Generating series of multiple divisor sums and other interesting q-series

Henrik Bachmann - University of Hamburg

ICMAT, 23th July 2014

content of this talk

- We are interested in a family of q-series which arises in a theory which combines multiple zeta values, partitions and modular forms.
- We will see that the space spanned by these q-series form an algebra where the product can be written in two different ways which then yields linear relations.
- For example:

$$
\sum_{n_{1}>n_{2}>0} \frac{q^{n_{1}} n_{2} q^{n_{2}}}{\left(1-q^{n_{1}}\right)\left(1-q^{n_{2}}\right)}=\frac{1}{2} \sum_{n>0} \frac{n^{2} q^{n}}{1-q^{n}}+\frac{1}{2} \sum_{n>0} \frac{n q^{n}}{1-q^{n}}-\sum_{n>0} \frac{n q^{n}}{\left(1-q^{n}\right)^{2}}
$$

- Linear relations between these series induce linear relations (conjecturally all) between multiple zeta values.

bi-brackets

Definition

For $r_{1}, \ldots, r_{l} \geq 0, s_{1}, \ldots, s_{l}>0$ and $c:=\left(r_{1}!\left(s_{1}-1\right)!\ldots r_{l}!\left(s_{l}-1\right)!\right)^{-1}$ we define the following q-series

$$
\left[\begin{array}{l}
s_{1}, \ldots, s_{l} \\
r_{1}, \ldots, r_{l}
\end{array}\right]:=c \cdot \sum_{\substack{u_{1}>\cdots>u_{l}>0 \\
v_{1}, \ldots, v_{l}>0}} u_{1}^{r_{1}} v_{1}^{s_{1}-1} \ldots u_{l}^{r_{l}} v_{l}^{s_{l}-1} q^{u_{1} v_{1}+\cdots+u_{l} v_{l}}
$$

which we call bi-brackets of weight $s_{1}+\cdots+s_{l}+r_{1}+\cdots+r_{l}$, upper weight $s_{1}+\cdots+s_{l}$, lower weight $r_{1}+\cdots+r_{l}$ and length l.

By $\mathcal{B D}$ we denote the Q -vector space spanned by all bi-brackets and 1 .

$$
\begin{aligned}
{\left[\begin{array}{l}
2 \\
0
\end{array}\right] } & =\sum_{n>0} \sigma_{1}(n) q^{n}=q+3 q^{2}+4 q^{3}+7 q^{4}+6 q^{5}+12 q^{6}+\ldots \\
{\left[\begin{array}{l}
1,1,1 \\
1,2,3
\end{array}\right] } & =\frac{1}{12}\left(12 q^{6}+28 q^{7}+96 q^{8}+481 q^{9}+747 q^{10}+2042 q^{11}+\ldots\right)
\end{aligned}
$$

bi-brackets

The bi-brackets can also be written as

$$
\left[\begin{array}{l}
s_{1}, \ldots, s_{l} \\
r_{1}, \ldots, r_{l}
\end{array}\right]=c \cdot \sum_{n_{1}>\cdots>n_{l}>0} \frac{n_{1}^{r_{1}} P_{s_{1}-1}\left(q^{n_{1}}\right) \ldots n_{l}^{r_{l}} P_{s_{l}-1}\left(q^{n_{l}}\right)}{\left(1-q^{n_{1}}\right)^{s_{1}} \ldots\left(1-q^{n_{l}}\right)^{s_{l}}}
$$

where the $P_{k-1}(t)$ are the Eulerian polynomials defined by

$$
\frac{P_{k-1}(t)}{(1-t)^{k}}=\operatorname{Li}_{1-k}(t)=\sum_{d>0} d^{k-1} t^{d}
$$

Examples:

$$
\begin{gathered}
P_{0}(t)=P_{1}(t)=t, \quad P_{2}(t)=t^{2}+t, \quad P_{3}(t)=t^{3}+4 t^{2}+t \\
{\left[\begin{array}{c}
1,1 \\
0,1
\end{array}\right]=\sum_{n_{1}>n_{2}>0} \frac{q^{n_{1}} n_{2} q^{n_{2}}}{\left(1-q^{n_{1}}\right)\left(1-q^{n_{2}}\right)},} \\
{\left[\begin{array}{c}
4,2,1 \\
2,0,5
\end{array}\right]=\frac{1}{3!\cdot 2!\cdot 5!} \sum_{n_{1}>n_{2}>n_{3}>0} \frac{n_{1}^{2}\left(q^{3 n_{1}}+4 q^{2 n_{1}}+q^{n_{1}}\right) \cdot q^{n_{2}} \cdot n_{3}^{5} q^{n_{3}}}{\left(1-q^{n_{1}}\right)^{4} \cdot\left(1-q^{n_{1}}\right)^{2} \cdot\left(1-q^{n_{1}}\right)^{1}} .}
\end{gathered}
$$

bi-brackets - filtrations

Filtrations

On $\mathcal{B D}$ we have the increasing filtrations $\mathrm{Fil}_{\bullet}^{\mathrm{W}}$ given by the upper weight, $\mathrm{Fil}{ }_{\bullet}^{\mathrm{D}}$ given by the lower weight and $\mathrm{Fil}_{\bullet}^{\mathrm{L}}$ given by the length, i.e., we have for $A \subseteq \mathcal{B D}$

$$
\begin{aligned}
\operatorname{Fil}_{k}^{\mathrm{W}}(A) & :=\left\langle\left.\left[\begin{array}{l}
s_{1}, \ldots, s_{l} \\
r_{1}, \ldots, r_{l}
\end{array}\right] \in A \right\rvert\, 0 \leq l \leq k, s_{1}+\cdots+s_{l} \leq k\right\rangle_{\mathrm{Q}} \\
\operatorname{Fil}_{k}^{\mathrm{D}}(A) & :=\left\langle\left.\left[\begin{array}{l}
s_{1}, \ldots, s_{l} \\
r_{1}, \ldots, r_{l}
\end{array}\right] \in A \right\rvert\, 0 \leq l \leq k, r_{1}+\cdots+r_{l} \leq k\right\rangle_{\mathrm{Q}} \\
\operatorname{Fil}_{l}^{\mathrm{L}}(A) & :=\left\langle\left.\left[\begin{array}{l}
s_{1}, \ldots, s_{l} \\
r_{1}, \ldots, r_{l}
\end{array}\right] \in A \right\rvert\, r \leq l\right\rangle_{\mathrm{Q}}
\end{aligned}
$$

If we consider the length and weight filtration at the same time we use the short notation $\mathrm{Fil}_{k, l}^{\mathrm{W}, \mathrm{L}}:=\mathrm{Fil}_{k}^{\mathrm{W}} \mathrm{Fil}_{l}^{\mathrm{L}}$ and similar for the other filtrations.

multiple divisor sums and modular forms

For $r_{1}=\cdots=r_{l}=0$ we also write $\left[\begin{array}{c}s_{1}, \ldots, s_{l} \\ 0, \ldots, 0\end{array}\right]=\left[s_{1}, \ldots, s_{l}\right]=: \frac{1}{\left(s_{1}-1\right)!\ldots\left(s_{l}-1\right)!} \sum_{n>0} \sigma_{s_{1}-1, \ldots, s_{l}-1}(n) q^{n}$. and denote the space spanned by all $\left[s_{1}, \ldots, s_{l}\right]$ and 1 by $\mathcal{M D}=\operatorname{Fil}_{0}^{\mathrm{D}}(\mathcal{B D})$.

We call the coefficients $\sigma_{s_{1}-1, \ldots, s_{l}-1}(n)$ multiple divisor sums and their generating series $\left[s_{1}, \ldots, s_{l}\right]$ will be called brackets.

These brackets have a direct connection to multiple zeta values and to the Fourier expansion of multiple Eisenstein series.

multiple divisor sums and modular forms

In the case $l=1$ we get the classical divisor sums $\sigma_{k-1}(n)=\sum_{d \mid n} d^{k-1}$ and

$$
[k]=\frac{1}{(k-1)!} \sum_{n>0} \sigma_{k-1}(n) q^{n}
$$

These function appear in the Fourier expansion of classical Eisenstein series which are modular forms for $S L_{2}(\mathbb{Z})$, for example

$$
G_{2}=-\frac{1}{24}+[2], \quad G_{4}=\frac{1}{1440}+[4], \quad G_{6}=-\frac{1}{60480}+[6]
$$

We will see that we have an inclusion of algebras

$$
M_{\mathbb{Q}}\left(S L_{2}(\mathbb{Z})\right) \subset \widetilde{M}_{\mathbb{Q}}\left(S L_{2}(\mathbb{Z})\right) \subset \mathcal{M D} \subset \mathcal{B D}
$$

where $M_{\mathbb{Q}}\left(S L_{2}(\mathbb{Z})\right)=\mathbb{Q}\left[G_{4}, G_{6}\right]$ and $\widetilde{M}_{\mathbb{Q}}\left(S L_{2}(\mathbb{Z})\right)=\mathbb{Q}\left[G_{2}, G_{4}, G_{6}\right]$ are the algebras of modular forms and quasi-modular forms.

bi-brackets - differential

It is a well-known fact that the space of quasi-modular forms is closed under the operator $\mathrm{d}=q \frac{d}{d q}$. This is also true for the space $\mathcal{B D}$.
Since d $\sum_{n>0} a_{n} q^{n}=\sum_{n>0} n a_{n} q^{n}$ one obtains:

Proposition

The operator d on $\left[\begin{array}{l}s_{1}, \ldots, s_{l} \\ r_{1}, \ldots, r_{l}\end{array}\right]$ is given by

$$
\mathrm{d}\left[\begin{array}{l}
s_{1}, \ldots, s_{l} \\
r_{1}, \ldots, r_{l}
\end{array}\right]=\sum_{j=1}^{l}\left(s_{j}\left(r_{j}+1\right)\left[\begin{array}{l}
s_{1}, \ldots, s_{j-1}, s_{j}+1, s_{j+1}, \ldots, s_{l} \\
r_{1}, \ldots, r_{j-1}, r_{j}+1, r_{j+1}, \ldots, r_{l}
\end{array}\right]\right)
$$

Example:

$$
\mathrm{d}[k]=k\left[\begin{array}{c}
k+1 \\
1
\end{array}\right], \quad \mathrm{d}\left[s_{1}, s_{2}\right]=s_{1}\left[\begin{array}{c}
s_{1}+1, s_{2} \\
1,0
\end{array}\right]+s_{2}\left[\begin{array}{c}
s_{1}, s_{2}+1 \\
0,1
\end{array}\right]
$$

Remark: It is more difficult to show that $\mathcal{M D}$ is also closed under d .

bi-brackets - generating series

Many statements on bi-brackets are obtained by using their generating function.

Definition

For the generating function of the bi-brackets we write

$$
\begin{aligned}
& \left|\begin{array}{c}
X_{1}, \ldots, X_{l} \\
Y_{1}, \ldots, Y_{l}
\end{array}\right|:= \\
& \sum_{\substack{s_{1}, \ldots, s_{l}>0 \\
r_{1}, \ldots, r_{l}>0}}\left[\begin{array}{c}
s_{1}, \ldots, s_{l} \\
r_{1}-1, \ldots, r_{l}-1
\end{array}\right] X_{1}^{s_{1}-1} \ldots X_{l}^{s_{l}-1} \cdot Y_{1}^{r_{1}-1} \ldots Y_{l}^{r_{l}-1}
\end{aligned}
$$

bi-brackets - partition relation

Theorem (partition relation)

For all $l \geq 1$ we have

$$
\left|\begin{array}{c}
X_{1}, \ldots, X_{l} \\
Y_{1}, \ldots, Y_{l}
\end{array}\right|=\left|\begin{array}{c}
Y_{1}+\cdots+Y_{l}, \ldots, Y_{1}+Y_{2}, Y_{1} \\
X_{l}, X_{l-1}-X_{l}, \ldots, X_{1}-X_{2}
\end{array}\right|
$$

This theorem gives linear relations between bi-brackts in a fixed length, for example

$$
\begin{aligned}
{\left[\begin{array}{l}
s \\
r
\end{array}\right] } & =\left[\begin{array}{l}
r+1 \\
s-1
\end{array}\right] \quad \text { for all } r, s \in \mathbb{N}, \\
{\left[\begin{array}{l}
3,3 \\
0,0
\end{array}\right] } & =6\left[\begin{array}{l}
1,1 \\
0,4
\end{array}\right]-3\left[\begin{array}{l}
1,1 \\
1,3
\end{array}\right]+\left[\begin{array}{l}
1,1 \\
2,2
\end{array}\right] \\
{\left[\begin{array}{l}
2,2 \\
1,1
\end{array}\right] } & =-2\left[\begin{array}{l}
2,2 \\
0,2
\end{array}\right]+\left[\begin{array}{l}
2,2 \\
1,1
\end{array}\right]-4\left[\begin{array}{l}
3,1 \\
0,2
\end{array}\right]+2\left[\begin{array}{l}
3,1 \\
1,1
\end{array}\right] .
\end{aligned}
$$

Idea of proof: Interpret the sum as a sum over partitions and then use the conjugation of partitions. For this we will now introduce some notation.

bi-brackets - partition relation - idea of proof

By a partititon of a natural number n with l different parts we denote a representation of n as a sum of l different numbers, which are allowed to appear with some multiplicities.

For example

$$
\begin{aligned}
15 & =4+4+3+2+1+1 \\
& =4 \cdot 2+3 \cdot 1+2 \cdot 1+1 \cdot 2
\end{aligned}
$$

is a partition of 15 with the 4 different parts $4,3,2,1$ and multiplicities $2,1,1,2$.

We identify a partition of n with l different parts with a tupel $\binom{u}{v}$, with $u, v \in \mathbb{N}^{l}$.

- The u_{j} are the l different summands.
- The v_{j} count their appearence in the sum.

The above partition is therefore given by $\binom{u}{v}=\binom{4,3,2,1}{2,1,1,2}$.

bi-brackets - partition relation - idea of proof

We denote the set of all partition of n with l different parts by $P_{l}(n)$, i.e. we set

$$
P_{l}(n):=\left\{\left.\binom{u}{v} \in \mathbb{N}^{l} \times \mathbb{N}^{l} \right\rvert\, n=u_{1} v_{1}+\cdots+u_{l} v_{l}, u_{1}>\cdots>u_{l}>0\right\}
$$

With this the bi-brackets can be written as

$$
\begin{aligned}
& {\left[\begin{array}{l}
s_{1}, \ldots, s_{l} \\
r_{1}, \ldots, r_{l}
\end{array}\right]:=c \cdot \sum_{\substack{u_{1}>\cdots>u_{l}>0 \\
v_{1}, \ldots, v_{l}>0}} u_{1}^{r_{1}} v_{1}^{s_{1}-1} \ldots u_{l}^{r_{l}} v_{l}^{s_{l}-1} q^{u_{1} v_{1}+\cdots+u_{l} v_{l}}} \\
& =c \cdot \sum_{n>0}\left(\sum_{\substack{u \\
u \\
v}} \in P_{l}(n)\right. \\
& \\
& \left.u_{1}^{r_{1}} v_{1}^{s_{1}-1} \ldots u_{l}^{r_{l}} v_{l}^{s_{l}-1}\right) q^{n}
\end{aligned}
$$

bi-brackets - partition relation - idea of proof

On the set $P_{l}(n)$ we have an involution ρ given by the conjugation of partitions.

To see this one represents an element in $P_{l}(n)$ by a Young tableau.
In $P_{4}(15)$ we have for example

$$
\binom{4,3,2,1}{2,1,1,2}=\begin{array}{|l|l|}
\hline & \\
& \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{array}
$$

The conjugation ρ of this partition is given by

$$
\binom{4,3,2,1}{2,1,1,2}=\square \quad \frac{\rho}{\square} \quad \square \square \square=\binom{6,4,3,2}{1,1,1,1}
$$

bi-brackets - partition relation - idea of proof

We now can apply the conjugation ρ to the set $P_{l}(n)$ in the summation as in the following example

$$
\begin{aligned}
& {\left[\begin{array}{l}
2,2 \\
0,0
\end{array}\right]=\sum_{n>0}\left(\sum_{\binom{u}{v} \in P_{2}(n)} v_{1} \cdot v_{2}\right) q^{n}=\sum_{n>0}\left(\sum_{\substack{\left.\left(\begin{array}{l}
u^{\prime} \\
v^{\prime}
\end{array}\right)=\rho\left(\begin{array}{l}
u \\
v
\end{array}\right)\right) \in P_{2}(n)}} v_{1}^{\prime} \cdot v_{2}^{\prime}\right) q^{n}} \\
& =\sum_{n>0}\left(\sum_{\substack{\left(u^{\prime}\right)=\rho\left(\left(\begin{array}{l}
u \\
v^{\prime}
\end{array}\right)\right) \in P_{2}(n)}} u_{2} \cdot\left(u_{1}-u_{2}\right)\right) q^{n} \\
& =\sum_{n>0}\left(\sum_{\substack{u \\
v \\
v}} \in P_{2}(n)=u_{2} \cdot u_{1}\right) q_{n>0}\left(\sum_{\binom{u}{v} \in P_{2}(n)} u_{2}^{2}\right) q^{n} \\
& =\left[\begin{array}{l}
1,1 \\
1,1
\end{array}\right]-2\left[\begin{array}{l}
1,1 \\
0,2
\end{array}\right] \text {. }
\end{aligned}
$$

bi-brackets - partition relation - idea of proof

In general the conjugation ρ on the partitions $P_{l}(n)$ is explicitly given by

$$
\rho:\binom{u_{1}, \ldots, u_{l}}{v_{1}, \ldots, v_{l}} \longmapsto\binom{v_{1}+\cdots+v_{l}, \ldots, v_{1}+v_{2}, v_{1}}{u_{l}, u_{l-1}-u_{l}, \ldots, u_{1}-u_{2}} .
$$

The partition relation of bi-brackets follows by applying the conjugation ρ to the $P_{l}(n)$ in the summation of the generating function.

Now we have seen the main idea used in the proof of the partition relation

$$
\left|\begin{array}{c}
X_{1}, \ldots, X_{l} \\
Y_{1}, \ldots, Y_{l}
\end{array}\right|=\left|\begin{array}{c}
Y_{1}+\cdots+Y_{l}, \ldots, Y_{1}+Y_{2}, Y_{1} \\
X_{l}, X_{l-1}-X_{l}, \ldots, X_{1}-X_{2}
\end{array}\right|
$$

bi-brackets - algebra structure

Lemma

Set $L_{n}(X)=\frac{e^{X} q^{n}}{1-e^{X} q^{n}}$ then we have the following two statements

- The generating function of the bi-brackets can be written as

$$
\left|\begin{array}{c}
X_{1}, \ldots, X_{l} \\
Y_{1}, \ldots, Y_{l}
\end{array}\right|=\sum_{u_{1}>\cdots>u_{l}>0} \prod_{j=1}^{l} e^{u_{j} Y_{j}} L_{u_{j}}\left(X_{j}\right)
$$

- The product of the function L_{n} is given by

$$
\begin{aligned}
& L_{n}(X) \cdot L_{n}(Y)= \\
& \qquad \sum_{k>0} \frac{B_{k}}{k!}(X-Y)^{k-1}\left(L_{n}(X)+(-1)^{k-1} L_{n}(Y)\right)+\frac{L_{n}(X)-L_{n}(Y)}{X-Y}
\end{aligned}
$$

Proof: For the second statement one shows by direct calculation that

$$
L_{n}(X) \cdot L_{n}(Y)=\frac{1}{e^{X-Y}-1} L_{n}(X)+\frac{1}{e^{Y-X}-1} L_{n}(Y)
$$

and then uses the gen. series $\frac{X}{e^{X}-1}=\sum_{n \geq 0} \frac{B_{n}}{n!} X^{n}$ of the Bernoulli numbers.

bi-brackets - algebra structure - stuffle product

Proposition (stuffle product - special case of the algebra structure)

The product of the generating series in length one can be written as:

$$
\begin{aligned}
\left|\begin{array}{c}
X_{1} \\
Y_{1}
\end{array}\right| \cdot\left|\begin{array}{c}
X_{2} \\
Y_{2}
\end{array}\right| & \stackrel{s t}{=}\left|\begin{array}{c}
X_{1}, X_{2} \\
Y_{1}, Y_{2}
\end{array}\right|+\left|\begin{array}{c}
X_{2}, X_{1} \\
Y_{2}, Y_{1}
\end{array}\right|+\frac{1}{X_{1}-X_{2}}\left(\left|\begin{array}{c}
X_{1} \\
Y_{1}+Y_{2}
\end{array}\right|-\left|\begin{array}{c}
X_{2} \\
Y_{1}+Y_{2}
\end{array}\right|\right) \\
& +\sum_{k=1}^{\infty} \frac{B_{k}}{k!}\left(X_{1}-X_{2}\right)^{k-1}\left(\left|\begin{array}{c}
X_{1} \\
Y_{1}+Y_{2}
\end{array}\right|+(-1)^{k-1}\left|\begin{array}{c}
X_{2} \\
Y_{1}+Y_{2}
\end{array}\right|\right)
\end{aligned}
$$

Proof sketch: Do the following calculation and then use the second statement of the lemma to rewrite $L_{n}\left(X_{1}\right) L_{n}\left(X_{2}\right)$:

$$
\begin{aligned}
&\left|\begin{array}{c}
X_{1} \\
Y_{1}
\end{array}\right| \cdot\left|\begin{array}{c}
X_{2} \\
Y_{2}
\end{array}\right|=\sum_{n_{1}>0} e^{n_{1} Y_{1}} L_{n}\left(X_{1}\right) \cdot \sum_{n_{2}>0} e^{n_{2} Y_{2}} L_{n}\left(X_{2}\right) \\
&=\sum_{n_{1}>n_{2}>0} \cdots+\sum_{n_{2}>n_{1}>0} \cdots+\sum_{n_{1}=n_{2}>0} \cdots \\
&=\left|\begin{array}{c}
X_{1}, X_{2} \\
Y_{1}, Y_{2}
\end{array}\right|+\left|\begin{array}{c}
X_{2}, X_{1} \\
Y_{2}, Y_{1}
\end{array}\right|+\sum_{n>0} e^{n\left(Y_{1}+Y_{2}\right)} L_{n}\left(X_{1}\right) L_{n}\left(X_{2}\right)
\end{aligned}
$$

bi-brackets - algebra structure

Theorem

The space $\mathcal{B D}$ is a filtered \mathbb{Q}-algebra with a derivation given by d and

$$
\mathrm{Fil}_{k_{1}, d_{1}, l_{1}}^{\mathrm{W}, \mathrm{D}, \mathrm{~L}}(\mathcal{B D}) \cdot \mathrm{Fil}_{k_{2}, d_{2}, l_{2}}^{\mathrm{W}, \mathrm{D}, \mathrm{~L}}(\mathcal{B D}) \subset \operatorname{Fil}_{k_{1}+k_{2}, d_{1}+d_{2}, l_{1}+l_{2}}^{\mathrm{W}, \mathrm{D}, \mathrm{~L}}(\mathcal{B D})
$$

As in the case of multiple zeta values we also have two different ways, called - in analogy to multiple zeta values - stuffle $(\stackrel{s t}{=})$ and shuffle $(\stackrel{s h}{=})$, of writing the product of two bi-brackets.

Examples:

$$
\begin{gathered}
{[1] \cdot[1]=2[1,1]+[2]-[1]} \\
{[1] \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right] \stackrel{s t}{=}\left[\begin{array}{l}
1,1 \\
0,1
\end{array}\right]+\left[\begin{array}{l}
1,1 \\
1,0
\end{array}\right]-\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{l}
2 \\
1
\end{array}\right]} \\
{[1] \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right] \stackrel{s h}{=}\left[\begin{array}{l}
1,1 \\
1,0
\end{array}\right]-\frac{1}{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
2
\end{array}\right]}
\end{gathered}
$$

bi-brackets - algebra structure - shuffle product

Using the stuffle product and the partition relation we obtain a second representation for the product of the generating function which we call shuffle product:

Corollary (shuffie product)

The product of the generating series in length one can be written as:

$$
\begin{aligned}
\left|\begin{array}{c}
X_{1} \\
Y_{1}
\end{array}\right| \cdot\left|\begin{array}{c}
X_{2} \\
Y_{2}
\end{array}\right| & =\left|\begin{array}{c}
X_{1}+X_{2}, X_{1} \\
Y_{2}, Y_{1}-Y_{2}
\end{array}\right|+\left|\begin{array}{c}
X_{1}+X_{2}, X_{2} \\
Y_{1}, Y_{2}-Y_{1}
\end{array}\right| \\
& +\frac{1}{Y_{1}-Y_{2}}\left(\left|\begin{array}{c}
X_{1}+X_{2} \\
Y_{1}
\end{array}\right|-\left|\begin{array}{c}
X_{1}+X_{2} \\
Y_{2}
\end{array}\right|\right) \\
& +\sum_{k=1}^{\infty} \frac{B_{k}}{k!}\left(Y_{1}-Y_{2}\right)^{k-1}\left(\left|\begin{array}{c}
X_{1}+X_{2} \\
Y_{1}
\end{array}\right|+(-1)^{k-1}\left|\begin{array}{c}
X_{1}+X_{2} \\
Y_{2}
\end{array}\right|\right) .
\end{aligned}
$$

bi-brackets - algebra structure - shuffle product

Sketch of the proof: The partition relation in length one and two (P) and the stuffle product (st) states:

$$
\left|\begin{array}{c}
X_{1} \\
Y_{1}
\end{array}\right| \stackrel{P}{=}\left|\begin{array}{c}
Y_{1} \\
X_{1}
\end{array}\right|, \quad\left|\begin{array}{c}
X_{1}, X_{2} \\
Y_{1}, Y_{2}
\end{array}\right| \stackrel{P}{=}\left|\begin{array}{c}
Y_{1}+Y_{2}, Y_{1} \\
X_{2}, X_{1}-X_{2}
\end{array}\right|, \quad\left|\begin{array}{c}
X_{1} \\
Y_{1}
\end{array}\right| \cdot\left|\begin{array}{c}
X_{2} \\
Y_{2}
\end{array}\right| \stackrel{s t}{=}\left|\begin{array}{c}
X_{1}, X_{2} \\
Y_{1}, Y_{2}
\end{array}\right|+\ldots
$$

and therefore we get

$$
\left|\begin{array}{c}
X_{1} \\
Y_{1}
\end{array}\right| \cdot\left|\begin{array}{c}
X_{2} \\
Y_{2}
\end{array}\right| \stackrel{P}{=}\left|\begin{array}{l}
Y_{1} \\
X_{1}
\end{array}\right| \cdot\left|\begin{array}{c}
Y_{2} \\
X_{2}
\end{array}\right| \stackrel{s t}{=}\left|\begin{array}{c}
Y_{1}, Y_{2} \\
X_{1}, X_{2}
\end{array}\right|+\ldots \stackrel{P}{=}\left|\begin{array}{c}
X_{1}+X_{2}, X_{1} \\
Y_{2}, Y_{1}-Y_{2}
\end{array}\right|+\ldots
$$

bi-brackets - stuffle product

Comparing the coefficients in the stuffle product of the generating function we obtain:

Proposition (explicit stuffle product)

For $s_{1}, s_{2}>0$ and $r_{1}, r_{2} \geq 0$ we have

$$
\begin{aligned}
{\left[\begin{array}{l}
s_{1} \\
r_{1}
\end{array}\right] \cdot\left[\begin{array}{l}
s_{2} \\
r_{2}
\end{array}\right] } & \stackrel{s t}{=}\left[\begin{array}{l}
s_{1}, s_{2} \\
r_{1}, r_{2}
\end{array}\right]+\left[\begin{array}{c}
s_{2}, s_{1} \\
r_{2}, r_{1}
\end{array}\right]+\binom{r_{1}+r_{2}}{r_{1}}\left[\begin{array}{l}
s_{1}+s_{2} \\
r_{1}+r_{2}
\end{array}\right] \\
& +\binom{r_{1}+r_{2}}{r_{1}} \sum_{j=1}^{s_{1}} \frac{(-1)^{s_{2}-1} B_{s_{1}+s_{2}-j}}{\left(s_{1}+s_{2}-j\right)!}\binom{s_{1}+s_{2}-j-1}{s_{1}-j}\left[\begin{array}{c}
j \\
r_{1}+r_{2}
\end{array}\right] \\
& +\binom{r_{1}+r_{2}}{r_{1}} \sum_{j=1}^{s_{2}} \frac{(-1)^{s_{1}-1} B_{s_{1}+s_{2}-j}}{\left(s_{1}+s_{2}-j\right)!}\binom{s_{1}+s_{2}-j-1}{s_{2}-j}\left[\begin{array}{c}
j \\
r_{1}+r_{2}
\end{array}\right]
\end{aligned}
$$

Notice: If $r_{1}=r_{2}=0$, i.e. when the two brackets are elements in $\mathcal{M D}$, all elements on the right hand side are also elements in $\mathcal{M D}$.

bi-brackets - shuffle product

Proposition (explicit shuffle product)

For $s_{1}, s_{2}>0$ and $r_{1}, r_{2} \geq 0$ we have

$$
\begin{aligned}
{\left[\begin{array}{c}
s_{1} \\
r_{1}
\end{array}\right] \cdot\left[\begin{array}{l}
s_{2} \\
r_{2}
\end{array}\right] } & \stackrel{s h}{=} \sum_{\substack{1 \leq j \leq s_{1} \\
0 \leq k \leq r_{2}}}\binom{s_{1}+s_{2}-j-1}{s_{1}-j}\binom{r_{1}+r_{2}-k}{r_{1}}(-1)^{r_{2}-k}\left[\begin{array}{c}
s_{1}+s_{2}-j, j \\
k, r_{1}+r_{2}-k
\end{array}\right] \\
& +\sum_{\substack{1 \leq j \leq s_{2} \\
0 \leq k \leq r_{1}}}\binom{s_{1}+s_{2}-j-1}{s_{1}-1}\binom{r_{1}+r_{2}-k}{r_{1}-k}(-1)^{r_{1}-k}\left[\begin{array}{c}
s_{1}+s_{2}-j, j \\
k, r_{1}+r_{2}-k
\end{array}\right] \\
& +\binom{s_{1}+s_{2}-2}{s_{1}-1}\left[\begin{array}{c}
s_{1}+s_{2}-1 \\
r_{1}+r_{2}+1
\end{array}\right] \\
& +\binom{s_{1}+s_{2}-2}{s_{1}-1} \sum_{j=0}^{r_{1}} \frac{(-1)^{r_{2}} B_{r_{1}+r_{2}-j+1}}{\left(r_{1}+r_{2}-j+1\right)!}\binom{r_{1}+r_{2}-j}{r_{1}-j}\left[\begin{array}{c}
s_{1}+s_{2}-1 \\
j
\end{array}\right] \\
& +\binom{s_{1}+s_{2}-2}{s_{1}-1} \sum_{j=0}^{r_{2}} \frac{(-1)^{r_{1}} B_{r_{1}+r_{2}-j+1}}{\left(r_{1}+r_{2}-j+1\right)!}\binom{r_{1}+r_{2}-j}{r_{2}-j}\left[\begin{array}{c}
s_{1}+s_{2}-1 \\
j
\end{array}\right]
\end{aligned}
$$

bi-brackets - stuffle \& shuffle product

Using the shuffle and stuffle product we obtain linear relations in $\mathcal{B D}$ which we call double shuffle relations.

Example:

$$
\begin{aligned}
& {\left[\begin{array}{l}
1 \\
3
\end{array}\right] \cdot\left[\begin{array}{l}
2 \\
4
\end{array}\right] \stackrel{s t}{=}\left[\begin{array}{l}
1,2 \\
3,4
\end{array}\right]+\left[\begin{array}{l}
2,1 \\
4,3
\end{array}\right]-\frac{35}{2}\left[\begin{array}{l}
2 \\
7
\end{array}\right]+35\left[\begin{array}{l}
3 \\
7
\end{array}\right]} \\
& {\left[\begin{array}{l}
1 \\
3
\end{array}\right] \cdot\left[\begin{array}{l}
2 \\
4
\end{array}\right] \stackrel{s h}{=}-35\left[\begin{array}{l}
1,2 \\
0,7
\end{array}\right]+15\left[\begin{array}{l}
1,2 \\
1,6
\end{array}\right]-5\left[\begin{array}{l}
1,2 \\
2,5
\end{array}\right]+\left[\begin{array}{l}
1,2 \\
3,4
\end{array}\right]-5\left[\begin{array}{l}
2,1 \\
1,6
\end{array}\right]} \\
& \quad+5\left[\begin{array}{l}
2,1 \\
2,5
\end{array}\right]-3\left[\begin{array}{l}
2,1 \\
3,4
\end{array}\right]+\left[\begin{array}{l}
2,1 \\
4,3
\end{array}\right]-\frac{1}{6048}\left[\begin{array}{l}
2 \\
2
\end{array}\right]+\frac{1}{720}\left[\begin{array}{l}
2 \\
4
\end{array}\right]+\left[\begin{array}{l}
2 \\
8
\end{array}\right]
\end{aligned}
$$

bi-brackets - conjectures

The partition relation and the two ways of writing the product give a large family of linear relations in $\mathcal{B D}$ and we have the following conjecture:

Conjecture

- All linear relations between bi-brackets come from the partition relation and the double shuffle relations.
- Every bi-bracket can be written as a linear combination of brackets, i.e. the algebra $\mathcal{B D}$ is a subalgebra of $\mathcal{M D}$ and in particular it is

$$
\mathrm{Fil}_{k, d, l}^{\mathrm{W}, \mathrm{D}, \mathrm{~L}}(\mathcal{B D}) \subset \mathrm{Fil}_{k+d, l+d}^{\mathrm{W}, \mathrm{~L}}(\mathcal{M D})
$$

The second part of the conjecture is interesting, because the elements in $\mathcal{M D}$ have a connection to multiple zeta values.

multiple zeta values

Definition

For natural numbers $s_{1} \geq 2, s_{2}, \ldots, s_{l} \geq 1$ the multiple zeta value (MZV) of weight $s_{1}+\ldots+s_{l}$ and length l is defined by

$$
\zeta\left(s_{1}, \ldots, s_{l}\right)=\sum_{n_{1}>\ldots>n_{l}>0} \frac{1}{n_{1}^{s_{1}} \ldots n_{l}^{s_{l}}}
$$

- The product of two MZV can be expressed as a linear combination of MZV with the same weight (stuffle product). e.g:

$$
\zeta(r) \cdot \zeta(s)=\zeta(r, s)+\zeta(s, r)+\zeta(r+s)
$$

- MZV can be expressed as iterated integrals. This gives another way (shuffle product) to express the product of two MZV as a linear combination of MZV.
- These two products give a number of \mathbb{Q}-relations (extended double shuffle relations) between MZV. Conjecturally these are all relations between MZV.

multiple zeta values - double shuffle relations

Example:

$$
\begin{aligned}
\zeta(2,3)+3 \zeta(3,2) & +6 \zeta(4,1) \stackrel{\text { shuffle }}{=} \zeta(2) \cdot \zeta(3) \stackrel{\text { stuffle }}{=} \zeta(2,3)+\zeta(3,2)+\zeta(5) . \\
& \Longrightarrow 2 \zeta(3,2)+6 \zeta(4,1) \stackrel{\text { double shuffle }}{=} \zeta(5)
\end{aligned}
$$

Compare this to the shuffle and stuffle product of bi-brackets:

$$
[2,3]+3[3,2]+6[4,1]-3[4]+3\left[\begin{array}{l}
4 \\
1
\end{array}\right] \stackrel{s h}{=}[2] \cdot[3] \stackrel{s t}{=}[2,3]+[3,2]+[5]-\frac{1}{12}[3]
$$

bi-brackets - connections to mzv

Denote the space of all admissible brackets by

$$
\mathrm{q} \mathcal{M Z}:=\left\langle\left[s_{1}, \ldots, s_{l}\right] \in \mathcal{M D} \mid s_{1}>1\right\rangle_{\mathbb{Q}} .
$$

It has a filtration given by the weight $k=s_{1}+\cdots+s_{l}$.

Proposition

For $\left[s_{1}, \ldots, s_{l}\right] \in \operatorname{Fil}_{k}^{\mathrm{W}}(\mathrm{q} \mathcal{M} \mathcal{Z})$ define the map Z_{k} by

$$
Z_{k}\left(\left[s_{1}, \ldots, s_{l}\right]\right)=\lim _{q \rightarrow 1}(1-q)^{k}\left[s_{1}, \ldots, s_{l}\right]
$$

then it is

$$
Z_{k}\left(\left[s_{1}, \ldots, s_{l}\right]\right)=\left\{\begin{array}{cl}
\zeta\left(s_{1}, \ldots, s_{l}\right), & s_{1}+\cdots+s_{l}=k \\
0, & s_{1}+\cdots+s_{l}<k
\end{array}\right.
$$

The map Z_{k} is linear on $\operatorname{Fil}_{k}^{\mathrm{W}}(\mathrm{q} \mathcal{M} \mathcal{Z})$, i.e. relations in $\mathrm{Fil}_{k}^{\mathrm{W}}(\mathrm{q} \mathcal{M} \mathcal{Z})$ give rise to relations between MZV.

Example:

$$
[4]=2[2,2]-2[3,1]+[3]-\frac{1}{3}[2] \quad \xlongequal{Z_{4}} \quad \zeta(4)=2 \zeta(2,2)-2 \zeta(3,1) .
$$

bi-brackets - connections to mzv

All relations between MZV are in the kernel of Z_{k} and therefore we are interested in the elements of it.

Theorem

For the kernel of Z_{k} we have

- For $s_{1}+\cdots+s_{l}<k$ it is $Z_{k}\left(\left[s_{1}, \ldots, s_{l}\right]\right)=0$.
- If $f \in \operatorname{Fil}_{k-2}^{\mathrm{W}}(\mathcal{M D})$ then $Z_{k}(\mathrm{~d}(f))=0$.
- Every cusp form $f \in \mathrm{Fil}_{k}^{\mathrm{W}}(\mathcal{M D})$ is in the kernel of Z_{k}.

Remark: $Z_{k}\left(\left[\begin{array}{c}k-1 \\ 1\end{array}\right]\right)=0$, since $\mathrm{d}[k-2]=(k-2)\left[\begin{array}{c}k-1 \\ 1\end{array}\right]$.

bi-brackets - connections to mzv - example I

To get the first relation $\zeta(2,1)=\zeta(3)$ between MZV by using bi-brackets one considers the double shuffle relation for [1] • [2]. It is:

$$
[1,2]+2[2,1]-[2]+\left[\begin{array}{l}
2 \\
1
\end{array}\right] \stackrel{s h}{=}[1] \cdot[2] \stackrel{s t}{=}[1,2]-\frac{1}{2}[2]+[2,1]+[3]
$$

and therefore

$$
[2,1]+\left[\begin{array}{l}
2 \\
1
\end{array}\right]=[3]+\frac{1}{2}[2]
$$

Since $[2],\left[\begin{array}{l}2 \\ 1\end{array}\right] \in \operatorname{ker} Z_{3}$ one obtains this relation by applying Z_{3}.

bi-brackets - connections to mzv - example II

We also rediscover exotic relations related to cusp forms, e.g. the cusp form $\Delta=q \prod_{n>0}\left(1-q^{n}\right)^{24}$ can be written as

$$
\begin{aligned}
\frac{-1}{2^{6} \cdot 5 \cdot 691} \Delta & =168[5,7]+150[7,5]+28[9,3] \\
& +\frac{1}{1408}[2]-\frac{83}{14400}[4]+\frac{187}{6048}[6]-\frac{7}{120}[8]-\frac{5197}{691}[12]
\end{aligned}
$$

Letting Z_{12} act on both sides one obtains the relation

$$
\frac{5197}{691} \zeta(12)=168 \zeta(5,7)+150 \zeta(7,5)+28 \zeta(9,3)
$$

These type of relations can also be explained via the theory of period polynomials (Gangl-Kaneko-Zagier; Schneps; Baumard; Pollack) or via multiple modular values (Brown).

bi-brackets - connections to mzv

To summarize we have the following objects in the kernel of Z_{k}, i.e. ways of getting relations between multiple zeta values using brackets.

- Elements of lower weights, i.e. elements in $\mathrm{Fil}_{k-1}^{\mathrm{W}}(\mathcal{M D})$.
- Derivatives
- Modular forms, which are cusp forms
- Since $0 \in \operatorname{ker} Z_{k}$, any linear relation between brackets in $\mathrm{Fil}_{k}^{\mathrm{W}}(\mathcal{M D})$ gives an element in the kernel.

But these are not all elements in the kernel of Z_{k}.

There are elements in the kernel of Z_{k} which can't be "described" by just using elements of $\mathcal{M D}$ in the list above.

bi-brackets - connections to mzv

In weight 4 one has the following relation of MZV

$$
\zeta(4)=\zeta(2,1,1),
$$

i.e. it is $[4]-[2,1,1] \in \operatorname{ker} Z_{4}$. But this element can't be written as a linear combination of cusp forms, lower weight brackets or derivatives. But one can show that

$$
[4]-[2,1,1]=\frac{1}{2}(\mathrm{~d}[1]+\mathrm{d}[2])-\frac{1}{3}[2]-[3]+\left[\begin{array}{l}
2,1 \\
1,0
\end{array}\right]
$$

and $\left[\begin{array}{c}2,1 \\ 1,0\end{array}\right] \in \operatorname{ker} Z_{4}$.

Conjecture (rough version)

The kernel of Z_{k} is spanned by the elements of the above list and (essentially) the bi-brackets with at least one $r_{j} \neq 0$.

another application: multiple Eisenstein series

Let $\Lambda_{\tau}=\mathbb{Z} \tau+\mathbb{Z}$ be a lattice with $\tau \in \mathbb{H}:=\{x+i y \in \mathbb{C} \mid y>0\}$. We define an order \succ on Λ_{τ} by setting

$$
\lambda_{1} \succ \lambda_{2}: \Leftrightarrow \lambda_{1}-\lambda_{2} \in P
$$

for $\lambda_{1}, \lambda_{2} \in \Lambda_{\tau}$ and the following set which we call the set of positive lattice points

$$
P:=\left\{m \tau+n \in \Lambda_{\tau} \mid m>0 \vee(m=0 \wedge n>0)\right\}=U \cup R
$$

another application: multiple Eisenstein series

Definition

For $s_{1} \geq 3, s_{2}, \ldots, s_{l} \geq 2$ we define the multiple Eisenstein series of weight $k=s_{1}+\cdots+s_{l}$ and length l by

$$
G_{s_{1}, \ldots, s_{l}}(\tau):=\sum_{\substack{\lambda_{1} \succ \ldots \succ \lambda_{l} \succ 0 \\ \lambda_{i} \in \Lambda_{\tau}}} \frac{1}{\lambda_{1}^{s_{1}} \ldots \lambda_{l}^{s_{l}}}
$$

- The multiple Eisenstein series fulfill the stuffle product, e.g.

$$
G_{r}(\tau) \cdot G_{s}(\tau)=G_{r, s}(\tau)+G_{s, r}(\tau)+G_{r+s}(\tau)
$$

- We have a Fourier expansion of the form

$$
G_{s_{1}, \ldots, s_{l}}(\tau)=\zeta\left(s_{1}, \ldots, s_{l}\right)+\sum_{n>0} a_{n} q^{n}, \quad\left(q=e^{2 \pi i \tau}\right)
$$

- In length $l=1$ and weight k the multiple Eisenstein are the Eisenstein series

$$
G_{k}(\tau)=\zeta(k)+(2 \pi i)^{k}[k]
$$

another application: multiple Eisenstein series

Theorem

The Fourier expansion of multiple Eisenstein series equals a \mathbb{Q}-linear combination of multiple zeta values and brackets in $\mathcal{M D}$, i.e. there exist $a_{\underline{s}}\left(\underline{s}^{\prime}, \underline{s}^{\prime \prime}\right) \in \mathbb{Q}$ s.t.

$$
G_{\underline{s}}=\zeta(\underline{s})+\sum_{\underline{s}^{\prime}, \underline{s}^{\prime \prime}} a_{\underline{s}}\left(\underline{s}^{\prime}, \underline{s}^{\prime \prime}\right) \zeta\left(\underline{s}^{\prime}\right) \cdot(2 \pi i)^{\mathrm{wt}\left(\underline{s}^{\prime \prime}\right)}\left[\underline{s}^{\prime \prime}\right]
$$

Examples:

$$
\begin{aligned}
G_{4,4}(\tau)= & \zeta(4,4)+20 \zeta(6)(2 \pi i)^{2}[2]+3 \zeta(4)(2 \pi i)^{4}[4]+(2 \pi i)^{8}[4,4] \\
G_{3,2,2}(\tau)= & \zeta(3,2,2)+\left(\frac{54}{5} \zeta(2,3)+\frac{51}{5} \zeta(3,2)\right)(2 \pi i)^{2}[2] \\
& +\frac{16}{3} \zeta(2,2)(2 \pi i)^{3}[3]+3 \zeta(3)(2 \pi i)^{4}[2,2]+4 \zeta(2)(2 \pi i)^{5}[3,2] \\
& +(2 \pi i)^{7}[3,2,2]
\end{aligned}
$$

another application: multiple Eisenstein series

Theorem (H.B., K. Tasaka - work in progress)

For all $s_{1} \geq 2, s_{2}, \ldots, s_{l} \geq 1$ there exist $a_{s_{1}, \ldots, s_{l}}\left(\underline{s}^{\prime}, \underline{s}^{\prime \prime}\right) \in \mathbb{Q}$ and $f_{s_{1}, \ldots, s_{l}}\left(\underline{s}^{\prime \prime}\right) \in \mathcal{B D}$ such that the holomorphic function on the upper half plane given by

$$
E_{s_{1}, . ., s_{l}}=\zeta\left(s_{1}, . ., s_{l}\right)+\sum_{\underline{s}^{\prime}, \underline{s}^{\prime \prime}} a_{s_{1}, . ., s_{l}}\left(\underline{s}^{\prime}, \underline{s}^{\prime \prime}\right) \zeta\left(\underline{s}^{\prime}\right) \cdot(2 \pi i)^{\mathrm{wt}\left(\underline{s}^{\prime \prime}\right)} f_{s_{1}, \ldots, s_{l}}\left(\underline{s}^{\prime \prime}\right)
$$

satisfies

- For $s_{1} \geq 3, s_{2}, \ldots, s_{l} \geq 2$ it is $E_{s_{1}, \ldots, s_{l}}=G_{s_{1}, \ldots, s_{l}}$, i.e. in this case they fulfill the stuffle product.
- The $E_{s_{1}, \ldots, s_{l}}$ fulfill the shuffle product, i.e. it is for example

$$
E_{2} \cdot E_{3}=E_{2,3}+3 E_{3,2}+6 E_{4,1}
$$

Sketch of proof: To prove this theorem we first identify the $a_{s_{1}, . ., s_{l}}\left(\underline{s}^{\prime}, \underline{s}^{\prime \prime}\right)$ with the coefficients in the Goncharov coproduct. This observation together with the results mentioned in this talk on bi-brackets will then be used to define $E_{s_{1}, \ldots, s_{l}}$.

summary

- bi-brackets are q-series whose coefficients are rational numbers given by sums over partitions.
- The space $\mathcal{B D}$ spanned by all bi-brackets form a differential \mathbb{Q}-algebra and there are two different ways to express a product of bi-brackets.
- This give rise to a lot of linear relations between bi-brackets and conjecturally every element in $\mathcal{B D}$ can be written as a linear combination of elements in $\mathcal{M D}$.
- This setup can also be seen as a combinatorial theory of modular forms. For example it follows directly by the double shuffle relations that G_{4}^{2} is a multiple of G_{8}.
- The elements in $\mathcal{M D}$ have a connection to multiple zeta values and elements in the kernel of Z_{k} give rise to relations between them.
- Conjecturally the elements in the kernel of Z_{k} can be described by using bi-brackets.
- In a recent joint work with K. Tasaka it turns out that bi-brackets are also necessery to give a definition of "shuffle regularized multiple Eisenstein series".

