
Introduction
Given a hyperkaehler manifold M4n with metric g, complex structures I, J and
K, and symplectic forms ωI , ωJ and ωK that are all compatible, in the sense
that IJ = K and

g(I−,−) = ωI(−,−)

g(J−,−) = ωJ(−,−)

g(K−,−) = ωK(−,−)

we can define what is called the twistor space of M . The main observation that
allows us to construct this space, is the following

(aI + bJ + cK)2 = −(a2 + b2 + c2)

for real numbers a, b, c.

In other words, if we have a2 + b2 + c2 = 1, aI + bJ + cK defines a new complex
structure. Such (a, b, c) form a sphere, which we can give a complex structure
I0 through the standard one-point compactification of the complex plane. The
complex coordinate of this sphere will be ζ. Then we are free to pick

(a, b, c) =
1

1 + |ζ|2
(1− |ζ|2, 2Re(ζ),−2Im(ζ))

The twistor space Z ofM , will now be defined as Z = M×S2, which we give the
almost complex structure (I(ζ), I0) at a point (m, ζ) ∈M × S2. One can apply
the Newlander-Nirenberg theorem to show that this almost complex structure
is integrable and thus makes Z into a complex manifold.

Properties of twistor space
It turns out that the twistor data contain enough information to recover the
hyperkaehler structure. In this way, describing the twistor data is an equiva-
lent, more geometrical way, of describing a hyperkaehler metric. Therefore, the
search for hyperkaehler metrics can equivalently be stated as the search for such
data. Unfortunately, this construction only defines a metric locally. This means
finding global properties of the metric can be quite difficult. For example, prov-
ing geodesic completeness of the metric can be tricky.

To complete our construction, we shall now look for some desirable properties of
the twistor space, which shall form the basis for the reversal of the construction.
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Normal bundle of holomorphic sections
Since Z = M × S2, there exists an obvious map p : M × S2 → S2. Actually,
this projection extends to a holomorphic map p : Z → CP 1, which makes Z
into a holomorphic fiber bundle over CP 1. We shall not give the proof of that
here, but it is closely related to the proof that Z is a complex manifold. The
bundle admits a family of holomorphic sections, namely σm : ζ 7→ (m, ζ), the
standard embedding into M × S2. The sections of the map p are called twistor
lines, Pm = im(σm).

With respect to this embedding, we can define the normal bundle N of Pm ⊂
M × S2. This bundle fits into the short exact sequence

0→ TCP 1 ↪→ TZ|Pm → N → 0

Topologically, it is clear that TZ|Pm = N ⊕ TCP 1 = TmM ⊕ TCP 1 with the
normal bundle N = TmM over Pm trivial. However, holomorphically it is not
clear that the normal bundle trivializes. In fact, it is not holomorphically trivial,
but forms the bundle C2n ⊗O(1) over Pm as we shall see.

Gluing of the normal bundle

For the proof, we use the identification of the quaternion algebra H with the
algebra su(2). We represent the actions of I, J and K on TmM = N = C2n as
follows

I =

(
i · idn 0

0 −i · idn

)
J =

(
0 idn
−idn 0

)
K =

(
0 i · idn

i · idn 0

)

Then
I(ζ) =

1

1 + |ζ|2

(
i(1− |ζ|2) · idn 2ζ̄ · idn
−2ζ · idn −i(1− |ζ|2) · idn

)
with eigenvectors around ζ = 0 of the form(

v1

iζv1

)
,

(
iζ̄v2

v2

)

and thus around ζ =∞ of the form(
−iζ−1w1

w1

)
,

(
w2

−iζ̄−1w2

)
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The left eigenvectors have eigenvalue i, while the right vectors have eigenvalue
−i. Therefore, ζ is the coordinate on CP 1 that describes Z → CP 1 as a holo-
morphic bundle.

In any case, to transition from one set of (holomorphic) eigenvectors to the
other, we have to multiply by iζ · id2n. Therefore, TmM = N patches together
by a transition function iζ ·id2n on the two opens covering the sphere. Therefore,
we have the bundle C2n ⊗O(1) as the normal bundle.

Holomorphic section of
(∧2 T ∗

F

)
⊗ O(2) defining sympectic

form on the fibres
We defined the normal bundle of a section to fit into a short exact sequence. We
will do the same for the entire bundle TM = TF . Here we use the notation TF
for when we want to reverse the construction. Then we obtain the short exact
sequence

0→ TF → TZ → TCP 1 → 0

The map p∗ : TZ → TCP 1 is the push-forward of the projection map.

We now want to construct a holomorphic symplectic form on the fibres. To
interpret this form, we can look at a Hermitian metric on a Kaehler manifold.
Just like a Hermitian form splits into a real part, which forms the metric, and
an imaginary part, which forms a symplectic form. Just as we can construct the
metric from the symplectic form for a Kaehler manifold, the twistor construc-
tion allows us to determine the hyperkaehler metric through the holomorphic
symplectic form.

Given the three symplectic forms, we form the following combination

$(0) = ωJ + iωK

It can be explicitly checked that this is the unique (up to multiplication by a
constant) holomorphic form with respect to I = I(0). To define a holomorphic
symplectic form with respect to I(ζ), we use the fact that the eigenvectors with
eigenvalue i of I(ζ) have the following form(

v
iζv

)
= (1 + ζK)

(
v
0

)

This transformation implies a transformation on $(0). This will give us a form
quadratic in ζ, which can therefore be extended to a section over the sphere
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valued in its tangent bundle

ω(ζ) =
(
(ωJ + iωK) + 2ζωI − ζ2(ωJ − iωK)

) d
dζ
∈

(
2∧
T ∗F

)
⊗O(2)

One can check that the above form is holomorphic with respect to I(ζ) and note
that this is unique.

Antiholomorphic involution on Z

The last property we will need is an antiholomorphic involution. It should be
noted that I(−ζ̄−1) = −I(ζ), as can be easily calculated. On top of that, the
antipodal map on the sphere induces the change of complex structure I0 →
−I0. Therefore, the map τ : (m, ζ) 7→ (m,−ζ̄−1) defines an antiholomorphic
involution for us. It also induces the antipodal map (which we shall also denote
τ) on the sphere, since the following diagram clearly commutes

Z →τ Z

↓ ↓
CP 1 →τ CP 1

The map τ behaves in a particularly nice way with the other properties. As
is easily checked τ∗$(τ(ζ)) = $̄(ζ). On top of that, any holomorphic section
is invariant under τ , in the sense that τ(Pm) = Pm. This is equivalent to the
fact that τ does not act on the fibres, so that the structure of a fibre bundle is
retained under the action of τ . It also means that the normal bundle keeps the
form C2n ⊗O(1) under the action of τ .

Reversing the twistor construction
It turns out we now have enough information to reconstruct the hyperkaehler
metric. Let us therefore define a twistor space more abstractly as a space Z of
complex dimension 2n+ 1, such that

• There exists a map p : Z → CP 1 that makes Z into a holomorphic fibre
bundle over CP 1

• The bundle admits a family of holomorphic sections, which all have normal
bundle C2n ⊗O(1) in Z

• There exists a holomorphic form in
(∧2

T ∗F

)
⊗O(2), which defines a sym-

plectic form on each fibre

• There exists an antiholomorphic involution τ , compatible with the above,
and which induces the anti-podal map on CP 1

Somewhat surprisingly, it is not necessary to define Z as a direct productM×S2,
whereM is a complex manifold. This actually follows from the above definition.
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Smoothness of space of twistor lines (parameter space)
To study the space of twistor lines, we are first interested in understanding this
space locally. If we have a section Pm, one can think of a holomorphic vector
field pointed along the fibres as an infinitesimal deformation of Pm. This would
be a holomorphic section of the normal bundle.

Kodaira’s theorem tells us that an infinitesimal deformation can be integrated
because the obstruction H1(CP 1,O(1)) vanishes. This is closely related to the
classical deformation theory, where deformations of complex structures on a
Riemann surface Σ are classified by the quadratic differentials. Note that the
tangent bundle of our parameter space is defined by the global holomorphic sec-
tions of the normal bundle, so H0(Pm, N) = C2n ⊗H0(CP 1,O(1)) (where we
used Kunneth’s theorem). However, since the space H0(CP 1,O(1)) has com-
plex dimensions two, the parameter space has complex dimension 4n.

To reduce this complex space to a real space, we need the antiholomorphic
involution τ . The real twistor lines, i.e. the ones invariant under τ , now form
a 4n-real dimensional submanifold M . Then due to the existence of τ , we can
write the tangent bundle of the parameter space H0(Pm, N) as the complexifi-
cation of TmM , so that

TmM ⊗ C = H0(Pm, N) = H0(Pm, TF |Pm)

Constructing the metric
The metric will be constructed locally by multiplying to symplectic structures
together. For this, we first use Kunneth’s theorem to split

H0(Pm, TF |Pm) = H0(Pm, TF |Pm ⊗O(−1))⊗H0(Pm,O(1))

Now the compatibility of τ with the fibre bundle implies that this splitting
remains well-defined and invariant under the action of τ . Since $ is a global
holomorphic vector field valued in

∧2
TF |Pm over Pm, so that it is an element of

H0(Pm,
(∧2

T ∗F |Pm
)
⊗O(2)), it defines a symplectic form over H0(Pm, TF |Pm⊗

O(−1)) = C2n. The determinant defines a symplectic structure over the second
factor, H0(Pm,O(1)) = C2 as follows

〈a+ bζ, c+ dζ〉 = ad− bc

We define the metric as g = $ ⊗ 〈−,−〉. For a given X ∈ H0(Pm, TF |Pm) and
a splitting X = X1 +X2ζ, we obtain

g(X,X) = ($ ⊗ 〈−,−〉) (X1 +X2ζ,X1 +X2ζ)

= ($ ⊗ 〈−,−〉) (X1, X2ζ) + ($ ⊗ 〈−,−〉) (X2ζ,X1)

= $(X1, X2)〈1, ζ〉+$(X2, X1)〈ζ, 1〉
= 2$(X1, X2)
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This construction makes g into a symmetric complex bilinear form.

The metric restricted to real tangent vectors

The next step is to construct the real tangent vectors. We shall do this pro-
cedure by introducing quaternionic structures on H0(Pm, TF |Pm ⊗O(−1)) and
H0(Pm,O(1)) and tensoring these together to form a real structure.

On the space H0(Pm,O(1)) = H0(CP 1,O(1)) there exists a unique (up to
sign) quaternionic structure that is induced by the antiholomorphic involu-
tion τ . Given a section s : CP 1 → O(1), then this structure is defined by
j(s(ζ)) = −s̄(−ζ̄−1). We indeed have a quaterionic structure j2 = −1, precisely
because we work with the antipodal map.

Now we have to define a quaternionic structure j (we will use the same let-
ter) on H0(Pm, TF |Pm ⊗ O(−1)) in such a way that it is compatible with the
real structure defined from the involution τ . The assumption that τ induces the
anti-podal map, allows us to uniquely reconstruct j by the tensor product

τ = j ⊗ j

The real structure defined on H0(Pm, TF |Pm) then allows us to define real vec-
tors in H0(Pm, TF |Pm). A real vector has the form X = X1 − j(X1)ζ, so that
restricting our metric to these vectors, gives it the following form

g(X,X) = −2$(X1, j(X1))

This turns out to define a metric. For example, positive-definiteness follows
from the compatibility equation τ∗$(ζ) = $(−ζ̄−1).

There is actually a short-cut to get to the metric that does not require to do
these calculations. We will show this in the example at the end.

Identifying fibres with the hyperkaehler manifold
From the non-degenerate property of the metric, we see that if X = X1−j(X1)ζ
vanishes at some ζ = ζ0, so that X1 = j(X1)ζ0, then

g(ζ0)(X,X) = −2$(ζ0)(j(X1)ζ0, j(X1)) = −2ζ0$
(ζ0)(j(X1), j(X1)) = 0

Since g is positive definite, X = 0 identically. Thus, the infinitesimal deforma-
tions generated by real tangent vectors on the space of real twistor lines, do not
vanish anywhere along the twistor line. Therefore, any two different real twistor
lines intersect the fibres in different points of M everywhere along the twistor
line. In other words, any point z ∈ Z over ζ ∈ CP 1 has a unique twistor line
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going through z. Thus the set of twistor lines, M , identifies with the fibres of
Z → CP 1. So for simplicity let us identify the fibre Zζ=0 = M .

A tangent vector in TmM then identifies with an X1 ∈ H0(Pm, TF |Pm⊗O(−1)).
Actually, since TF ⊗ O(−1) = C2n is trivial over Pm and the only globally de-
fined functions on the sphere are constant, picking X1 defines the tangent vector
for any ζ ∈ Pm, not just ζ = 0.

By definition, the fibre Z0 is a complex manifold, so this identification gives
M a complex structure I. Picking any other fibre, defines a different complex
structure on M . By some simple calculations we can show that the metric de-
fined above is in fact Kaehler with respect to the complex structure I(ζ) and
the quaternionic structure j and satisfies all necessary properties to be turned
into a hyperkaehler metric.

Baby example: standard metric on R4

We consider R4 = C2 with coordinates (z, w̄) and the standard flat metric

g =
1

2
(dzdz̄ + dwdw̄)

We use the complex structures I, J and K as previously defined:

I =

(
i 0
0 −i

)
J =

(
0 1
−1 0

)
K =

(
0 i
i 0

)

We can calculate the symplectic forms and combine them into the holomorphic
symplectic form as follows

$(ζ) = −dz ∧ dw + iζ(dz ∧ dz̄ + dw ∧ dw̄) + ζ2dz̄ ∧ dw̄

We will pick the real structure to be of the form

τ(η1, η2, ζ) =

(
η̄2

ζ̄
,− η̄1

ζ̄
,−1

ζ̄

)

It can be checked that this structure is compatible with $. Our twistor space
will then have the form Z = C2 ⊗ O(1) = O(1) ⊕ O(1) → CP 1. We consider
twistor lines (a1 + a2ζ, b1 + b2ζ). The reality condition forces the real twistor
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lines to be of the form (z − w̄ζ, w + z̄ζ). This defines the twistor space of the
standard metric.

To reverse the construction, we simply need to know what the quaternionic
structure does on the space of real twistor lines. We restrict to the fibre over
ζ = 0, so that the quaternionic structure simplifies to

J(z, w) = (w̄,−z̄)

The holomorphic symplectic form takes the form

$(0) = −dz ∧ dw

over the fibre. Therefore, the metric is given by

g((z, w), (z, w)) = $(0)((z, w), J(z, w))

= $(0)((z, w), (−w̄, z̄))
= zz̄ + ww̄

and we recover the metric we started with.

Another quick trick

Note that $(ζ)∧ ...∧$(ζ) =
(
$(ζ)

)r+1
= 0, since $ is a holomorphic symplectic

form. If we expand this equation in ζ, we find

(ωJ+iωK)r+1±2ζ(ωJ+iωK)r∧ωI+...±2ζ2r+1(ωJ−iωK)r∧ωI+(ωJ−iωK)r+1 = 0

This implies both

(ωJ + iωK)r ∧ ωI = 0

(ωJ − iωK)r ∧ ωI = 0

With respect to the complex structure I on the fibre Zζ=0 , (ωJ + iωK)r is a
(r, 0)-form, while (ωJ−iωK)r is a (0, r)-form. Therefore ωI must be a (1, 1)-form,
otherwise these equations would not hold in general. From this we conclude that

ωI(I
2−,−) = −ωI(I−, I−)

We can therefore define a compatible Kaehler metric g(I−,−) = ωI(−,−). It
turns out this is actually a hyperkaehler metric and it will be precisely the metric
defined through the twistor construction. For example, for the twistor space of
the flat metric, we find

g(−,−) = −ωI(I−,−)

= − i
2

(idzdz̄ + idwdw̄)

=
1

2
(dzdz̄ + dwdw̄)
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Application to Hitchin’s moduli space
From Arpan and Florian’s talk, we know that there exists an equivalence be-
tween flat bundles with harmonic metric and Higgs bundles with harmonic met-
ric. If the self-duality equations hold

FE + [φ, φ̄] = 0

∂̄Eφ = 0

and we know that under this harmonic metric Kh, we have the equality

Kh(φ−,−) = Kh(−, φ̄−)

we can define a connection ∇ = dE +φ+ φ̄ that turns out to be flat, so ∇2 = 0.
In the context of Hitchin’s original paper, this implies that from a SO(3)-valued
Higgs bundle, we recover a PSL(2,C) = SO(3)C-valued flat connection. Since
the self-duality equations are invariant under the circle action φ → eiθφ, it
will still be true that ∇eiθ = dE + eiθφ + e−iθφ̄ defines a flat connection. In
fact, we can extend the circle bundle action of U(1) to its complexification
U(1)C = GL(1,C), and it will still be true. The parameter we use to describe
GL(1,C) is ζ ∈ CP 1 − {0,∞}. We conclude that ∇ζ = 1

ζφ+ dE + ζφ̄ defines a
flat PSL(2,C)-connection. We define Aζ = 1

ζφ+A+ ζφ̄ = 1
ζφz +Az̄ +Az + ζφ†z̄.

It should be noted that we shall also use the notation φ†z̄ = φ̄.

From Aron’s talk, we know that the space of solutions (Az̄, φz) to the self-duality
equations, defines a hyperkaehler manifold. The tangent space is denoted by
(Ȧz̄, φ̇z). We can naturally define the three complex structures

I(Ȧz̄, φ̇z) = (iȦz̄, iφ̇z)

J(Ȧz̄, φ̇z) = (iφ̇†z̄,−iȦz)
K(Ȧz̄, φ̇z) = (−φ̇†z̄, Ȧz)

There exists a natural integration pairing, which defines a metric

g̃ =

ˆ
M

Tr(δAzδAz̄ + δφzδφ
†
z̄)

Here δA is dual to Ȧ and δφ is dual to φ̇. With respect to this metric, the
space of solutions becomes a hyperkaehler manifold. As seen above, we picked
a preferred complex structure I. We will therefore consider the combination

ωJ + iωK = i

ˆ
M

Tr(δφz ∧ δAz̄ + δAz ∧ δφ†z̄) + i

ˆ
M

Tr(δφz ∧ δAz̄ − δAz ∧ δφ†z̄)

= 2i

ˆ
M

Tr(δφz ∧ δAz̄)
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Similarly, we deduce that

ωJ − iωK = −2i

ˆ
M

Tr(δφ†z̄ ∧ δAz)

ωI = i

ˆ
M

Tr(δAz̄ ∧ δAz + δφ†z̄ ∧ δφz)

We can put these symplectic forms in the combination

$(ζ) =
1

2ζ
(ωJ + iωK) + ωI −

1

2
ζ(ωJ − iωK)

= i

ˆ
M

Tr

(
1

ζ
δφz ∧ δAz̄ + (δAz ∧ δAz̄ + δφ†z̄ ∧ δφz) + ζδφ†z̄ ∧ δAz

)

This combination is slightly different from the holomorphic symplectic form in
the twistor section by a redefinition of ζ and a factor. We use this form, because
it leads to an interesting identification between the parameter ζ from the twistor
construction and the parameter used for the deformation ∇ζ , in the following
way:
ˆ
M

Tr(δAζ ∧ δAζ) =

ˆ
M

Tr

((
1

ζ
δφz + δAz + δAz̄ + ζδφ†z̄

)
∧
(

1

ζ
δφz + δAz + δAz̄ + ζδφ†z̄

))
= 2

ˆ
M

Tr

(
1

ζ
δφz ∧ δAz̄ + (δAz ∧ δAz̄ + δφ†z̄ ∧ δφz) + ζδφ†z̄ ∧ δAz

)
So we see that

$(ζ) =
i

2

ˆ
M

Tr(δAζ ∧ δAζ)

Another nice property is shown by the equality

Aζ(−φ)∗ = −1

ζ̄
φ† +A− ζ̄φ = A− 1

ζ̄
(φ)

Under the quotient by the gauge action, the above construction, follows through
and on this space the above equality allows us to define a real structure.
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