Generating series of multiple divisor sums and other interesting q-series

Henrik Bachmann - University of Hamburg

1th July 2014

Content of this talk

- We are interested in a family of q-series which arises in a theory which combines multiple zeta values, partitions and modular forms.
- There are a lot of linear relations between these q-series. For example:

$$
\sum_{n_{1}>n_{2}>0} \frac{q^{n_{1}} n_{2} q^{n_{2}}}{\left(1-q^{n_{1}}\right)\left(1-q^{n_{2}}\right)}=\frac{1}{2} \sum_{n>0} \frac{n^{2} q^{n}}{1-q^{n}}+\frac{1}{2} \sum_{n>0} \frac{n q^{n}}{1-q^{n}}-\sum_{n>0} \frac{n q^{n}}{\left(1-q^{n}\right)^{2}}
$$

- First we start by an elementary definition of these q-series using partitions...

Partitions

By a partititon of a natural number n with l different parts we denote a representation of n as a sum of l different numbers.

For example

$$
15=4+4+3+2+1+1
$$

is a partition of 15 with 4 different parts.

Partitions

By a partititon of a natural number n with l different parts we denote a representation of n as a sum of l different numbers.

For example

$$
15=4+4+3+2+1+1
$$

is a partition of 15 with 4 different parts.

We identify a partition of n with l different parts with a tupel $\binom{u}{v}$, with $u, v \in \mathbb{N}^{l}$.

- The u_{j} are the l different summands.
- The v_{j} count their appearence in the sum.

The above partition is therefore given by $\binom{u}{v}=\binom{4,3,2,1}{2,1,1,2}$.

Partitions

We denote the set of all partition of n with l different parts by $P_{l}(n)$, i.e. we set

$$
P_{l}(n):=\left\{\left.\binom{u}{v} \in \mathbb{N}^{l} \times \mathbb{N}^{l} \right\rvert\, n=u_{1} v_{1}+\cdots+u_{l} v_{l}, u_{1}>\cdots>u_{l}>0\right\}
$$

An element in $P_{l}(n)$ can be represented by a Young tableau. For example

$$
\binom{4,3,2,1}{2,1,1,2}=\begin{array}{|l|l|l|}
\hline & & \\
\square & & \\
\square & \square & \\
\hline
\end{array}
$$

With this it is easy to see that this element gives rise to a different element $P_{4}(15)$:

Partitions

We denote the set of all partition of n with l different parts by $P_{l}(n)$, i.e. we set

$$
P_{l}(n):=\left\{\left.\binom{u}{v} \in \mathbb{N}^{l} \times \mathbb{N}^{l} \right\rvert\, n=u_{1} v_{1}+\cdots+u_{l} v_{l}, \quad u_{1}>\cdots>u_{l}>0\right\}
$$

On the set $P_{l}(n)$ we have an involution ρ given by the conjugation of partitionen

$$
\binom{4,3,2,1}{2,1,1,2}=\square \quad \rho \quad \begin{array}{|}
\rho
\end{array}=\binom{6,4,3,2}{1,1,1,1}
$$

On $P_{l}(n)$ this ρ is explicitly given by $\rho\left(\binom{u}{v}\right)=\binom{u^{\prime}}{v^{\prime}}$, where $u_{j}^{\prime}=v_{1}+\cdots+v_{l-j+1}$ and $v_{j}^{\prime}=u_{l-j+1}-u_{l-j+2}$ with $u_{l+1}:=0$, i.e.

$$
\rho:\binom{u_{1}, \ldots, u_{l}}{v_{1}, \ldots, v_{l}} \longmapsto\binom{v_{1}+\cdots+v_{l}, \ldots, v_{1}+v_{2}, v_{1}}{u_{l}, u_{l-1}-u_{l}, \ldots, u_{1}-u_{2}} .
$$

Partitions \& q-series

We now want to construct q-series $\sum_{n>0} a_{n} q^{n}$, where the coefficients a_{n} are given by sums over $P_{l}(n)$. The map ρ will then give linear relations between these series.

Example Consider the following series

$$
\sum_{n>0}\left(\sum_{\binom{u}{v} \in P_{2}(n)} v_{1} \cdot v_{2}\right) q^{n}
$$

Partitions \& q-series

We now want to construct q-series $\sum_{n>0} a_{n} q^{n}$, where the coefficients a_{n} are given by sums over $P_{l}(n)$. The map ρ will then give linear relations between these series.

Example Consider the following series

$$
\begin{aligned}
& \sum_{n>0}\left(\sum_{\substack{u \\
u \\
v} \in P_{2}(n)} v_{1} \cdot v_{2}\right) q^{n}=\sum_{n>0}\left(\sum_{\rho\left(\binom{u}{v}\right)=\binom{u^{\prime}}{v^{\prime}} \in P_{2}(n)} u_{2}^{\prime} \cdot\left(u_{1}^{\prime}-u_{2}^{\prime}\right)\right) q^{n} \\
& =\sum_{n>0}\left(\sum_{\binom{u}{v} \in P_{2}(n)} u_{2} \cdot u_{1}\right) q^{n}-\sum_{n>0}\left(\sum_{\binom{u}{v} \in P_{2}(n)} u_{2}^{2}\right) q^{n} .
\end{aligned}
$$

bi-brackets

Definition

For $r_{1}, \ldots, r_{l} \geq 0, s_{1}, \ldots, s_{l}>0$ and $c:=\left(r_{1}!\left(s_{1}-1\right)!\ldots r_{l}!\left(s_{l}-1\right)!\right)^{-1}$ we define th following q-series

$$
\begin{aligned}
& {\left[\begin{array}{l}
s_{1}, \ldots, s_{l} \\
r_{1}, \ldots, r_{l}
\end{array}\right]:=c \cdot \sum_{n>0}\left(\sum_{\substack{u \\
(\\
v}} \sum_{P_{l}(n)}^{r_{1}} v_{1}^{s_{1}-1} \ldots u_{l}^{r_{l}} v_{l}^{s_{l}-1}\right) q^{n}} \\
& =\sum_{\substack{u_{1}>\cdots>u_{l}>0 \\
v_{1}, \ldots, v_{l}>0}} \frac{u_{1}^{r_{1}}}{r_{1}!} \ldots \frac{u_{l}^{r_{l}}}{r_{1}!} \cdot \frac{v_{1}^{s_{1}-1} \ldots v_{l}^{s_{l}-1}}{\left(s_{1}-1\right)!\ldots\left(s_{l}-1\right)!} \cdot q^{u_{1} v_{1}+\cdots+u_{l} v_{l}} \in \mathbb{Q}[[q]]
\end{aligned}
$$

which we call bi-brackets of weight $r_{1}+\cdots+r_{k}+s_{1}+\cdots+s_{l}$, upper weight $s_{1}+\cdots+s_{l}$, lower weight $r_{1}+\cdots+r_{l}$ and length l. By $\mathcal{B D}$ we denote the \mathbb{Q}-vector space spanned by all bi-brackets and 1 .

bi-brackets

The bi-brackets can also be written as

$$
\left[\begin{array}{l}
s_{1}, \ldots, s_{l} \\
r_{1}, \ldots, r_{l}
\end{array}\right]=c \cdot \sum_{n_{1}>\cdots>n_{l}>0} \frac{n_{1}^{r_{1}} P_{s_{1}-1}\left(q^{n_{1}}\right) \ldots n_{l}^{r_{l}} P_{s_{l}-1}\left(q^{n_{l}}\right)}{\left(1-q^{n_{1}}\right)^{s_{1}} \ldots\left(1-q^{n_{l}}\right)^{s_{l}}}
$$

where the $P_{k-1}(t)$ are the Eulerian polynomials defined by

$$
\frac{P_{k-1}(t)}{(1-t)^{k}}=\sum_{d>0} d^{k-1} t^{d}
$$

Examples:

$$
\begin{gathered}
P_{0}(t)=P_{1}(t)=t, P_{2}(t)=t^{2}+t, P_{3}(t)=t^{3}+4 t^{2}+t \\
{\left[\begin{array}{l}
1,1 \\
0,1
\end{array}\right]=\sum_{n_{1}>n_{2}>0} \frac{q^{n_{1}} n_{2} q^{n_{2}}}{\left(1-q^{n_{1}}\right)\left(1-q^{n_{2}}\right)}}
\end{gathered}
$$

multiple divisor sums and modular forms

For $r_{1}=\cdots=r_{l}=0$ we also write

$$
\left[\begin{array}{c}
s_{1}, \ldots, s_{l} \\
0, \ldots, 0
\end{array}\right]=\left[s_{1}, \ldots, s_{l}\right]=: \frac{1}{\left(s_{1}-1\right)!\ldots\left(s_{l}-1\right)!} \sum_{n>0} \sigma_{s_{1}-1, \ldots, s_{l}-1}(n) q^{n}
$$

and denote the space spanned by all $\left[s_{1}, \ldots, s_{l}\right]$ and 1 by $\mathcal{M D}$. We call the coefficients $\sigma_{s_{1}-1, \ldots, s_{l}-1}(n)$ multiple divisor sums. In the case $l=1$ these are the classical divisor sums $\sigma_{k-1}(n)=\sum_{d \mid n} d^{k-1}$ and

$$
[k]=\frac{1}{(k-1)!} \sum_{n>0} \sigma_{k-1}(n) q^{n}
$$

multiple divisor sums and modular forms

For $r_{1}=\cdots=r_{l}=0$ we also write

$$
\left[\begin{array}{c}
s_{1}, \ldots, s_{l} \\
0, \ldots, 0
\end{array}\right]=\left[s_{1}, \ldots, s_{l}\right]=: \frac{1}{\left(s_{1}-1\right)!\ldots\left(s_{l}-1\right)!} \sum_{n>0} \sigma_{s_{1}-1, \ldots, s_{l}-1}(n) q^{n}
$$

and denote the space spanned by all $\left[s_{1}, \ldots, s_{l}\right]$ and 1 by $\mathcal{M D}$. We call the coefficients $\sigma_{s_{1}-1, \ldots, s_{l}-1}(n)$ multiple divisor sums. In the case $l=1$ these are the classical divisor sums $\sigma_{k-1}(n)=\sum_{d \mid n} d^{k-1}$ and

$$
[k]=\frac{1}{(k-1)!} \sum_{n>0} \sigma_{k-1}(n) q^{n}
$$

These function appear in the Fourier expansion of classical Eisenstein series which are modular forms for $S L_{2}(\mathbb{Z})$, for example

$$
G_{2}=-\frac{1}{24}+[2], \quad G_{4}=\frac{1}{1440}+[4], \quad G_{6}=-\frac{1}{60480}+[6]
$$

We will see that we have an inclusion of algebras

$$
M_{\mathbb{Q}}\left(S L_{2}(\mathbb{Z})\right) \subset \widetilde{M}_{\mathbb{Q}}\left(S L_{2}(\mathbb{Z})\right) \subset \mathcal{M D} \subset \mathcal{B D}
$$

where $M_{\mathbb{Q}}\left(S L_{2}(\mathbb{Z})\right)=\mathbb{Q}\left[G_{4}, G_{6}\right]$ and $\widetilde{M}_{\mathbb{Q}}\left(S L_{2}(\mathbb{Z})\right)=\mathbb{Q}\left[G_{2}, G_{4}, G_{6}\right]$ are the algebras of modular forms and quasi-modular forms.

bi-brackets - examples

$$
\begin{aligned}
& {[2]=\sum_{n>0} \sigma_{1}(n) q^{n}=q+3 q^{2}+4 q^{3}+7 q^{4}+6 q^{5}+12 q^{6}+\ldots,} \\
& {\left[\begin{array}{l}
2,2 \\
1,0
\end{array}\right]=2 q^{3}+7 q^{4}+23 q^{5}+42 q^{6}+89 q^{7}+142 q^{8}+221 q^{9}+342 q^{10}+\ldots \text {, }} \\
& {\left[\begin{array}{l}
2,2 \\
0,1
\end{array}\right]=q^{3}+3 q^{4}+10 q^{5}+16 q^{6}+35 q^{7}+52 q^{8}+78 q^{9}+120 q^{10}+\ldots,} \\
& {\left[\begin{array}{l}
1,1,1 \\
1,2,3
\end{array}\right]=\frac{1}{12}\left(12 q^{6}+28 q^{7}+96 q^{8}+481 q^{9}+747 q^{10}+2042 q^{11}+\ldots\right),} \\
& {[4,4,4]=\frac{1}{216}\left(q^{6}+9 q^{7}+45 q^{8}+190 q^{9}+642 q^{10}+1899 q^{11}+\ldots\right),} \\
& {[3,1,3,1]=\frac{1}{4}\left(q^{10}+2 q^{11}+8 q^{12}+16 q^{13}+43 q^{14}+70 q^{15}+\ldots\right) \text {. }}
\end{aligned}
$$

bi-brackets

- There are a lot of relations between bi-brackets. For example the discussion from the beginning gives

$$
\left[\begin{array}{l}
2,2 \\
0,0
\end{array}\right]=\left[\begin{array}{l}
1,1 \\
1,1
\end{array}\right]-2\left[\begin{array}{l}
1,1 \\
0,2
\end{array}\right]
$$

- To obtain more relations we have to study the algebraic structure of the space $\mathcal{B D}$ which is "similar" to the algebraic structure of the space of multiple zeta values.
- The brackets $\left[s_{1}, \ldots, s_{l}\right]$ have a direct connection to multiple zeta values and the Fourier expansion of multiple Eisenstein series.

Multiple zeta values

Definition

For natural numbers $s_{1} \geq 2, s_{2}, \ldots, s_{l} \geq 1$ the multiple zeta value (MZV) of weight $s_{1}+\ldots+s_{l}$ and length l is defined by

$$
\zeta\left(s_{1}, \ldots, s_{l}\right)=\sum_{n_{1}>\ldots>n_{l}>0} \frac{1}{n_{1}^{s_{1}} \ldots n_{l}^{s_{l}}}
$$

- The product of two MZV can be expressed as a linear combination of MZV with the same weight (stuffle product). e.g:

$$
\zeta(r) \cdot \zeta(s)=\zeta(r, s)+\zeta(s, r)+\zeta(r+s)
$$

- MZV can be expressed as iterated integrals. This gives another way (shuffle product) to express the product of two MZV as a linear combination of MZV.
- These two products give a number of \mathbb{Q}-relations (double shuffle relations) between MZV. Conjecturally these are all relations between MZV.

Multiple zeta values

Example:

$$
\begin{aligned}
\zeta(2,3)+3 \zeta(3,2) & +6 \zeta(4,1) \stackrel{\text { shuffle }}{=} \zeta(2) \cdot \zeta(3) \stackrel{\text { stuffle }}{=} \zeta(2,3)+\zeta(3,2)+\zeta(5) . \\
& \Longrightarrow 2 \zeta(3,2)+6 \zeta(4,1) \stackrel{\text { double shuffle }}{=} \zeta(5)
\end{aligned}
$$

But there are more relations between MZV, which can be proven by using (extended) double shuffle relations. e.g.:

$$
\begin{aligned}
\zeta(4) & =\zeta(2,1,1) \\
\zeta(5) & =\zeta(4,1)+\zeta(3,2)+\zeta(2,3) \\
16 \zeta(3,2,2) & =18 \zeta(5,2)+21 \zeta(4,3)-2 \zeta(7) \\
\frac{5197}{691} \zeta(12) & =168 \zeta(5,7)+150 \zeta(7,5)+28 \zeta(9,3)
\end{aligned}
$$

bi-brackets - filtrations

Filtrations

On $\mathcal{B D}$ we have the increasing filtrations $\mathrm{Fil}_{\bullet}^{\mathrm{W}}$ given by the upper weight, $\mathrm{Fil}{ }_{\bullet}^{\mathrm{D}}$ given by the lower weight and $\mathrm{Fil}_{\bullet}^{\mathrm{L}}$ given by the length, i.e., we have for $A \subseteq \mathcal{B D}$

$$
\begin{aligned}
\operatorname{Fil}_{k}^{\mathrm{W}}(A) & :=\left\langle\left.\left[\begin{array}{l}
s_{1}, \ldots, s_{l} \\
r_{1}, \ldots, r_{l}
\end{array}\right] \in A \right\rvert\, 0 \leq l \leq k, s_{1}+\cdots+s_{l} \leq k\right\rangle_{\mathrm{Q}} \\
\operatorname{Fil}_{k}^{\mathrm{D}}(A) & :=\left\langle\left.\left[\begin{array}{l}
s_{1}, \ldots, s_{l} \\
r_{1}, \ldots, r_{l}
\end{array}\right] \in A \right\rvert\, 0 \leq l \leq k, r_{1}+\cdots+r_{l} \leq k\right\rangle_{\mathrm{Q}} \\
\operatorname{Fil}_{l}^{\mathrm{L}}(A) & :=\left\langle\left.\left[\begin{array}{l}
s_{1}, \ldots, s_{l} \\
r_{1}, \ldots, r_{l}
\end{array}\right] \in A \right\rvert\, r \leq l\right\rangle_{\mathrm{Q}}
\end{aligned}
$$

If we consider the length and weight filtration at the same time we use the short notation $\mathrm{Fil}_{k, l}^{\mathrm{W}, \mathrm{L}}:=\mathrm{Fil}_{k}^{\mathrm{W}} \mathrm{Fil}_{l}^{\mathrm{L}}$ and simlar for the other filtrations.

bi-brackets - algebra structure

Theorem

The space $\mathcal{B D}$ is a filtered differential \mathbb{Q}-algebra with the differential given by $\mathrm{d}=q \frac{d}{d q}$ and

$$
\mathrm{Fil}_{k_{1}, d_{1}, l_{1}}^{\mathrm{W}, \mathrm{D}, \mathrm{~L}}(\mathcal{B D}) \cdot \mathrm{Fil}_{k_{2}, d_{2}, l_{2}}^{\mathrm{W}, \mathrm{D}, \mathrm{~L}}(\mathcal{B D}) \subset \operatorname{Fil}_{k_{1}+k_{2}, d_{1}+d_{2}, l_{1}+l_{2}}^{\mathrm{W}, \mathrm{D}, \mathrm{~L}}(\mathcal{B D})
$$

As in the case of multiple zeta values we also have two different ways, also called stuffle and shuffle, of writing the product of two bi-brackets.
Examples:

$$
\begin{gathered}
{[1] \cdot[1]=2[1,1]+[2]-[1]} \\
{[1] \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right] \stackrel{s t}{=}\left[\begin{array}{l}
1,1 \\
0,1
\end{array}\right]+\left[\begin{array}{l}
1,1 \\
1,0
\end{array}\right]-\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{l}
2 \\
1
\end{array}\right]} \\
{[1] \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right] \stackrel{s h}{=}\left[\begin{array}{l}
1,1 \\
1,0
\end{array}\right]-\frac{1}{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
2
\end{array}\right]} \\
\mathrm{d}\left[\begin{array}{l}
1,2 \\
3,4
\end{array}\right]=4\left[\begin{array}{l}
2,2 \\
4,4
\end{array}\right]+10\left[\begin{array}{l}
1,3 \\
3,5
\end{array}\right]
\end{gathered}
$$

bi-brackets - algebra structure

That the space $\mathcal{B D}$ is closed under $\mathrm{d}=q \frac{d}{d q}$ is easy to see, since
$\mathrm{d} \sum_{n>0} a_{n} q^{n}=\sum_{n>0} n a_{n} q^{n}$ one obtains:

Proposition

The operater d on $\left[\begin{array}{l}s_{1}, \ldots, s_{l} \\ r_{1}, \ldots, r_{l}\end{array}\right]$ is given by

$$
\mathrm{d}\left[\begin{array}{l}
s_{1}, \ldots, s_{l} \\
r_{1}, \ldots, r_{l}
\end{array}\right]=\sum_{j=1}^{l}\left(s_{j}\left(r_{j}+1\right)\left[\begin{array}{l}
s_{1}, \ldots, s_{j-1}, s_{j}+1, s_{j+1}, \ldots, s_{l} \\
r_{1}, \ldots, r_{j-1}, r_{j}+1, r_{j+1}, \ldots, r_{l}
\end{array}\right]\right)
$$

Example:

$$
\mathrm{d}[k]=k\left[\begin{array}{c}
k+1 \\
1
\end{array}\right], \quad \mathrm{d}\left[s_{1}, s_{2}\right]=s_{1}\left[\begin{array}{c}
s_{1}+1, s_{2} \\
1,0
\end{array}\right]+s_{2}\left[\begin{array}{c}
s_{1}, s_{2}+1 \\
0,1
\end{array}\right]
$$

bi-brackets - generating series

To prove that $\mathcal{B D}$ is closed under multiplication we will consider the generating series of bi-brackets

Definition

For the generating function of the bi-brackets we write

$$
\begin{aligned}
& \left|\begin{array}{c}
X_{1}, \ldots, X_{l} \\
Y_{1}, \ldots, Y_{l}
\end{array}\right|:= \\
& \sum_{\substack{s_{1}, \ldots, s_{l}>0 \\
r_{1}, \ldots, r_{l}>0}}\left[\begin{array}{c}
s_{1}, \ldots, s_{l} \\
r_{1}-1, \ldots, r_{l}-1
\end{array}\right] X_{1}^{s_{1}-1} \ldots X_{l}^{s_{l}-1} \cdot Y_{1}^{r_{1}-1} \ldots Y_{l}^{r_{l}-1}
\end{aligned}
$$

bi-brackets - generating series

For $n \in \mathbb{N}$ set $L_{n}(X):=\frac{e^{X} q^{n}}{1-e^{X} q^{n}} \in \mathbb{Q}[[q, X]]$.

Theorem

For all $l \geq 1$ we have the following two expressions for the generating series of bi-brackets

$$
\begin{aligned}
& \left|\begin{array}{c}
X_{1}, \ldots, X_{l} \\
Y_{1}, \ldots, Y_{l}
\end{array}\right|=\sum_{u_{1}>\cdots>u_{l}>0} \prod_{j=1}^{l} e^{u_{j} Y_{j}} L_{u_{j}}\left(X_{j}\right) \\
& =\sum_{u_{1}>\cdots>u_{l}>0} \prod_{j=1}^{l} e^{u_{j}\left(X_{l+1-j}-X_{l+2-j}\right)} L_{u_{j}}\left(Y_{1}+\cdots+Y_{l-j+1}\right)
\end{aligned}
$$

(where $X_{l+1}:=0$)

Corollary (partition relation)

For all $l \geq 1$ we have

$$
\left|\begin{array}{c}
X_{1}, \ldots, X_{l} \\
Y_{1}, \ldots, Y_{l}
\end{array}\right|=\left|\begin{array}{c}
Y_{1}+\cdots+Y_{l}, \ldots, Y_{1}+Y_{2}, Y_{1} \\
X_{l}, X_{l-1}-X_{l}, \ldots, X_{1}-X_{2}
\end{array}\right|
$$

bi-brackets - partition relation

The proof of the theorem uses the conjugation ρ which was given by

$$
\rho:\binom{u_{1}, \ldots, u_{l}}{v_{1}, \ldots, v_{l}} \longmapsto\binom{v_{1}+\cdots+v_{l}, \ldots, v_{1}+v_{2}, v_{1}}{u_{l}, u_{l-1}-u_{l}, \ldots, u_{1}-u_{2}}
$$

on the set of partitions $P_{l}(n)$.
It is therefore not surprising that we have the similar looking equality

$$
\left|\begin{array}{c}
X_{1}, \ldots, X_{l} \\
Y_{1}, \ldots, Y_{l}
\end{array}\right|=\left|\begin{array}{c}
Y_{1}+\cdots+Y_{l}, \ldots, Y_{1}+Y_{2}, Y_{1} \\
X_{l}, X_{l-1}-X_{l}, \ldots, X_{1}-X_{2}
\end{array}\right|
$$

bi-brackets - partition relation

Corollary (partition relation in length 1 and 2)

For $r, r_{1}, r_{2} \geq 0$ and $s, s_{1}, s_{2}>0$ we obtain for the coefficients in the corollary before

$$
\begin{aligned}
{\left[\begin{array}{l}
s \\
r
\end{array}\right] } & =\left[\begin{array}{l}
r+1 \\
s-1
\end{array}\right] \\
{\left[\begin{array}{c}
s_{1}, s_{2} \\
r_{1}, r_{2}
\end{array}\right] } & =\sum_{\substack{0 \leq j \leq r_{1} \\
0 \leq \bar{k} \leq s_{2}-1}}(-1)^{k}\binom{s_{1}-1+k}{k}\binom{r_{2}+j}{j}\left[\begin{array}{c}
r_{2}+j+1, r_{1}-j+1 \\
s_{2}-1-k, s_{1}-1+k
\end{array}\right] .
\end{aligned}
$$

Examples:

$$
\begin{aligned}
& {\left[\begin{array}{l}
1,1 \\
1,1
\end{array}\right]=\left[\begin{array}{l}
2,2 \\
0,0
\end{array}\right]+2\left[\begin{array}{l}
3,1 \\
0,0
\end{array}\right]} \\
& {\left[\begin{array}{l}
3,3 \\
0,0
\end{array}\right]=6\left[\begin{array}{l}
1,1 \\
0,4
\end{array}\right]-3\left[\begin{array}{l}
1,1 \\
1,3
\end{array}\right]+\left[\begin{array}{l}
1,1 \\
2,2
\end{array}\right]} \\
& {\left[\begin{array}{l}
2,2 \\
1,1
\end{array}\right]=-2\left[\begin{array}{l}
2,2 \\
0,2
\end{array}\right]+\left[\begin{array}{l}
2,2 \\
1,1
\end{array}\right]-4\left[\begin{array}{l}
3,1 \\
0,2
\end{array}\right]+2\left[\begin{array}{l}
3,1 \\
1,1
\end{array}\right] .}
\end{aligned}
$$

bi-brackets - algebra structure

Lemma

For $L_{n}(X)=\frac{e^{X} q^{n}}{1-e^{X} q^{n}}$ we have

$$
\begin{aligned}
& L_{n}(X) \cdot L_{n}(Y)=\operatorname{coth}\left(\frac{X-Y}{2}\right) \cdot \frac{L_{n}(X)-L_{n}(Y)}{2}-\frac{L_{n}(X)+L_{n}(Y)}{2} \\
& =\sum_{k>0} \frac{B_{k}}{k!}(X-Y)^{k-1}\left(L_{n}(X)+(-1)^{k-1} L_{n}(Y)\right)+\frac{L_{n}(X)-L_{n}(Y)}{X-Y}
\end{aligned}
$$

Proof: By definition it is

$$
\operatorname{coth}(X)=\frac{e^{X}+e^{-X}}{e^{X}-e^{-X}}=1+\frac{2}{e^{2 X}-1}
$$

and by direct calculation

$$
L_{n}(X) \cdot L_{n}(Y)=\frac{1}{e^{X-Y}-1} L_{n}(X)+\frac{1}{e^{Y-X}-1} L_{n}(Y)
$$

This gives the first equation and the second one follows by the generating series of the Bernoulli numbers $\frac{X}{e^{X}-1}=\sum_{n \geq 0} \frac{B_{n}}{n!} X^{n}$.

bi-brackets - algebra structure

Proposition

The product of the generating series in length one can be written as:
("stuffle product of the generating series in length one")

$$
\begin{aligned}
\left|\begin{array}{c}
X_{1} \\
Y_{1}
\end{array}\right| \cdot\left|\begin{array}{c}
X_{2} \\
Y_{2}
\end{array}\right| & =\left|\begin{array}{c}
X_{1}, X_{2} \\
Y_{1}, Y_{2}
\end{array}\right|+\left|\begin{array}{c}
X_{2}, X_{1} \\
Y_{2}, Y_{1}
\end{array}\right|+\frac{1}{X_{1}-X_{2}}\left(\left|\begin{array}{c}
X_{1} \\
Y_{1}+Y_{2}
\end{array}\right|-\left|\begin{array}{c}
X_{2} \\
Y_{1}+Y_{2}
\end{array}\right|\right) \\
& +\sum_{k=1}^{\infty} \frac{B_{k}}{k!}\left(X_{1}-X_{2}\right)^{k-1}\left(\left|\begin{array}{c}
X_{1} \\
Y_{1}+Y_{2}
\end{array}\right|+(-1)^{k-1}\left|\begin{array}{c}
X_{2} \\
Y_{1}+Y_{2}
\end{array}\right|\right)
\end{aligned}
$$

("shuffle product of the generating series in length one")

$$
\begin{aligned}
\left|\begin{array}{c}
X_{1} \\
Y_{1}
\end{array}\right| \cdot\left|\begin{array}{c}
X_{2} \\
Y_{2}
\end{array}\right| & =\left|\begin{array}{c}
X_{1}+X_{2}, X_{1} \\
Y_{2}, Y_{1}-Y_{2}
\end{array}\right|+\left|\begin{array}{c}
X_{1}+X_{2}, X_{2} \\
Y_{1}, Y_{2}-Y_{1}
\end{array}\right| \\
& +\frac{1}{Y_{1}-Y_{2}}\left(\left|\begin{array}{c}
X_{1}+X_{2} \\
Y_{1}
\end{array}\right|-\left|\begin{array}{c}
X_{1}+X_{2} \\
Y_{2}
\end{array}\right|\right) \\
& +\sum_{k=1}^{\infty} \frac{B_{k}}{k!}\left(Y_{1}-Y_{2}\right)^{k-1}\left(\left|\begin{array}{c}
X_{1}+X_{2} \\
Y_{1}
\end{array}\right|+(-1)^{k-1}\left|\begin{array}{c}
X_{1}+X_{2} \\
Y_{2}
\end{array}\right|\right) .
\end{aligned}
$$

bi-brackets - algebra structure

Sketch of the proof:

- For the stuffle product consider

$$
\begin{aligned}
&\left|\begin{array}{c}
X_{1} \\
Y_{1}
\end{array}\right| \cdot\left|\begin{array}{l}
X_{2} \\
Y_{2}
\end{array}\right|=\sum_{n_{1}>0} e^{n_{1} Y_{1}} L_{n}\left(X_{1}\right) \cdot \sum_{n_{2}>0} e^{n_{2} Y_{2}} L_{n}\left(X_{2}\right) \\
&=\sum_{n_{1}>n_{2}>0} \cdots+\sum_{n_{2}>n_{1}>0} \cdots+\sum_{n_{1}=n_{2}>0} \cdots \\
&=\left|\begin{array}{c}
X_{1}, X_{2} \\
Y_{1}, Y_{2}
\end{array}\right|+\left|\begin{array}{c}
X_{2}, X_{1} \\
Y_{2}, Y_{1}
\end{array}\right|+\sum_{n>0} e^{n\left(Y_{1}+Y_{2}\right)} L_{n}\left(X_{1}\right) L_{n}\left(X_{2}\right)
\end{aligned}
$$

and then use the lemma for the term $L_{n}\left(X_{1}\right) L_{n}\left(X_{2}\right)$.

- For the shuffle product first use the partition relation on the left hand side, i.e. use $\left|\begin{array}{c}X_{1} \\ Y_{1}\end{array}\right|=\left|\begin{array}{c}Y_{1} \\ X_{1}\end{array}\right|$ and then use the partition relation again on the right hand side.

bi-brackets - algebra structure

Idea of proof for the algebra structure:
In order to proof that an arbitrary product of bi-brackets is again an element in $\mathcal{B D}$ one considers the product of the generating series in general

$$
\left|\begin{array}{c}
X_{1}, \ldots, X_{m} \\
Y_{1}, \ldots, Y_{m}
\end{array}\right| \cdot\left|\begin{array}{c}
X_{m+1}, \ldots, X_{l} \\
Y_{m+1}, \ldots, Y_{l}
\end{array}\right|=\sum_{n_{1}>\cdots>n_{m}>0} \ldots \sum_{n_{m+1}>\cdots>n_{l}>0} \ldots
$$

where we again consider all possible sums over shuffles of n_{1}, \ldots, n_{m} and n_{m+1}, \ldots, n_{l} plus the sums with equalities $n_{j}=n_{i}$ with $1 \leq j \leq m$ and $m+1 \leq i \leq l$.

$$
\begin{aligned}
\sum_{n_{1}>n_{2}>0} \cdot \sum_{n_{3}>0} & =\sum_{n_{1}>n_{2}>n_{3}>0}+\sum_{n_{1}>n_{3}>n_{2}>0}+\sum_{n_{3}>n_{1}>n_{2}>0} \\
& +\sum_{n_{1}=n_{3}>n_{2}>0}+\sum_{n_{1}>n_{3}=n_{2}>0}
\end{aligned}
$$

For each equality $n_{j}=n_{i}$ one uses the lemma to rewrite $L_{n_{j}}\left(X_{j}\right) \cdot L_{n_{i}}\left(X_{i}\right)$.

bi-brackets - stuffle product

Corollary (stuffle product)

For $s_{1}, s_{2}>0$ and $r_{1}, r_{2} \geq 0$ we have

$$
\begin{aligned}
{\left[\begin{array}{l}
s_{1} \\
r_{1}
\end{array}\right] \cdot\left[\begin{array}{l}
s_{2} \\
r_{2}
\end{array}\right] } & \stackrel{s t}{=}\left[\begin{array}{l}
s_{1}, s_{2} \\
r_{1}, r_{2}
\end{array}\right]+\left[\begin{array}{c}
s_{2}, s_{1} \\
r_{2}, r_{1}
\end{array}\right]+\binom{r_{1}+r_{2}}{r_{1}}\left[\begin{array}{c}
s_{1}+s_{2} \\
r_{1}+r_{2}
\end{array}\right] \\
& +\binom{r_{1}+r_{2}}{r_{1}} \sum_{j=1}^{s_{1}} \frac{(-1)^{s_{2}-1} B_{s_{1}+s_{2}-j}}{\left(s_{1}+s_{2}-j\right)!}\binom{s_{1}+s_{2}-j-1}{s_{1}-j}\left[\begin{array}{c}
j \\
r_{1}+r_{2}
\end{array}\right] \\
& +\binom{r_{1}+r_{2}}{r_{1}} \sum_{j=1}^{s_{2}} \frac{(-1)^{s_{1}-1} B_{s_{1}+s_{2}-j}}{\left(s_{1}+s_{2}-j\right)!}\binom{s_{1}+s_{2}-j-1}{s_{2}-j}\left[\begin{array}{c}
j \\
r_{1}+r_{2}
\end{array}\right]
\end{aligned}
$$

Notice: If $r_{1}=r_{2}=0$, i.e. when the two brackets are elements in $\mathcal{M D}$, all elements on the right hand side are also elements in $\mathcal{M D}$.

bi-brackets - shuffle product

Corollary (shuffle product)

For $s_{1}, s_{2}>0$ and $r_{1}, r_{2} \geq 0$ we have

$$
\begin{aligned}
{\left[\begin{array}{c}
s_{1} \\
r_{1}
\end{array}\right] \cdot\left[\begin{array}{l}
s_{2} \\
r_{2}
\end{array}\right] } & \stackrel{s h}{=} \sum_{\substack{1 \leq j \leq s_{1} \\
0 \leq k \leq r_{2}}}\binom{s_{1}+s_{2}-j-1}{s_{1}-j}\binom{r_{1}+r_{2}-k}{r_{1}}(-1)^{r_{2}-k}\left[\begin{array}{c}
s_{1}+s_{2}-j, j \\
k, r_{1}+r_{2}-k
\end{array}\right] \\
& +\sum_{\substack{1 \leq j \leq s_{2} \\
0 \leq k \leq r_{1}}}\binom{s_{1}+s_{2}-j-1}{s_{1}-1}\binom{r_{1}+r_{2}-k}{r_{1}-k}(-1)^{r_{1}-k}\left[\begin{array}{c}
s_{1}+s_{2}-j, j \\
k, r_{1}+r_{2}-k
\end{array}\right] \\
& +\binom{s_{1}+s_{2}-2}{s_{1}-1}\left[\begin{array}{c}
s_{1}+s_{2}-1 \\
r_{1}+r_{2}+1
\end{array}\right] \\
& +\binom{s_{1}+s_{2}-2}{s_{1}-1} \sum_{j=0}^{r_{1}} \frac{(-1)^{r_{2}} B_{r_{1}+r_{2}-j+1}}{\left(r_{1}+r_{2}-j+1\right)!}\binom{r_{1}+r_{2}-j}{r_{1}-j}\left[\begin{array}{c}
s_{1}+s_{2}-1 \\
j
\end{array}\right] \\
& +\binom{s_{1}+s_{2}-2}{s_{1}-1} \sum_{j=0}^{r_{2}} \frac{(-1)^{r_{1}} B_{r_{1}+r_{2}-j+1}}{\left(r_{1}+r_{2}-j+1\right)!}\binom{r_{1}+r_{2}-j}{r_{2}-j}\left[\begin{array}{c}
s_{1}+s_{2}-1 \\
j
\end{array}\right]
\end{aligned}
$$

bi-brackets - stuffle \& shuffle product

Using the shuffle and stuffle product we obtain linear relations in $\mathcal{B D}$.

Example:

$$
\begin{aligned}
& {\left[\begin{array}{l}
1 \\
3
\end{array}\right] \cdot\left[\begin{array}{l}
2 \\
4
\end{array}\right] \stackrel{s t}{=}\left[\begin{array}{l}
1,2 \\
3,4
\end{array}\right]+\left[\begin{array}{l}
2,1 \\
4,3
\end{array}\right]-\frac{35}{2}\left[\begin{array}{l}
2 \\
7
\end{array}\right]+35\left[\begin{array}{l}
3 \\
7
\end{array}\right]} \\
& {\left[\begin{array}{l}
1 \\
3
\end{array}\right] \cdot\left[\begin{array}{l}
2 \\
4
\end{array}\right] \stackrel{s h}{=}-35\left[\begin{array}{l}
1,2 \\
0,7
\end{array}\right]+15\left[\begin{array}{l}
1,2 \\
1,6
\end{array}\right]-5\left[\begin{array}{l}
1,2 \\
2,5
\end{array}\right]+\left[\begin{array}{l}
1,2 \\
3,4
\end{array}\right]-5\left[\begin{array}{l}
2,1 \\
1,6
\end{array}\right]} \\
& \quad+5\left[\begin{array}{l}
2,1 \\
2,5
\end{array}\right]-3\left[\begin{array}{l}
2,1 \\
3,4
\end{array}\right]+\left[\begin{array}{l}
2,1 \\
4,3
\end{array}\right]-\frac{1}{6048}\left[\begin{array}{l}
2 \\
2
\end{array}\right]+\frac{1}{720}\left[\begin{array}{l}
2 \\
4
\end{array}\right]+\left[\begin{array}{l}
2 \\
8
\end{array}\right]
\end{aligned}
$$

bi-brackets

This procedure works in general. For example the stuffle product for the generating series of length one and length two is given by

$$
\begin{aligned}
& \left|\begin{array}{c}
X_{1} \\
Y_{1}
\end{array}\right| \cdot\left|\begin{array}{c}
X_{2}, X_{3} \\
Y_{2}, Y_{3}
\end{array}\right|=\left|\begin{array}{c}
X_{1}, X_{2}, X_{3} \\
Y_{1}, Y_{2}, Y_{3}
\end{array}\right|+\left|\begin{array}{c}
X_{2}, X_{1}, X_{3} \\
Y_{2}, Y_{1}, Y_{3}
\end{array}\right|+\left|\begin{array}{c}
X_{2}, X_{3}, X_{1} \\
Y_{2}, Y_{3}, Y_{1}
\end{array}\right| \\
& +\frac{1}{X_{1}-X_{2}}\left(\left|\begin{array}{c}
X_{1}, X_{3} \\
Y_{1}+Y_{2}, Y_{3}
\end{array}\right|-\left|\begin{array}{c}
X_{2}, X_{3} \\
Y_{1}+Y_{2}, Y_{3}
\end{array}\right|\right) \\
& +\frac{1}{X_{1}-X_{3}}\left(\left|\begin{array}{c}
X_{2}, X_{1} \\
Y_{2}, Y_{1}+Y_{3}
\end{array}\right|-\left|\begin{array}{c}
X_{2}, X_{3} \\
Y_{2}, Y_{1}+Y_{3}
\end{array}\right|\right) \\
& +\sum_{k=1}^{\infty} \frac{B_{k}}{k!}\left(X_{1}-X_{2}\right)^{k-1}\left(\left|\begin{array}{c}
X_{1}, X_{3} \\
Y_{1}+Y_{2}, Y_{3}
\end{array}\right|+(-1)^{k-1}\left|\begin{array}{c}
X_{2}, X_{3} \\
Y_{1}+Y_{2}, Y_{3}
\end{array}\right|\right) \\
& +\sum_{k=1}^{\infty} \frac{B_{k}}{k!}\left(X_{1}-X_{3}\right)^{k-1}\left(\left|\begin{array}{c}
X_{2}, X_{1} \\
Y_{2}, Y_{1}+Y_{3}
\end{array}\right|+(-1)^{k-1}\left|\begin{array}{c}
X_{2}, X_{3} \\
Y_{2}, Y_{1}+Y_{3}
\end{array}\right|\right)
\end{aligned}
$$

bi-brackets - relations

The partition relation and the two ways of writing the product give a large family of linear relations in $\mathcal{B D}$ and conjecturally these are all relations.
Indeed there are so many relations that numerical experiments suggest the following conjecture:

Conjecture

The algebra $\mathcal{B D}$ of bi-brackets is a subalgebra of $\mathcal{M D}$ and in particular it is

$$
\mathrm{Fil}_{k, d, l}^{\mathrm{W}, \mathrm{D}, \mathrm{~L}}(\mathcal{B D}) \subset \mathrm{Fil}_{k+d, l+d}^{\mathrm{W}, \mathrm{~L}}(\mathcal{M D})
$$

This conjecture is interesting, because the elements in $\mathcal{M D}$ have a connection to multiple zeta values.

bi-brackets - connections to mzv

Denote the space of all admissible brackets by

$$
\mathrm{q} \mathcal{M Z}:=\left\langle\left[s_{1}, \ldots, s_{l}\right] \in \mathcal{M D} \mid s_{1}>1\right\rangle_{\mathbb{Q}}
$$

Proposition

For $\left[s_{1}, \ldots, s_{l}\right] \in \operatorname{Fil}_{k}^{\mathrm{W}}(\mathrm{q} \mathcal{M} \mathcal{Z})$ define the map Z_{k} by

$$
Z_{k}\left(\left[s_{1}, \ldots, s_{l}\right]\right)=\lim _{q \rightarrow 1}(1-q)^{k}\left[s_{1}, \ldots, s_{l}\right]
$$

then it is

$$
Z_{k}\left(\left[s_{1}, \ldots, s_{l}\right]\right)=\left\{\begin{array}{cl}
\zeta\left(s_{1}, \ldots, s_{l}\right), & s_{1}+\cdots+s_{l}=k \\
0, & s_{1}+\cdots+s_{l}<k
\end{array}\right.
$$

The map Z_{k} is linear on $\operatorname{Fil}_{k}^{\mathrm{W}}(\mathrm{q} \mathcal{M} \mathcal{Z})$, i.e. relations in $\mathrm{Fil}_{k}^{\mathrm{W}}(\mathrm{q} \mathcal{M} \mathcal{Z})$ give rise to relations between MZV.
Example:

$$
[4]=2[2,2]-2[3,1]+[3]-\frac{1}{3}[2] \quad \stackrel{Z_{4}}{\Longrightarrow} \quad \zeta(4)=2 \zeta(2,2)-2 \zeta(3,1)
$$

bi-brackets - connections to mzv

All relations between MZV are in the kernel of Z_{k} and therefore we are interested in the elements of it.

Theorem

For the kernel of Z_{k} we have

- For $s_{1}+\cdots+s_{l}<k$ it is $Z_{k}\left(\left[s_{1}, \ldots, s_{l}\right]\right)=0$.
- If $f \in \operatorname{Fil}_{k-2}^{\mathrm{W}}(\mathcal{M D})$ then $Z_{k}(\mathrm{~d}(f))=0$.
- Every cusp form $f \in \mathrm{Fil}_{k}^{\mathrm{W}}(\mathcal{M D})$ is in the kernel of Z_{k}.

But these are not all elements in the kernel of Z_{k}.

There are elements in the kernel of Z_{k} which can't be "described" by just using elements of $\mathcal{M D}$ in the list above.

bi-brackets - connections to mzv

In weight 4 one has the following relation of MZV

$$
\zeta(4)=\zeta(2,1,1)
$$

i.e. it is $[4]-[2,1,1] \in \operatorname{ker} Z_{4}$. But this element can't be written as a linear combination of cusp forms, lower weight brackets or derivatives. But one can show that

$$
[4]-[2,1,1]=\frac{1}{2}(\mathrm{~d}[1]+\mathrm{d}[2])-\frac{1}{3}[2]-[3]+\left[\begin{array}{l}
2,1 \\
1,0
\end{array}\right]
$$

and $\left[\begin{array}{l}2,1 \\ 1,0\end{array}\right] \in \operatorname{ker} Z_{4}$.
In general one can show that most of the bi-brackets $\left[\begin{array}{l}s_{1}, \ldots, s_{l} \\ r_{1}, \ldots, r_{l}\end{array}\right]$ where at least one $r_{j} \neq 0$ is in the kernel of Z_{k}.

Conjecture (rough version)

Every element in the kernel of Z_{k} can be desribed by using bi-brackets.

Summary

- bi-brackets are q-series whose coefficients are rational numbers given by sums over partitions.
- The space $\mathcal{B D}$ spanned by all bi-brackets form a differential \mathbb{Q}-algebra and there are two different ways to express a product of bi-brackets.
- This give rise to a lot of linear relations between bi-brackets and conjecturally every element in $\mathcal{B D}$ can be written as a linear combination of elements in $\mathcal{M D}$.
- The elements in $\mathcal{M D}$ have a connection to multiple zeta values and elements in the kernel of Z_{k} give rise to relations between them.
- Conjecturally the elements in the kernel of Z_{k} can be described by using bi-brackets.
- In a recent joint work with K. Tasaka it turns out that bi-brackets are also necessery to give a definition of "shuffle regularized multiple Eisenstein series".

