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Multiple zeta values

Definition

For natural numbers s1 ≥ 2, s2, ..., sl ≥ 1 the multiple zeta value (MZV) of weight
s1 + ...+ sl and length l is defined by

ζ(s1, ..., sl) =
∑

n1>...>nl>0

1

ns11 . . . nsll
.

The product of two MZV can be expressed as a linear combination of MZV with
the same weight (stuffle relation). e.g:

ζ(r) · ζ(s) = ζ(r, s) + ζ(s, r) + ζ(r + s) .

MZV can be expressed as iterated integrals. This gives another way (shuffle
relation) to express the product of two MZV as a linear combination of MZV.

These two products give a number ofQ-relations (double shuffle relations)
between MZV.
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Multiple zeta-values

Example:

ζ(2, 3) + 3ζ(3, 2) + 6ζ(4, 1)
shuffle
= ζ(2) · ζ(3)

stuffle
= ζ(2, 3) + ζ(3, 2) + ζ(5) .

=⇒ 2ζ(3, 2) + 6ζ(4, 1)
double shuffle

= ζ(5) .

But there are more relations between MZV. e.g.:

ζ(2, 1) = ζ(3).

These follow from the "extended double shuffle relations" where one use the same
combinatorics as above for "ζ(1) · ζ(2)" in a formal setting. The extended double
shuffle relations are conjectured to give all relations between MZV.
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Multiple Eisenstein series

Let Λτ = Zτ +Z be a lattice with τ ∈ H := {x+ iy ∈ C | y > 0}. We define
an order� on Λτ by setting

λ1 � λ2 :⇔ λ1 − λ2 ∈ P

for λ1, λ2 ∈ Λτ and the following set which we call the set of positive lattice points

P := {mτ + n ∈ Λτ | m > 0 ∨ (m = 0 ∧ n > 0)} = U ∪R

m

n R

U
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Multiple Eisenstein series

Definition

For s1 ≥ 3, s2, . . . , sl ≥ 2 we define the multiple Eisenstein series of weight
k = s1 + · · ·+ sl and length l by

Gs1,...,sl(τ) :=
∑

λ1�···�λl�0
λi∈Λτ

1

λs11 . . . λsll
.

It is easy to see that these are holomorphic functions in the upper half plane and that
Gs1,...,sl(τ + 1) = Gs1,...,sl(τ) and therefore we have a Fourier expansion of the
form

Gs1,...,sl(τ) =
∑
n≥0

anq
n

with q = e2πiτ .
Question: How to calculate the an ?
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Multiple Eisenstein series - Fourier expansion

To calculate the Fourier expansion we rewrite the multiple Eisenstein series as

Gs1,...,sl(τ) =
∑

λ1�···�λl�0

1

λs11 . . . λsll

=
∑

(λ1,...,λl)∈P l

1

(λ1 + · · ·+ λl)s1(λ2 + · · ·+ λl)s2 . . . (λl)sl

We decompose the set of tuples of positive lattice points P l into the 2l distinct subsets
A1 × · · · ×Al ⊂ P l with Ai ∈ {R,U} and write

GA1...Al
s1,...,sl(τ) :=

∑
(λ1,...,λl)∈A1×···×Al

1

(λ1 + · · ·+ λl)s1(λ2 + · · ·+ λl)s2 . . . (λl)sl

this gives the decomposition

Gs1,...,sl =
∑

A1,...,Al∈{R,U}

GA1...Al
s1,...,sl

.

In the following we identify the A1 . . . Al with words in the alphabet {R,U}.
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Multiple Eisenstein series - Fourier expansion

In length l = 1 we have Gk(τ) = GRk (τ) +GUk (τ) and

GRk (τ) =
∑
m1=0
n1>0

1

(0τ + n1)k
= ζ(k) ,

GUk (τ) =
∑
m1>0
n1∈Z

1

(m1τ + n1)k
=
∑
m1>0

Ψk(m1τ) ,

where Ψk is the so called monotangent function defined for k > 1 by

Ψk(x) =
∑
n∈Z

1

(x+ n)k
.

To calculate the Fourier expansion of GUk one uses the Lipschitz formula.
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Multiple Eisenstein series - Fourier expansion

Proposition (Lipschitz formula)

For k > 1 it is

Ψk(x) =
∑
n∈Z

1

(x+ n)k
=

(−2πi)k

(k − 1)!

∑
d>0

dk−1e2πidx .

With this we get

GUk (τ) =
∑
m1>0

Ψk(m1τ) =
∑
m1>0

(−2πi)k

(k − 1)!

∑
d>0

dk−1e2πim1dτ

=
(−2πi)k

(k − 1)!

∑
n>0

σk−1(n)qn ,

where σk−1(n) =
∑
d|n d

k−1 is the classical divisor sum.
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Multiple Eisenstein series - Fourier expansion

In general the GU
l

s1,...,sl
can be written as

GU
l

s1,...,sl
(τ) =

∑
m1>···>ml>0
n1,...,nl∈Z

1

(m1τ + n1)s1 . . . (mlτ + nl)sl

=
∑

m1>···>ml>0

Ψs1(m1τ) . . .Ψsl(mlτ)

=
(−2πi)s1+···+sl

(s1 − 1)! . . . (sl − 1)!

∑
m1>···>ml>0
d1,...,dl>0

ds1−1
1 . . . dsl−1

l qm1d1+···+mldl

=:
(−2πi)s1+···+sl

(s1 − 1)! . . . (sl − 1)!

∑
n>0

σs1−1,...,sl−1(n)qn

=: (−2πi)s1+···+sl [s1, . . . , sl] .

We call the σr1,...,rl multiple divisor sums and the functions [s1, . . . , sl] ∈ Q[[q]]
multiple divisor functions.
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Multiple Eisenstein series - Fourier expansion

The other special case GR
l

s1,...,sl
can also be written down explicitly:

GR
l

s1,...,sl
(τ) =

∑
m1=···=ml=0
n1>···>nl>0

1

(0τ + n1)s1 . . . (0τ + nl)sl
= ζ(s1, . . . , sl)

What about the mixed terms in length l > 1 ?
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Multiple Eisenstein series - Fourier expansion

In length 2 we have Gs1,s2 = GRRs1,s2 +GURs1,s2 +GRUs1,s2 +GUUs1,s2 and

GURs1,s2 =
∑

m1>0,m2=0
n1∈Z,n2>0

1

(m1τ + n1)s1(0τ + n2)s1

=
∑
m1>0

Ψs1(m1τ)
∑
n2>0

1

ns22

= (−2πi)s1 [s1]ζ(s2) ,

GRUs1,s2(τ) =
∑

m1=0,m2>0
n1>n2
ni∈Z

1

(m1τ + n1)s1(m1τ + n2)s2
=
∑
m>0

Ψs1,s2(mτ).

where we call Ψs1,s2(x) =
∑
n1>n2

1
(x+n1)s1 (x+n2)s2 the multitangent function of

length 2.
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Multiple Eisenstein series - Fourier expansion

Using partial fraction expansion one can show that

Ψs1,s2(x) =
∑

k1+k2=s1+s2

(
(−1)s2

(
k2 − 1

s2 − 1

)
+ (−1)k1−s1

(
k2 − 1

s1 − 1

))
ζ(k2)Ψk1(x).

and therefore

GRUs1,s2(τ) =
∑
m>0

Ψs1,s2(mτ)

=
∑
m>0

∑
k1+k2=s1+s2

(
(−1)s2

(
k2 − 1

s2 − 1

)
+ (−1)k1−s1

(
k1 − 1

s1 − 1

))
ζ(k2)Ψk1(mτ)

=
∑

k1+k2=s1+s2

(
(−1)s2

(
k2 − 1

s2 − 1

)
+ (−1)k2−s1

(
k1 − 1

s1 − 1

))
ζ(k2)(−2πi)k1 [k1].
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Multiple Eisenstein series - Fourier expansion

Therefore we obtain for the Fourier expansion of the double Eisenstein series

Gs1,s2(τ) = GRRs1,s2 +GURs1,s2 +GRUs1,s2 +GUs1,s2

= ζ(s1, s2) + (−2πi)s1 [s1]ζ(s2)

+
∑

k1+k2=s1+s2

Ck2s1,s2ζ(k2)(−2πi)k1 [k1] + (−2πi)s1+s2 [s1, s2] .

where

Ck2s1,s2 := (−1)s2
(
k2 − 1

s2 − 1

)
+ (−1)k2−s1

(
k2 − 1

s1 − 1

)
.
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Multiple Eisenstein series - Fourier expansion

In the case GUR we saw that we could write it as GU multiplied with a zeta value.

In general having a word w of length l ending in the letter R, i.e. there is a word w′

ending in U with w = w′Rr and 1 ≤ r ≤ l we can write

Gws1,...,sl(τ) = Gw
′

s1,...,sl−r
(τ) · ζ(sl−r+1, . . . , sl) .

Example: GRUURR3,4,5,6,7 = GRUU3,4,5 · ζ(6, 7)

Hence one can concentrate on the words ending in U when calculating the Fourier
expansion of a multiple Eisenstein series.
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Multiple Eisenstein series - Fourier expansion

Definition

For s1, . . . , sl ≥ 2 we define the multitangent function of length l by

Ψs1,...,sl(x) =
∑

n1>···>nl
ni∈Z

1

(x+ n1)s1 . . . (x+ nl)sl
.

In the case l = 1 we also refer to these as monotangent function.

Let w a word ending in U then there are integers r1, . . . , rj ≥ 0 with
w = Rr1URr2U . . . RrjU . With this one can write

Gws1,...,sl(τ) =
∑

m1>···>mj>0

Ψs1,...,sr1+1(m1τ)·Ψsr1+2,...(m2τ) . . .Ψsl−rj ,...,sl
(mjτ) .

This will become clear in an example...
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Example: w = RURRU

GRURRUs1,...,sl
=

∑
m1>m2>0

Ψs1,s2(m1τ)Ψs3,s4,s5(m2τ)

m

n
λ5 λ4 λ3

λ2

λ1

A summand of GRURRUs1,...,sl
.
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Multiple Eisenstein series - Fourier expansion

To calculate the Fourier expansion of such terms we need the following theorem which
reduces the multitangent functions into monotangent functions.

Theorem (Bouillot 2011, B. 2012)

LetMZk be theQ-vector space spanned by all MZVs of weight k. Then for
s1, . . . , sl ≥ 2 and k = s1 + · · ·+ sl the multitangent function can be written as

Ψs1,...,sl(x) =

k∑
h=2

ck−hΨh(x)

with ck,h ∈MZk−h.

Proof idea: Use partial fraction decomposition.
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Multiple Eisenstein series - Fourier expansion

To summarize one can compute the Fourier expansion of the multiple Eisenstein series
Gs1,...,sl in the following way

Split up the summation into 2l distinct parts Gws1,...,sl where w are a words in
{R,U}.
For w being a word ending in R one can write Gws1,...,sl as Gw

′

s1,... · ζ(. . . , sl)
with a word w′ ending in U .

For w being a word ending in U one can write Gws1,...,sl as

Gws1,...,sl(τ) =
∑

m1>···>mj>0

Ψs1,...(m1τ) . . .Ψ...,sl(mlτ) .

Using the reduction theorem for multitangent functions this can be written as a
MZV-linear combination of sums of the form∑
m1>···>mj>0

Ψk1(m1τ) . . .Ψkj (mjτ) = (2πi)k1+···+kl [k1, . . . , kl]

for which the Fourier expansions are known.
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Examples

A few examples:

G4,4(τ) =ζ(4, 4) + 20ζ(6)(2πi)2[2] + 3ζ(4)(2πi)4[4] + (2πi)8[4, 4] ,

G3,2,2(τ) =ζ(3, 2, 2) +

(
54

5
ζ(2, 3) +

51

5
ζ(3, 2)

)
(2πi)2[2]

+
16

3
ζ(2, 2)(2πi)3[3] + 3ζ(3)(2πi)4[2, 2] + 4ζ(2)(2πi)5[3, 2]

+ (2πi)7[3, 2, 2] .

In the following we also use the notation

ζ̃(s1, . . . , sl) = (−2πi)−(s1+···+sl)ζ(s1, . . . , sl)

and similarly G̃(s1, . . . , sl).
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Examples

G̃4,5,6(τ) = (−2πi)
−15

G4,5,6(τ) = ζ̃(4, 5, 6)

+
(−1)4+5+6

c

∑
n>0

(
σ3,4,5(n) −

281

2882880
σ0(n) +

130399

605404800
σ2(n) −

37

1330560
σ4(n)

)
q
n

−
1

c

∑
n>0

(
3600σ4(n)ζ̃(6, 4) + 293760σ2(n)ζ̃(7, 5) + 302400σ2(n)ζ̃(8, 4)

)
q
n

−
1

c

∑
n>0

(
1814400σ0(n)ζ̃(8, 6) + 2903040σ0(n)ζ̃(9, 5) + 2177280σ0(n)ζ̃(10, 4)

)
q
n

−
1

c

∑
n>0

(
−

1

168
σ2,5(n) −

1

120
σ3,2(n) +

1

168
σ3,4(n) +

1

240
σ4,5(n)

)
q
n

−
i

c

∑
n>0

(
−
ζ(5)

20π5
σ1(n) +

ζ(5)

14π5
σ3(n) −

ζ(5)

80π5
σ5(n) −

3ζ(5)

π5
σ3,5(n)

)
q
n

−
i

c

∑
n>0

 45ζ(5)2

32π10
σ4(n) +

25ζ(7)

64π7
σ1(n) +

21ζ(7)

32π7
σ3(n) −

105ζ(7)

64π7
σ5(n)

 qn

−
i

c

∑
n>0

 315ζ(7)

8π7
σ1,5(n) −

315ζ(7)

4π7
σ3,3(n) −

2835ζ(5)ζ(7)

16π12
σ2(n) +

42525ζ(7)2

128π14
σ0(n)

 qn

−
i

c

∑
n>0

(
189ζ(9)

16π9
σ1(n) −

945ζ(9)

16π9
σ3(n) +

1125ζ(9)

64π9
σ5(n) +

2835ζ(9)

4π9
σ3,1(n)

)
q
n

−
i

c

∑
n>0

(
8505ζ(5)ζ(9)

16π14
σ0(n) +

28755ζ(11)

64π11
σ3(n) −

135135ζ(13)

128π13
σ1(n)

)
q
n
, (c = 3! · 4! · 5!)
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Multiple Eisenstein series

The sum in the definition of Gs1,...,sl is absolutely convergent for s1 ≥ 3 and
s2, . . . , sl ≥ 2. Therefore using the same combinatorial argument as in the MZV
case these functions fulfill the stuffle product, for example it is

G4(τ) ·G6(τ) = G4,6(τ) +G6,4(τ) +G10(τ) .

But the shuffle product can’t be fulfilled because for example it is

ζ(4)ζ(6) = ζ(4, 6)+4ζ(4, 6)+11ζ(6, 4)+26ζ(7, 3)+56ζ(8, 2)+112ζ(9, 1)

and this equation does not make sense in terms of multiple Eisenstein series because
we didn’t define G9,1.

What about the (extended) double shuffle relations when all corresponding multiple
Eisenstein series are defined? For this we need to recall the definition of modular
forms and cusp forms.
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Modular forms

Definition

A holomorphic function f : H→ C is a modular form of weight k if it satisfies

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ), ∀

(
a b
c d

)
∈ SL2(Z)

and if it has a Fourier expansion of the form f(τ) =
∑∞
n=0 anq

n with an ∈ C and
q = e2πiτ . If a0 = 0 then f is called cusp form.

The Eisenstein series Gk for even k are the building blocks of all modular forms and it
is well known that the space of all modular forms is a graded algebra given by
C[G4, G6].
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Modularity

Because of of the stuffle product we have for example

G2
4 = 2G4,4 +G8

so G4,4 is a modular form of weight 8. The space of weight 8 modular forms has
dimension one and therefore G4,4 is a multiple of G8 from which one can deduce the
following relations between multiple divisor functions

[8] = 12[4, 4] +
1

40
[4]− 1

252
[2] ,

which can be proven without using the theory of modular forms (see tomorrow). In
general we have

Theorem

If all s1, ..., sl are even and all sj > 2, then we have∑
σ∈Σl

Gsσ(1),...,sσ(l) ∈Mk(SL2(Z)) ,

where the weight k is given by k = s1 + ...+ sl.

Proof: Easy induction using stuffle relation.
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Modularity

By the double shuffle relations and Eulers formula ζ(2k) = λ · π2k for λ ∈ Q one
can show:

− 25 · 3 · 5 · 757

17
ζ(12)− 29 · 3 · 52 · 7 · 691

17
ζ(6, 3, 3)

− 29 · 32 · 5 · 7 · 691

17
ζ(4, 5, 3) +

28 · 32 · 52 · 691

17
ζ(7, 5)

= −40ζ(4)3 + 49ζ(6)2

= 0 because of Euler’s formula .

But in the context of multiple Eisenstein series we get:

Theorem

− 25 · 3 · 5 · 757

17
G̃12 −

29 · 3 · 52 · 7 · 691

17
G̃6,3,3

− 29 · 32 · 5 · 7 · 691

17
G̃4,5,3 +

28 · 32 · 52 · 691

17
G̃7,5 = ∆ ∈ S12(SL2(Z)) .
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Modularity & cusp forms

Proof: The first identity of the above MZV Relation hold also for multiple Eisensten
series. It follows from the Stuffle relation and partial fraction decompositions which
replaces Shuffle.
But in the second identity, i.e., the place when Eulers formula is needed, one gets the
"error term" , because in general whenever s1 + s2 ≥ 12 the following function
doesn’t vanish

Gs1 ·Gs2 −
ζ(s1)ζ(s2)

ζ(s1 + s2)
Gs1+s2 ∈ Ss1+s2(SL2(Z)).

So the failure of Euler’s relation give us the cusp forms �

Remark

There are many more such linear relations which give cusp forms
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Modularity, cusp forms

From such identities we get new relations between Fourier coefficients of modular
forms and multiple divisor sums, e.g.:

Corollary - Formula for the Ramanujan τ -function

For all n ∈ N we have

τ(n) =
2 · 7 · 691

32 · 11 · 17
σ1(n)− 43 · 691

23 · 32 · 5 · 17
σ3(n) +

691

2 · 33 · 7 · 17
σ5(n)

− 757

23 · 33 · 5 · 7 · 11 · 17
σ11(n)− 23 · 5 · 691

3 · 17
σ2,2(n) +

22 · 5 · 691

3 · 17
σ3,1(n)

− 22 · 7 · 691

3 · 17
σ3,3(n) +

2 · 7 · 691

17
σ4,2(n) +

22 · 7 · 691

3 · 17
σ5,1(n)

+
2 · 5 · 691

3 · 17
σ6,4(n) +

24 · 5 · 7 · 691

17
σ3,4,2(n)− 24 · 5 · 7 · 691

17
σ5,2,2(n) .

∆(τ) = q

∞∏
i=1

(1− qn)24 =
∑
n>0

τ(n)qn = q − 24q2 + 252q3 − 1472q4 + ...
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"Non convergent" multiple Eisenstein series

The multiple Eisenstein series are defined for s1 ≥ 3 and s2, . . . , sl ≥ 2 but the
MZVs are defined for s1 ≥ 2 and s2, . . . , sl ≥ 1.

Question: What should Gs1,...,sl be for s1 ≥ 2 and s2, . . . , sl ≥ 1?

The answer depends on what properties you want these functions to fulfill. If you want
them to fulfill the double shuffle relations (up to cusp forms) then this questions is
answered for length l = 2 by Gangl, Kaneko and Zagier. If you want them to have the
algebraic structure of a stuffle algebra then this is currently work in progress (Bouillot,
B.). In the following we will focus on the "double shuffle relations"-version.
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"Non convergent" multiple Eisenstein series

Theorem (GKZ)

Define for s1 ≥ 2, s2 ≥ 1 the double Eisenstein series by their Fourier expansion

G̃s1,s2(τ) = ζ̃(s1, s2) +
(−1)s1+s2

(s1 − 1)!(s2 − 1)!

∑
n>0

anq
n ,

where

an = σs1−1,s2−1(n) + (−1)s2(s2 − 1)!ζ̃(s2)σs1−1(n)

+ (s1 − 1)!(s2 − 1)!
∑

k1+k2=s1+s2

Ck2s1,s2 ζ̃(k2)σk1−1(n)

+ δs2,1

(
n

2
σs1−2(n)− 1

2
σs1−1(n)

)
+ δs1,2

(
n

2s2
σs2−1(n)

)
,

Then these functions fulfill the (extended) double shuffle relations modulo cusp forms.
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"Non convergent" multiple Eisenstein series

For example these extended version of double Eisenstein series fulfill G3 = G2,1.
This is equivalent to [3] = [2, 1]− 1

2 [2] + d[1] which follows also from the theory of
multiple divisor functions (tomorrow).

What about G2,...,2 ? We want our multiple Eisenstein series to fulfill the same linear
relations as the corresponding MZV (modulo cusp forms), therefore we have to imitate
the following well known result in the context of multiple Eisenstein series:

Theorem

For λn := (−1)n−1 · 22n−1 · (2n+ 1) ·B2n we have

ζ(2n)− λn · ζ(2, ..., 2︸ ︷︷ ︸
n

) = 0 .
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"Non convergent" multiple Eisenstein series

Ansatz: Define G2,...,2 to be the function obtained by setting all si to 2 in the formula
of the Fourier Expansion. e.g.

G2(τ) = ζ(2) + (−2πi)2
∑
n>0

σ1(n)qn ,

G2,2(τ) = ζ(2, 2) + (−2πi)4
∑
n>0

(
σ1,1(n)− 1

8
σ1(n)

)
qn .

Will this give the "right" definition of G2,...,2?

No, because with this definition the function

G2n − λn ·G2..., 2︸ ︷︷ ︸
n

/∈ S2n(SL2(Z))

is not a cusp form. It is not modular but quasi-modular, this property is used for the
following modified definition:
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The multiple Eisenstein series G∗2,...,2

Theorem

Let Xn(τ) := (2πi)−2lG2, ..., 2︸ ︷︷ ︸
n

(τ), d := q ddq and

G̃∗2, ..., 2︸ ︷︷ ︸
n

(τ) := Xn(τ) +

n−1∑
j=1

(2n− 2− j)!
2j · j! · (2n− 2)!

dj Xn−j(τ) .

then we have with λn ∈ Q as above

G̃2n − λn · G̃∗2,...,2 ∈ S2n(SL2Z) .
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The multiple Eisenstein series G∗2,...,2

Examples:

G∗2,2 = G̃2,2 +
1

4
d G̃2 ,

G∗2,2,2 = G̃2,2,2 +
1

8
d G̃2,2 +

1

96
d2 G̃2 ,

G∗2,2,2,2 = G̃2,2,2,2 +
1

12
d G̃2,2,2 +

1

240
d2 G̃2,2 +

1

5760
d3 G̃2 .

...

In weight 12 we get

G̃12 − λ6 · G̃∗2,2,2,2,2,2 =
17

36 · 54 · 72
∆

which gives another expression for τ(n) in σ11(n) and σ1,...,1(n) (see last slide).
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Sketch of the proof

First show following identity for the generating function of Xn

Φ(τ, T ) :=
∑
n≥0

Xn(τ)(−4πiT )n = exp

−2
∑
l≥1

(−1)l

(2l)!
E2l(τ)(−4πiT )l


where Ek(τ) = −Bk2k +

∑
n>0 σk−1(n)qn.

Using the modularity of the Ek for k > 2 one sees easily that Φ is a Jacobi-like form
of weight 0, i.e.:

Φ

(
aτ + b

cτ + d
,

T

(cτ + d)2

)
= exp

(
cT

(cτ + d)

)
Φ(τ, T ) , ∀

(
a b
c d

)
∈ SL2(Z).

One can show that coefficients of such functions always give rise to modular forms as
above.
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Application

New formular for fourier coefficients of cusp forms, e.g.:

− 17

9794925
τ(n) =

(
n5

7560
− n4

1008
+

13n3

4320
− 41n2

9072
+

671n

201600
− 73

76032

)
σ1(n)

+

(
1

126
n4 − 5

54
n3 +

23

54
n2 − 227

252
n+

631

864

)
σ1,1(n)

+

(
4

9
n3 − 56

9
n2 +

154

5
n− 479

9

)
σ1,1,1(n)

+

(
64

3
n2 − 288n+ 1032

)
σ1,1,1,1(n)

+ (768n− 7040)σ1,1,1,1,1(n)

+ 15360σ1,1,1,1,1,1(n)− 1

17512704
σ11(n)

Reminder:
σ1, ..., 1︸ ︷︷ ︸

l

(n) =
∑

u1v1+...+ulvl=n
u1>...>ul>0

v1 · ... · vl .
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Summary

Multiple Eisenstein series are holomorphic functions on the upper half plane which are
defined as a sum over ordered lattice points.

They have a Fourier expansion where the constant term is given by the corresponding
multiple zeta value and the remaining terms are rational linear combinations of
products of multiple zeta values and multiple divisor functions.

A general (i.e. s1 ≥ 2 and s2, . . . , sl ≥ 1) definition of Gs1,...,sl such that these
functions fulfill similar properties as multiple zeta values (for example double shuffle
relations or the algebraic structure) is still an open question.

We believe that this question can be understand better when studying the multiple
divisor functions on its own.
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