in $(A 0,|\phi|)=(A, B)$ to first oder if $\quad\left(\dot{A}:=\left.\frac{d}{d t}\right|_{t=0} A_{t}, \dot{\phi}:=\left.\frac{d}{d t}\right|_{t=0} \phi_{t}\right)$

$$
\left\{\begin{array}{r}
d_{A} \dot{A}+\left[\dot{\phi}, \phi^{*}\right]+\left[\phi_{1}, \dot{\phi}^{*}\right]=0 \tag{LSD}\\
\partial_{A} \dot{\phi}+\left[\dot{A}^{0,1}, \phi\right]=0
\end{array}\right.
$$

- Since we are interested in solutions only unto gave transformation, we need to know when a awe cores farm an Infinitesimal gauge trounformation lemma 2 A curve (A_{t}, ϕ_{t}) comes form a_{n} infinitesimal gauge transformation

$$
\dot{\psi}: M \rightarrow \Delta d P \text { if }\left\{\begin{array}{l}
\dot{A}=d_{A} \dot{\psi} \\
\dot{\phi}=[\phi, \dot{\psi}]
\end{array}\right.
$$

- Using these real lb, we austuct a complex

$$
0 \rightarrow \operatorname{gau}(P) \xrightarrow{d_{1}} T(A, \phi) H \xrightarrow{d_{2}} \Omega^{2}\left(M_{1} A A P\right) \times \Omega^{2}\left(M_{1}, A d P \otimes \mathbb{C}\right) \rightarrow 0
$$

where $d_{1} \dot{\psi}:=\left(d_{A} \dot{\psi},[\phi, \dot{\psi}]\right)$ and

$$
d_{2}(\dot{A}, \dot{\phi}):=\left(d_{A} \dot{A}+\left[\dot{\phi}, \phi^{*}\right]+\left[\phi_{1} \dot{\phi}^{*}\right], \bar{\partial}_{A} \dot{\phi}+\left[\dot{A}^{0,1}, \phi\right]\right) .
$$

Note that kex $d_{2} /$ inn d_{1} is the set of veuhtious up to infinitesimal gauge tranffrantions \Rightarrow The candidate f_{N} dimM_{H} is $\mu_{m} H^{1}$.
Using the Atiyah-Singes index theorem, we stair
lemmas $\operatorname{dim} H^{0}-\operatorname{dim} H^{1}+\operatorname{dim} H^{2}=12(1-g)$
One can show (vanishing theorems) that at so called irreducible connection

$$
H^{\circ}=0 \text { and } H^{2}=0
$$

Therefore $\operatorname{dim} H^{2}=-12 \cdot(g-1)$.
The fact that \mathcal{M} is a moth manifold corms from a Banach Space vernon of the implicit function theorem.
Theorem $1 M_{H}$ is a $12 \cdot(g-1)$ dimensional $3_{m o t h}$ manifold

Section 4: The basics of Hyperbeabler geometry

- Before we can discuss the geometry of μ_{H} in its full glory, we wed to intraduce/recall certain terms
- Recall that a Riemarnian metric is a smoothly vanning scalar product on the turgent spaces: $y_{i j}$
- An implant con apt form dasical medrewis is a symplectic form, which is a kind-pf "ankisymmatic scalar product ${ }^{h} \quad w_{i j}=-w_{j i}$ with deft $w_{j} \neq 0$ and ($\omega \in \Omega^{2}(M), d \omega^{=0}, \omega$ is nondegerenate) $\partial_{k} \omega_{i j}-\partial_{i} \omega_{k j}+\partial_{j} \omega_{k i}=0$ This play an important rel in the naval Hamiltonian formulation of classical mechanics.
- Catain real mils are actually complex mfds in disguise. In this case, multiplication by i aspesponds to a map $I_{p}: T_{P} M \rightarrow T_{p} M$ rill $I_{p}^{2}=-1$ on each real tangent apace. If ouch a map satisfies a attain integrability condition (namely $\left.\left.[x, i]+I[T x, 1]+I\left[x, I^{\prime}\right]\right]-\left[I_{1}, I Y\right]=0 \quad \forall x i y t z \mid M\right)$, vanishing N(jenhuis tenor), then the manifold is indued a complex mfd in disguise. We all such a family of maps a complex structure.
- Of cause, a marifote can have all three structures at the same time.

If they "play well mill each other", i.e. if $\left.g\left(I x_{1} y\right)=\omega\left(x_{i}, y\right) \quad \forall x_{1}\right) \in t(m)$ $g_{i k} I_{j}^{k}=\omega_{i j}$
then we call (M, g, w, I) a Kählor mavified.
Käbler manifolds find important applications in mathematical physics (egg. the apace of vacua in 4 dimensional $N=1$ supprsymumic field theory is a Köhber maviffed)

- Locale on a Kölhlor marifedd, the syuplectic form has a holomorphic potential f

$$
g=i \partial \partial f
$$

- But why slop at complex numbers? For quaternions we have $i^{2}=i^{2}=k^{2}=-1$ and $i j=k$ Analogously, if we have a manifold M with
- a Kiemmian whtic g
- the syupplatic forms $\omega_{I}, \omega_{J}, \omega_{k}$

$$
\left(\omega^{I}\right)_{i j}\left(\omega^{\top}\right)_{i j}\left(\omega^{k}\right)_{i j}
$$

- three complex structures $I_{1} J_{1} K \quad I_{j}, J^{i}, K^{i}{ }_{j}$ such that (M,g, I, w_{I}), $\left(M_{1}, J_{1}, w_{J}\right),\left(M, g, K, w_{k}\right)$ are Kähles molas and

- Hypertiables masifferas are impotent in mathematical lysis (eeg. the apace of varna in 3 dimensional $N=4$ supersymmenc freed theory is a typletrian ere info)
- Hypuriater maniffeas are rigid in the sense that (I, J, k) determine the Riemannian metric uniquely.

Section 5: Geometry on the thitchin moduli space

- Now we are going to show that M_{H} admits a hyperifiller structure
- Recall that H is an affine ape, and its tengent space is at any port (, is)

$$
T_{(1, \phi)} H \simeq \Omega^{1}(M ; A A P \otimes C)
$$

- Our general strategy in to define geometric structures on H1 show that they restrict well to $\tilde{\mathcal{M}}_{H}$ and then show that they me iwwaiant miser gang transformations. Then they define a structure on M_{H}
- Note that we can define $\operatorname{Tr}: \Omega^{1}(M ; A d O C) \rightarrow \Omega^{1}(M ; \mathbb{C})$ by aching onlyouthe he algebra pat: $\operatorname{Tr}(A d z):=(\operatorname{Tr} A) d z$
- We start with the Riemannian metric. For $X=\dot{\phi} d z+\dot{A} d \bar{z}=: X_{1} d z+X_{2} d \bar{z}$ we define $\tilde{g}(X, X):=\int_{M} \operatorname{Tr}\left(X_{1}^{k} X_{1}-X_{2} X_{2}^{*}\right) d \bar{z} n d z$. This induces the Riemannian metric of m M M_{H}.
- Since the tangent space of H is $\Omega^{1}\left(M_{i} A d P \otimes C\right)$, the printuise multiplication by i defines a complex structure \tilde{I} on H. This indues the complex structure I on M_{H}.
- Using I and g we an define a form w_{I} by $w_{I}(x, y):=g(I X, y)$. It can be shown that ω_{I} is a symplectic form, thus $\left(M_{1}, w_{I}, I\right)$ is a Käller mavifod.
- To coudruct the tither two killer stmictenes, we tate a different approach.

Define a complex symplectic form on H by

$$
\Omega(x, y):=\int_{M} \operatorname{Tr}\left(y_{2} x_{1}-y_{1} x_{2}\right) d \bar{z} n d z
$$

and let $\omega_{y}:=\operatorname{Re} \Omega^{M}$ and $\omega_{k}:=J_{m} \Omega$.

- This way we obtain tors supplectic forms on H. These Induce complex stuctones J and K via $g\left(J_{i}\right):=\omega_{5}$ and $g\left(k_{i}\right):=\omega_{k}$.
- These can be shown to satisfy

$$
\begin{aligned}
& I(x, y)=(i x, i y) \\
& J(x, y)=\left(i y^{*},-i x^{*}\right) \\
& K(x, y)=\left(-y^{*}, x^{*}\right)
\end{aligned}
$$

Now $I J(X, y)=I\left(i y^{*} 1-i X^{*}\right)=\left(-y^{*}, X^{*}\right)=k(x, y)$. Thus we have defined. hypariahler stature on M_{H}.

- One final piece of structure: if $(A, \phi) \in \tilde{U}_{H}$ satisfy the $S D$ equations

$$
\begin{aligned}
F^{A}+\left[\phi \wedge \phi \phi^{\prime}\right] & =0 \\
\partial_{A} \phi & =0_{1}
\end{aligned}
$$

then $e^{i \theta} \phi$ also satisfies the SD equations for $e^{i \theta} \in \delta^{1}$. This way

$$
e^{i \theta} \cdot(A, \phi):=\left(A, e^{i \theta} \phi\right) \quad(A, \phi) \in \tilde{\mu}_{H}
$$

is an S^{1}-action on $\tilde{\mathcal{M}}_{H}$. This action commutes with gauge transformations, thus $e^{i \theta} .[(A, \phi)]:=\left[e^{i \theta}(A, \phi)\right]$ defines an S^{1}-action on the Hitchin moduli op pe.

- This action is Hamilton ian with moment mop $\mu\left(A_{1} \phi:=-\frac{1}{2}\|\phi\|_{L^{2}}^{2}\right.$. This map is a More function and it can be used to study the topolang of the thitchin moduli once.

