Multiple divisor functions, their algebraic structure and the relation to multiple zeta values

Henrik Bachmann - Universität Hamburg

Kyushu University - 13th November 2013

joint work: H.B., Ulf Kühn, arXiv:1309.3920 [math.NT]

Henrik Bachmann - Universität Hamburg Multiple divisor functions, their algebraic structure and the relation to multiple zeta values

Henrik Bachmann - Universität Hamburg Multiple divisor functions, their algebraic structure and the relation to multiple zeta values

As a generalization of the classical divisor sums we define for $r_1,\ldots,r_l\geq 0$ the **multiple divisor sum** by

$$\sigma_{r_1,\ldots,r_l}(n) := \sum_{\substack{u_1v_1 + \cdots + u_lv_l = n \\ u_1 > \cdots > u_l > 0}} v_1^{r_1} \ldots v_l^{r_l} \, .$$

With this we define for $s_1,\ldots,s_l>0$ the multiple divisor function of weight $s_1+\cdots+s_l$ and length l by

$$[s_1, \dots, s_l] := \frac{1}{(s_1 - 1)! \dots (s_l - 1)!} \sum_{n > 0} \sigma_{s_1 - 1, \dots, s_l - 1}(n) q^n \in \mathbb{Q}[[q]].$$

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト ー

Multiple divisor functions

As a generalization of the classical divisor sums we define for $r_1, \ldots, r_l \ge 0$ the **multiple divisor sum** by

$$\sigma_{r_1,\dots,r_l}(n) := \sum_{\substack{u_1v_1 + \dots + u_lv_l = n \\ u_1 > \dots > u_l > 0}} v_1^{r_1} \dots v_l^{r_l} \,.$$

With this we define for $s_1,\ldots,s_l>0$ the multiple divisor function of weight $s_1+\cdots+s_l$ and length l by

$$[s_1, \dots, s_l] := \frac{1}{(s_1 - 1)! \dots (s_l - 1)!} \sum_{n > 0} \sigma_{s_1 - 1, \dots, s_l - 1}(n) q^n \in \mathbb{Q}[[q]].$$

Example I

For l=1 these are the classical divisor functions

$$[2] = \sum_{n>0} \sigma_1(n)q^n = q + 3q^2 + 4q^3 + 7q^4 + 6q^5 + 12q^6 + 8q^7 + 15q^8 + \dots$$

(1) マン・ション

Multiple divisor functions

As a generalization of the classical divisor sums we define for $r_1, \ldots, r_l \ge 0$ the **multiple divisor sum** by

$$\sigma_{r_1,\dots,r_l}(n) := \sum_{\substack{u_1v_1 + \dots + u_lv_l = n \\ u_1 > \dots > u_l > 0}} v_1^{r_1} \dots v_l^{r_l} \,.$$

With this we define for $s_1,\ldots,s_l>0$ the multiple divisor function of weight $s_1+\cdots+s_l$ and length l by

$$[s_1, \dots, s_l] := \frac{1}{(s_1 - 1)! \dots (s_l - 1)!} \sum_{n > 0} \sigma_{s_1 - 1, \dots, s_l - 1}(n) q^n \in \mathbb{Q}[[q]].$$

Example II

$$[4,2] = \frac{1}{6} \sum_{n>0} \sigma_{3,1}(n)q^n = \frac{1}{6} \left(q^3 + 3q^4 + \underbrace{15q^5}_{} + 27q^6 + 78q^7 + \dots \right)$$

$$\begin{split} \sigma_{3,1}(5) &= \mathbf{1}^3 \cdot \mathbf{1}^1 + \mathbf{2}^3 \cdot \mathbf{1}^1 + \mathbf{1}^3 \cdot \mathbf{1}^1 + \mathbf{1}^3 \cdot \mathbf{2}^1 + \mathbf{1}^3 \cdot \mathbf{3}^1 = \mathbf{15} \text{, because} \\ & 5 &= 4 \cdot \mathbf{1} + 1 \cdot \mathbf{1} = 2 \cdot \mathbf{2} + 1 \cdot \mathbf{1} = 3 \cdot \mathbf{1} + 2 \cdot \mathbf{1} = 3 \cdot \mathbf{1} + 1 \cdot \mathbf{2} = 2 \cdot \mathbf{1} + 1 \cdot \mathbf{3} \\ & \bigcirc \mathbf{0} = \mathbf{1} + \mathbf{1} \cdot \mathbf{1} = \mathbf{1} + \mathbf{1}$$

Multiple divisor functions

As a generalization of the classical divisor sums we define for $r_1, \ldots, r_l \ge 0$ the **multiple divisor sum** by

$$\sigma_{r_1,\dots,r_l}(n) := \sum_{\substack{u_1v_1 + \dots + u_lv_l = n \\ u_1 > \dots > u_l > 0}} v_1^{r_1} \dots v_l^{r_l} \, .$$

With this we define for $s_1, \ldots, s_l > 0$ the **multiple divisor function** of weight $s_1 + \cdots + s_l$ and length l by

$$[s_1, \dots, s_l] := \frac{1}{(s_1 - 1)! \dots (s_l - 1)!} \sum_{n > 0} \sigma_{s_1 - 1, \dots, s_l - 1}(n) q^n \in \mathbb{Q}[[q]].$$

Example III

$$[4,4,4] = \frac{1}{216} \left(q^6 + 9q^7 + 45q^8 + 190q^9 + 642q^{10} + 1899q^{11} + \dots \right) ,$$

$$[3,1,3,1] = \frac{1}{4} \left(q^{10} + 2q^{11} + 8q^{12} + 16q^{13} + 43q^{14} + 70q^{15} + \dots \right)$$

Weight and length filtration

We define the vector space \mathcal{MD} to be the \mathbb{Q} vector space generated by $[\emptyset] = 1 \in \mathbb{Q}[[q]]$ and all multiple divisor sums $[s_1, \ldots, s_l]$.

On \mathcal{MD} we have the increasing filtration $\mathrm{Fil}^{\mathrm{W}}_{\bullet}$ given by the weight and the increasing filtration $\mathrm{Fil}^{\mathrm{L}}_{\bullet}$ given by the length, i.e., we have for $A \subseteq \mathcal{MD}$

$$\operatorname{Fil}_{k}^{\mathrm{W}}(A) := \left\langle [s_{1}, \dots, s_{l}] \in A \mid 0 \leq l \leq k, \, s_{1} + \dots + s_{l} \leq k \right\rangle_{\mathbb{Q}}$$

$$\operatorname{Fil}_{l}^{\mathrm{L}}(A) := \left\langle [s_{1}, \dots, s_{r}] \in A \mid r \leq l \right\rangle_{\mathbb{Q}}.$$

If we consider the length and weight filtration at the same time we use the short notation $\operatorname{Fil}_{k,l}^{\mathrm{W},\mathrm{L}} := \operatorname{Fil}_k^{\mathrm{W}} \operatorname{Fil}_l^{\mathrm{L}}$.

As usual $\operatorname{gr}_k^W(A) = \operatorname{Fil}_k^W(A) / \operatorname{Fil}_{k-1}^W(A)$ will denote the graded part (similar gr_l^L and $\operatorname{gr}_{k,l}^{W,L}$).

Theorem

The Q-vector space \mathcal{MD} has the structure of a bifiltered Q-Algebra $(\mathcal{MD}, \cdot, \operatorname{Fil}^W_{\bullet}, \operatorname{Fil}^L_{\bullet})$, where the multiplication is the natural multiplication of formal power series and the filtrations $\operatorname{Fil}^W_{\bullet}$ and $\operatorname{Fil}^L_{\bullet}$ are induced by the weight and length, in particular

$$\operatorname{Fil}_{k_1,l_1}^{\operatorname{W},\operatorname{L}}(\mathcal{MD}) \cdot \operatorname{Fil}_{k_2,l_2}^{\operatorname{W},\operatorname{L}}(\mathcal{MD}) \subset \operatorname{Fil}_{k_1+k_2,l_1+l_2}^{\operatorname{W},\operatorname{L}}(\mathcal{MD}).$$

It is a (homomorphic image of a) quasi-shuffle algebra in the sense of Hoffman.

The first products of multiple divisor functions are given by

$$\begin{split} & [1] \cdot [1] = 2[1,1] + [2] - [1] , \\ & [1] \cdot [2] = [1,2] + [2,1] + [3] - \frac{1}{2}[2] , \\ & 1] \cdot [2,1] = [1,2,1] + 2[2,1,1] + [2,2] + [3,1] - \frac{3}{2}[2,1] . \end{split}$$

Multiple divisor functions - Algebra structure

To prove this theorem we need to rewrite the multiple divisor functions. For this we define a *normalized polylogarithm* by

$$\widetilde{\mathrm{Li}}_s(z) := \frac{\mathrm{Li}_{1-s}(z)}{\Gamma(s)},$$

where for $s,z\in\mathbb{C}$, |z|<1 the polylogarithm $\mathrm{Li}_s(z)$ of weight s is given by

$$\operatorname{Li}_s(z) = \sum_{n>0} \frac{z^n}{n^s} \,.$$

Proposition

For $q\in\mathbb{C}$ with |q|<1 and for all $s_1,\ldots,s_l\in\mathbb{N}$ we can write the multiple divisor functions as

$$[s_1,\ldots,s_l] = \sum_{n_1 > \cdots > n_l > 0} \widetilde{\mathrm{Li}}_{s_1}(q^{n_1})\ldots\widetilde{\mathrm{Li}}_{s_l}(q^{n_l}) .$$

The product of $[s_1]$ and $[s_2]$ can thus be written as

$$\begin{split} [s_1] \cdot [s_2] &= \sum_{n_1 > n_2 > 0} \dots + \sum_{n_2 > n_1 > 0} \dots + \sum_{n_1 = n_2 > 0} \widetilde{\mathrm{Li}}_{s_1} \left(q^{n_1} \right) \widetilde{\mathrm{Li}}_{s_2} \left(q^{n_1} \right) \\ &= [s_1, s_2] + [s_2, s_1] + \sum_{n > 0} \widetilde{\mathrm{Li}}_{s_1} \left(q^n \right) \widetilde{\mathrm{Li}}_{s_2} \left(q^n \right) \,. \end{split}$$

In order to prove that this product is an element of $\mathrm{Fil}^{\mathrm{W}}_{s_1+s_2}(\mathcal{MD})$ we will show that the product $\widetilde{\mathrm{Li}}_{s_1}\left(q^n\right)\widetilde{\mathrm{Li}}_{s_2}\left(q^n\right)$ is a rational linear combination of $\widetilde{\mathrm{Li}}_{j}\left(q^n\right)$ with $1\leq j\leq s_1+s_2.$

Lemma

For $a,b\in \mathbb{N}$ we have

$$\widetilde{\mathrm{Li}}_{a}(z) \cdot \widetilde{\mathrm{Li}}_{b}(z) = \sum_{j=1}^{a} \lambda_{a,b}^{j} \widetilde{\mathrm{Li}}_{j}(z) + \sum_{j=1}^{b} \lambda_{b,a}^{j} \widetilde{\mathrm{Li}}_{j}(z) + \widetilde{\mathrm{Li}}_{a+b}(z) \,,$$

where the coefficient $\lambda_{a,b}^j \in \mathbb{Q}$ for $1 \leq j \leq a$ is given by

$$\lambda_{a,b}^{j} = (-1)^{b-1} \binom{a+b-j-1}{a-j} \frac{B_{a+b-j}}{(a+b-j)!},$$

with the Seki-Bernoulli numbers B_n .

Proof: For the proof we use the generating function

$$L(X) := \sum_{k>0} \widetilde{\text{Li}_k}(z) X^{k-1} = \sum_{k>0} \sum_{n>0} \frac{n^{k-1} z^n}{(k-1)!} X^{k-1} = \sum_{n>0} e^{nX} z^n = \frac{e^X z}{1 - e^X z}$$

Henrik Bachmann - Universität Hamburg

ъ

Proof: For the proof we use the generating function

$$L(X) := \sum_{k>0} \widetilde{\mathrm{Li}_k}(z) X^{k-1} = \sum_{k>0} \sum_{n>0} \frac{n^{k-1} z^n}{(k-1)!} X^{k-1} = \sum_{n>0} e^{nX} z^n = \frac{e^X z}{1 - e^X z}$$

By direct calculation one can show that

$$L(X) \cdot L(Y) = \frac{1}{e^{X-Y} - 1}L(X) + \frac{1}{e^{Y-X} - 1}L(Y).$$

Henrik Bachmann - Universität Hamburg Multiple divisor functions, their algebraic structure and the relation to multiple zeta values

イロト イロト イヨト イヨト

э.

Proof: For the proof we use the generating function

$$L(X) := \sum_{k>0} \widetilde{\mathrm{Li}_k}(z) X^{k-1} = \sum_{k>0} \sum_{n>0} \frac{n^{k-1} z^n}{(k-1)!} X^{k-1} = \sum_{n>0} e^{nX} z^n = \frac{e^X z}{1 - e^X z}$$

By direct calculation one can show that

$$L(X) \cdot L(Y) = \frac{1}{e^{X-Y} - 1}L(X) + \frac{1}{e^{Y-X} - 1}L(Y).$$

With the definition of Seki-Bernoulli numbers

$$\frac{X}{e^X - 1} = \sum_{n \ge 0} \frac{B_n}{n!} X^n$$

we find

$$\begin{split} L(X) \cdot L(Y) &= \sum_{n > 0} \frac{B_n}{n!} (X - Y)^{n-1} L(X) + \sum_{n > 0} \frac{B_n}{n!} (Y - X)^{n-1} L(Y) \\ &+ \frac{L(X) - L(Y)}{X - Y} \,. \end{split}$$

Considering the coefficient of $X^{a-1}Y^{b-1}$ we get the result.

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト ー

3

The structure of being a quasi-shuffle algebra is as follows:

Let $\mathbb{Q}\langle A \rangle$ be the noncommutative polynomial algebra over \mathbb{Q} generated by words with letters in $A = \{z_1, z_2, \dots\}$. Let \diamond be a commutative and associative product on $\mathbb{Q}A$. Define on $\mathbb{Q}\langle A \rangle$ recursively a product by 1 * w = w * 1 = w and

$$z_a w * z_b v := z_a (w * z_b v) + z_b (z_a w * v) + (z_a \diamond z_b) (w * v).$$

The commutative \mathbb{Q} -algebra $(\mathbb{Q}\langle A \rangle, *)$ is called a quasi-shuffle algebra.

• The harmonic algebra (Hoffman) is an example of a quasi-shuffle algebra with $z_a \diamond z_b = z_{a+b}$ which is closely related to MZV.

Multiple divisor functions - Algebra structure

In our case we consider the quasi-shuffle algebra with

$$z_a \diamond z_b = z_{a+b} + \sum_{j=1}^a \lambda_{a,b}^j z_j + \sum_{j=1}^b \lambda_{b,a}^j z_j ,$$

where

$$\lambda_{a,b}^{j} = (-1)^{b-1} \binom{a+b-j-1}{a-j} \frac{B_{a+b-j}}{(a+b-j)!} \,.$$

Proposition

The map $[\,.\,]:(\mathbb{Q}\langle A\rangle,*)\longrightarrow(\mathcal{MD},\cdot)$ defined on the generators by

$$z_{s_1}\ldots z_{s_l}\mapsto [s_1,\ldots,s_l]$$

is a homomorphism of algebras, i.e. it fulfils

$$[w * v] = [w] \cdot [v].$$

Proposition

The ring of modular forms $M_{\mathbb{Q}}(SL_2(\mathbb{Z}))$ and the ring of quasi-modular forms $\widetilde{M}_{\mathbb{Q}}(SL_2(\mathbb{Z}))$ are subalgebras of \mathcal{MD} .

For example we have

$$G_2 = -\frac{1}{24} + [2], \quad G_4 = \frac{1}{1440} + [4], \quad G_6 = -\frac{1}{60480} + [6].$$

The proposition follows from the fact that $M_{\mathbb{Q}}(SL_2(\mathbb{Z})) = \mathbb{Q}[G_4, G_6]$ and $\widetilde{M}_{\mathbb{Q}}(SL_2(\mathbb{Z})) = \mathbb{Q}[G_2, G_4, G_6].$

Remark

Due to an old result of Zagier we have $M_{\mathbb{Q}}(SL_2(\mathbb{Z})) \subset \operatorname{Fil}_{k,2}^{W,L}(\mathcal{MD}).$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ● ●

Multiple divisor functions - Derivation

Theorem

The operator $d = q \frac{d}{dq}$ is a derivation on \mathcal{MD} and it maps $\mathrm{Fil}_{k,l}^{\mathrm{W},\mathrm{L}}(\mathcal{MD})$ to $\mathrm{Fil}_{k+2,l+1}^{\mathrm{W},\mathrm{L}}(\mathcal{MD})$.

Examples:

$$\begin{split} \mathrm{d}[1] &= [3] + \frac{1}{2}[2] - [2,1] \,, \\ \mathrm{d}[2] &= [4] + 2[3] - \frac{1}{6}[2] - 4[3,1] \,, \\ \mathrm{d}[2] &= 2[4] + [3] + \frac{1}{6}[2] - 2[2,2] - 2[3,1] \,, \\ \mathrm{d}[1,1] &= [3,1] + \frac{3}{2}[2,1] + \frac{1}{2}[1,2] + [1,3] - 2[2,1,1] - [1,2,1] \,. \end{split}$$

The second and third equation lead to the first linear relation between multiple divisor functions in weight 4:

$$[4] = 2[2,2] - 2[3,1] + [3] - \frac{1}{3}[2].$$

3

To proof this theorem we need to consider the generating function of multiple divisor functions which is given by

$$T(X_1, \dots, X_l) := \sum_{s_1, \dots, s_l > 0} [s_1, \dots, s_l] X_1^{s_1 - 1} \dots X_l^{s_l - 1}$$
$$= \sum_{n_1, \dots, n_l > 0} \prod_{j=1}^l \frac{e^{n_j X_j} q^{n_1 + \dots + n_j}}{1 - q^{n_1 + \dots + n_j}} \,.$$

Example:

$$T(X) = \sum_{k>0} [k] X^{k-1} = \sum_{n>0} e^{nX} \frac{q^n}{1-q^n}$$
$$T(X,Y) = \sum_{s_1,s_2>0} [s_1,s_2] X^{s_1-1} Y^{s_2-1} = \sum_{n_1,n_2>0} e^{n_1X+n_2Y} \frac{q^{n_1}}{1-q^{n_1}} \frac{q^{n_1+n_2}}{1-q^{n_1+n_2}}$$

Henrik Bachmann - Universität Hamburg Multiple divisor functions, their algebraic structure and the relation to multiple zeta values

글 🕨 🖌 글 🕨

Multiple divisor functions - Derivation

For these functions one can prove the following identity

$$T(X) \cdot T(Y_1, \dots, Y_l) = T(X + Y_1, \dots, X + Y_l, X) + \sum_{j=1}^{l} T(X + Y_1, \dots, X + Y_j, Y_j, \dots, Y_l) - \sum_{j=1}^{l} T(X + Y_1, \dots, X + Y_j, Y_{j+1}, \dots, Y_l) + R_l(X, Y_1, \dots, Y_l),$$

where $R_l(X, Y_1, \ldots, Y_l)$ satisfies

$$D(R_l(X, Y_1, \ldots, Y_l)) = \mathrm{d} T(Y_1, \ldots, Y_l),$$

with $D(f)=\left(\frac{d}{dX}f\right)\big|_{X=0}.$ Therefore applying D to the above equation one obtains the theorem.

・ 同 ト ・ ヨ ト ・ ヨ ト …

In the lowest length we get several expressions for the derivative:

Proposition

Let $k \in \mathbb{N}$, then for any $s_1, s_2 \ge 1$ with $k = s_1 + s_2 - 2$ we have the following expression for d[k]:

$$\binom{k}{s_1-1}\frac{\mathbf{d}[k]}{k} - \binom{k}{s_1-1}[k+1] = [s_1] \cdot [s_2] - \sum_{a+b=k+2} \left(\binom{a-1}{s_1-1} + \binom{a-1}{s_2-1} \right) [a,b].$$

Observe that the right hand side is the formal shuffle product. The possible choices for s_1 and s_2 give $\lfloor \frac{k}{2} \rfloor$ linear relations in $\operatorname{Fil}_{k,2}^{W,L}(\mathcal{MD})$, which are conjecturally all relations in length two.

Multiple divisor functions - $q\mathcal{MZ}$

We define the space of all admissible multiple divisor functions $q\mathcal{M}\mathcal{Z}$ as

$$q\mathcal{MZ} := \left\langle \left[s_1, \ldots, s_l \right] \in \mathcal{MD} \mid s_1 > 1 \right\rangle_{\mathbb{Q}}.$$

Theorem

- The vector space $q\mathcal{MZ}$ is a subalgebra of \mathcal{MD} .
- We have $\mathcal{MD} = q\mathcal{MZ}[[1]].$
- The algebra \mathcal{MD} is a polynomial ring over $q\mathcal{MZ}$ with indeterminate [1], i.e. \mathcal{MD} is isomorphic to $q\mathcal{MZ}[T]$ by sending [1] to T.

Multiple divisor functions - $q\mathcal{M}\mathcal{Z}$

We define the space of all admissible multiple divisor functions $q\mathcal{MZ}$ as

$$q\mathcal{MZ} := \left\langle \left[s_1, \dots, s_l \right] \in \mathcal{MD} \ \middle| \ s_1 > 1 \right\rangle_{\mathbb{Q}}.$$

Theorem

- The vector space $q\mathcal{MZ}$ is a subalgebra of $\mathcal{MD}.$
- We have $\mathcal{MD} = q\mathcal{MZ}[[1]].$
- The algebra \mathcal{MD} is a polynomial ring over $q\mathcal{MZ}$ with indeterminate [1], i.e. \mathcal{MD} is isomorphic to $q\mathcal{MZ}[T]$ by sending [1] to T.

Sketch of proof:

- The first two statements can be proven by induction using the quasi-shuffle product.
- The algebraic independency of [1] for the third statements follows from the fact that near q = 1 one has $[1] \approx \frac{-\log(1-q)}{1-q}$ but $[s_1, \ldots, s_l] \approx \frac{1}{(1-q)^{s_1+\cdots+s_l}}$ for $[s_1, \ldots, s_l] \in q\mathcal{MZ}$.

(日) (四) (三) (三) (三)

Multiple divisor functions - Connections to MZV

For the natural map $Z: q\mathcal{MZ} \to \mathcal{MZ}$ of vector spaces given by

$$Z([s_1,\ldots,s_l])=\zeta(s_1,\ldots,s_l)$$

we have a factorization

Remark

If we endow $\overline{q\mathcal{MZ}} = \bigoplus_k \operatorname{gr}_k^W(q\mathcal{MZ})$ with the induced multiplication given on equivalence classes, then the products in $\overline{q\mathcal{MZ}}$ satisfy the stuffle relations. Moreover the right hand arrow is a homomorphism of algebras.

Extending \boldsymbol{Z} by setting

$$Z([s_1,\ldots,s_l][1]^r) = \zeta(s_1,\ldots,s_l)T^r$$

we obtain a homomorphisms of vector spaces

such that the image of a multiple divisor function $[s_1, \ldots, s_l]$ with $s_1 = 1$ equals the stuffle regularised $\zeta(s_1, \ldots, s_l)$ as given by Ihara, Kaneko and Zagier (2006).

Remark

Again the right hand arrow is a homomorphism of algebras.

All relations between stuffle regularised multiple zeta values of weight k correspond to elements in the kernel of Z_k . We approach $\ker(Z_k) \subseteq \mathcal{MD}$ by using an analytical description of Z_k .

Proposition

For $[s_1,\ldots,s_l]\in\mathrm{Fil}^\mathrmW_k(\mathrm{q}\mathcal{MZ})$ we have the alternative description

$$Z_k([s_1,\ldots,s_l]) = \lim_{q \to 1} (1-q)^k [s_1,\ldots,s_l].$$

In particular we have

$$Z_k([s_1, \dots, s_l]) = \begin{cases} \zeta(s_1, \dots, s_l), & s_1 + \dots + s_l = k, \\ 0, & s_1 + \dots + s_l < k. \end{cases}$$

Multiple divisor functions - Connections to MZV

Sketch of proof: The multiple divisor functions can be written as

$$[s_1, \dots, s_l] = \frac{1}{(s_1 - 1)! \dots (s_l - 1)!} \sum_{n_1 > \dots > n_l > 0} \prod_{j=1}^l \frac{q^{n_j} P_{s_j - 1}(q^{n_j})}{(1 - q^{n_j})^{s_j}},$$

where $P_k(t)$ is the k-th Eulerian polynomial. These polynomials have the property that $P_k(1) = k!$ and therefore

$$\lim_{q \to 1} \frac{q^n P_{k-1}(q^n)}{(k-1)!} \frac{(1-q)^k}{(1-q^n)^k} = \frac{1}{n^k}$$

Now doing some careful argumentation to justify the interchange of limit and summation one obtains

$$Z_{s_1+\dots+s_l}([s_1,\dots,s_l]) = \lim_{q \to 1} (1-q)^{s_1+\dots+s_l}[s_1,\dots,s_l] = \zeta(s_1+\dots+s_l).$$

Another example of a **q-analogue of multiple zeta values** are the modified multiple q-zeta values. They are defined for $s_1 > 1, s_2, \ldots, s_l \ge 1$ as

$$\overline{\zeta}_q(s_1,\ldots,s_l) = \sum_{n_1 > \cdots > n_l > 0} \prod_{j=1}^n \frac{q^{n_j(s_j-1)}}{(1-q^{n_j})^{s_j}}$$

Similar to the multiple divisor functions one derives

$$\lim_{q \to 1} (1-q)^{s_1 + \dots + s_l} \overline{\zeta}_q(s_1, \dots, s_l) = \zeta(s_1, \dots, s_l) \,.$$

They seem to have a close connection to multiple divisor functions an if all entries $s_i > 1$ they are indeed elements of \mathcal{MD} , e.g.

$$\overline{\zeta}_q(4) = [4] - [3] + \frac{1}{3}[2].$$

But if at least one entry is 1 this connection is conjectural.

Theorem

For the kernel of $Z_k \in \operatorname{Fil}_k^W(\mathcal{MD})$ we have

- If $s_1 + \dots + s_l < k$ then $Z_k([s_1, \dots, s_l]) = 0$.
- For any $f \in \operatorname{Fil}_{k-2}^{\mathrm{W}}(\mathcal{MD})$ we have $Z_k(\operatorname{d}(f)) = 0$.
- If $f \in \operatorname{Fil}_k^W(\mathcal{MD})$ is a cusp form for $\operatorname{SL}_2(\mathbb{Z})$, then $Z_k(f) = 0$.

Multiple divisor functions - Connections to MZV

Sketch of proof: First we extend the Z_k to a larger space. We define for $\rho \in \mathbb{R}$

$$\mathcal{Q}_{\rho} = \left\{ \sum_{n>0} a_n q^n \in \mathbb{R}[[q]] \mid a_n = O(n^{\rho-1}) \right\}$$

and

$$\mathcal{Q}_{<\rho} = \left\{ \sum_{n>0} a_n q^n \in \mathbb{R}[[q]] \ | \ \exists \varepsilon > 0 \text{ with } a_n = O(n^{\rho - 1 - \varepsilon}) \right\} \,.$$

For $\rho>1$ define the map Z_ρ for a $f=\sum_{n>0}a_nq^n\in\mathbb{R}[[q]]$ by

$$Z_{\rho}(f) = \lim_{q \to 1} (1 - q)^{\rho} \sum_{n > 0} a_n q^n$$

Lemma

• $Z_
ho$ is a linear map from $\mathcal{Q}_
ho$ to $\mathbb R$

•
$$\mathcal{Q}_{<\rho} \subset \ker Z_{\rho}$$
.

- $d \mathcal{Q}_{<\rho-1} \subset \ker(Z_{\rho})$, where as before $d = q \frac{d}{dq}$.
- For any $s_1,\ldots,s_l\geq 1$ we have $[s_1,\ldots,s_l]\in \mathcal{Q}_{< s_1+\cdots+s_l+1}.$

Example I: We have seen earlier that the derivative of [1] is given by

$$d[1] = [3] + \frac{1}{2}[2] - [2, 1]$$

and because of the theorem it is $d[1], [2] \in \ker Z_3$ from which $\zeta(2,1) = \zeta(3)$ follows.

・ 御 ト ・ 臣 ト ・ 臣 ト ・

Example II: (Shuffle product) We saw that for $s_1 + s_2 = k + 2$

$$\binom{k}{s_1-1}\frac{d[k]}{k} = [s_1] \cdot [s_2] + \binom{k}{s_1-1}[k+1] - \sum_{a+b=k+2} \left(\binom{a-1}{s_1-1} + \binom{a-1}{s_2-1}\right)[a,b]$$

Applying Z_{k+2} on both sides we obtain the shuffle product for single zeta values

$$\zeta(s_1) \cdot \zeta(s_2) = \sum_{a+b=k+2} \left(\binom{a-1}{s_1-1} + \binom{a-1}{s_2-1} \right) \zeta(a,b).$$

◆□▶ ◆掃▶ ◆臣▶ ◆臣▶ ─臣 ─の�(や

Example III: For the cusp form $\Delta \in S_{12} \subset \ker(Z_{12})$ one can derive the representation

$$\begin{aligned} \frac{1}{2^6 \cdot 5 \cdot 691} \Delta &= 168[5,7] + 150[7,5] + 28[9,3] \\ &+ \frac{1}{1408}[2] - \frac{83}{14400}[4] + \frac{187}{6048}[6] - \frac{7}{120}[8] - \frac{5197}{691}[12] \,. \end{aligned}$$

Letting Z_{12} act on both sides one obtains the relation

$$\frac{5197}{691}\zeta(12) = 168\zeta(5,7) + 150\zeta(7,5) + 28\zeta(9,3) \,.$$

To summarize we have the following objects in the kernel of Z_k , i.e. ways of getting relations between multiple zeta values using multiple divisor functions.

- Elements of lower weights, i.e. elements in $\operatorname{Fil}_{k-1}^{W}(\mathcal{MD})$.
- Derivatives
- Modular forms, which are cusp forms
- Since $0 \in \ker Z_k$, any linear relation between multiple divisor functions in $\operatorname{Fil}_k^W(\mathcal{MD})$ gives an element in the kernel.

Remark

The number of admissible multiple divisor functions $[s_1, \ldots, s_l]$ of weight k and length l equals $\binom{k-2}{l-1}$. Since we have $\mathcal{MD} = q\mathcal{MZ}[[1]]$, it follows that knowing the dimension of $\operatorname{gr}_{k,l}^{W,L}(q\mathcal{MZ})$ is sufficient to know the number of independent relations.

(4 個) (目) (日)

$k \diagdown l$	0	1	2	3	4	5	6	7	8	9	10	11							
0	1	0																	
1	0	0																	
2	0	1	0																
3	0	1	1	0															
4	0	1	1	1	0														
5	0	1	2	2	1	0													
6	0	1	2	3	3	1	0												
7	0	1	3	4	5	4	1	0											
8	0	1	3	6	8	8	5	1	0										
9	0	1	4	7	11	14	12	6	1	0									
10	0	1	4	10	16	21	23	17	7	1	0								
11	0	1	5	11	21	32	38	36	23	8	1	0							
12	0	1	5	14	28	44	60	?	?	30	9	1							
13	0	1	6	16	35	?	?	?	?	?	38	10							
14	0	1	6	20	43	?	?	?	?	?	?	47							
15	0	1	7	21	?	?	?	?	?	?	?	?							
			d:	W	L(a	117).	$W_{L}(\Lambda \Lambda T)$												

 $\dim_{\mathbb{Q}} \operatorname{gr}_{k,l}^{W,L}(q\mathcal{MZ})$: proven, conjectured.

くロンス 聞き くほどう ほう

3

Multiple divisor functions - Dimensions

We observe that $d'_k:=\dim_{\mathbb{Q}}\operatorname{gr}^{\mathrm{W}}_k(\operatorname{q}\mathcal{MZ})$ satisfies: $d'_0=1, d'_1=0, d'_2=1$ and

$$d'_k = 2d'_{k-2} + 2d'_{k-3}, \quad \text{for } 5 \le k \le 11.$$

We see no reason why this shouldn't hold for all k > 11 also, i.e. we ask whether

$$\sum_{k \ge 0} \dim_{\mathbb{Q}} \operatorname{gr}_{k}^{W}(q\mathcal{MZ})X^{k} = \sum_{k \ge 0} d'_{k}x^{k} \stackrel{?}{=} \frac{1 - X^{2} + X^{4}}{1 - 2X^{2} - 2X^{3}}.$$
 (1)

4 AP 1 4 3 1 4 3 1

Multiple divisor functions - Dimensions

We observe that $d'_k:=\dim_{\mathbb{Q}}\operatorname{gr}^{\mathrm{W}}_k(\operatorname{q}\mathcal{MZ})$ satisfies: $d'_0=1, d'_1=0, d'_2=1$ and

$$d'_k = 2d'_{k-2} + 2d'_{k-3}, \quad \text{for } 5 \le k \le 11.$$

We see no reason why this shouldn't hold for all k > 11 also, i.e. we ask whether

$$\sum_{k\geq 0} \dim_{\mathbb{Q}} \operatorname{gr}_{k}^{\mathrm{W}}(\operatorname{q}\mathcal{M}\mathcal{Z})X^{k} = \sum_{k\geq 0} d'_{k}x^{k} \stackrel{?}{=} \frac{1-X^{2}+X^{4}}{1-2X^{2}-2X^{3}}.$$
 (1)

Compare this to the Zagier conjecture for the dimension d_k of \mathcal{MZ}_k

$$\sum_{k\geq 0} \dim_{\mathbb{Q}} \operatorname{gr}_{k}^{W}(\mathcal{MZ})X^{k} = \sum_{k\geq 0} d_{k}X^{k} \stackrel{?}{=} \frac{1}{1-X^{2}-X^{3}}$$

$$\frac{k \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \quad 12 \quad 13 \quad 14}{d_{k} \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 2 \quad 2 \quad 3 \quad 4 \quad 5 \quad 7 \quad 9 \quad 12 \quad 16 \quad 21}$$

$$\frac{d_{k} \quad 1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 6 \quad 10 \quad 18 \quad 32 \quad 56 \quad 100 \quad 176 \quad 312 \quad 552 \quad 976}{d_{k} \quad 1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 6 \quad 10 \quad 18 \quad 32 \quad 56 \quad 100 \quad 176 \quad 312 \quad 552 \quad 976}$$

Henrik Bachmann - Universität Hamburg Multiple divisor functions, their algebraic structure and the relation to multiple zeta values

1

- Multiple divisor functions are formal power series in q with coefficient in \mathbb{Q} coming from the calculation of the Fourier expansion of multiple Eisenstein series.
- The space spanned by all multiple divisor functions form an differential algebra which contains the algebra of (quasi-) modular forms.
- A connection to multiple zeta values is given by the map Z_k whose kernel contains all relations between multiple zeta values of weight k.
- Questions:
 - What is the kernel of Z_k ?
 - Is there an analogue of the Broadhurst-Kreimer conjecture?
 - Is there a geometric/motivic interpretation of the multiple divisor functions?
 - L-Series?