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Abstract

Based on the relation between kinetic Boltzmann–like transport equa-
tions and nonlinear hyperbolic conservation laws we derive kinetic–induced
moment systems for the spatially one–dimensional shallow water equa-
tions (the Saint–Venant equations). Using Chapman–Enskog–like asymp-
totic expansion techniques in terms of the relaxation parameter of the
kinetic equation, the resulting moment systems are asymptotically closed
without an additional closure relation. Moreover, the new second order
moment equation for the (asymptotically) third order system may act
as monitoring function to detect shock and rarefaction waves, which is
confirmed by some numerical experiments.
Keywords: Saint–Venant equations, shallow water equations, Boltz-
mann equation, hyperbolic conservation laws, kinetic models and rep-
resentations, relaxation systems, shock and rarefaction waves.

1 Introduction

The Saint Venant system (SVE) is the one–dimensional case of the shallow water
equations, that describe the dynamics of a fluid flow under a free surface, e.g,
open channels, rivers, coastal areas etc. Its importance comes from the fact
that it is used for the prediction of tides in the ocean, floods on rivers, surges in
channels, tsunamis, among other types of phenomena corresponding to shallow
water flows.

On the other hand, analytical solutions of the system are in general not
available, since in reality droughts and topography changes take place and new
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terms have to be included in the system. Hence, it has become more relevant
to use accurate numerical methods involving adaptive discretization techniques.
The construction of these methods becomes more efficient, if it is possible to
know or to detect in advance the location where discontinuities in the solution
will occur.

Using the relation between the SVE and kinetic transport equations it is
possible to compute a hierarchy of kinetic–induced moment (relaxation) systems
with a relaxation parameter given by ε, such that, in the limit ε → 0 the
system will tend to an equilibrium given by the inviscid SVE. Using asymptotic
expansions for the moments of the kinetic equation in terms of ε we are able to
derive moment systems which are automatically closed without an additional
closure relation. In particular, the second order moment W (x, t) will behave as
δ-function at discontinuities, which might be used as a monitoring function in
the construction of adaptive mesh refinement (AMR) models.

The paper is organized as follows: Chapter 2 contains a short review on
the Saint-Venant equations, later, the definition of kinetic representations is
explained, which is the basis of our work. The application to the SVE and
the computation of a third order moment system (relaxation system) based
on a Chapman–Enskog–like expansion with its characteristic structure will be
presented in Chapter 3; it is shown that it works as a monitoring function to
detect discontinuities. Finally, some numerical experiments for both systems
are given in Chapter 4.

2 The Saint–Venant System

2.1 Preliminaries

The Saint–Venant Equations (SVE) are a nonlinear hyperbolic system of partial
differential equations, that describes the evolution of the height of water h(t, x)
and its horizontal velocity u(t, x), at a time t ≥ 0 and at a point x ∈ R. It is
governed (in inviscid form) by the continuity and momentum equations given
by

∂h

∂t
+

∂

∂x
(hu) = 0 (1)

∂

∂t
(hu) +

∂

∂x

(
hu2 +

g

2
h2
)

= 0 (2)

where g stands for the gravitational acceleration and hu for the flow discharge.
For details on the derivation of the inviscid1 SVE see Leveque [4] and Stoker [9].

The previous system can be written in quasilinear form as(
h
hu

)
t

+M(h, u)

(
h
hu

)
x

=

(
0
0

)
(3)

where the matrix M(h, u) is the Jacobian of the flux matrix, and is given by

1zero viscosity
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M(h, u) =

(
0 1

−u2 + gh 2u

)
(4)

with eigenvalues λ1,2 = u(x, t)∓
√
gh(x, t), which are distinct and real as long

as h > 0, therefore, the system is considered strictly hyperbolic. As we can see,
if h = 0 (vanishing water height), the system is not strictly hyperbolic any more.
In our case we will have two characteristic curves and two waves corresponding
to a shock or a rarefaction wave, these curves are determined by the eigenvalues
of the Jacobian of the flux matrix M(h, u).

The corresponding eigenvectors are given by

r1 =

(
1

u−
√

g
h

)
(5)

r2 =

(
1

u+
√

g
h

)
(6)

The SVE are completed by the entropy function E(h, u), corresponding to
the total energy of the system, with q = [h, hu]T

E(h, u) =
1

2
hu2︸ ︷︷ ︸

kinetic energy

+

potential energy︷︸︸︷
g

2
h2 (7)

This is an obvious choice since an entropy function should be a conserved
quantity, in this case the energy whenever the unknown q(x, t) is smooth, but
which has a source or a sink at discontinuities. In our case, the energy will
decrease in an admissible shock but will increase across an expansion shock.

Consequently, we can also define an entropy flux together with the entropy
inequality, which satisfies for weak solutions

∂E

∂t
+

∂

∂x

[
u(E +

g

2
h2)
]
≤ 0 (8)

for q(x, t) smooth, the previous inequality becomes an equality. This condition
will be useful to guarantee the convergence to the physical correct solution in
the numerical experiments. For more details in the properties and definition of
entropy functions see Leveque [4].

2.2 Kinetic Representation

The Kinetic Formulation as defined by Lions [6], is an equivalent formulation
of a conservation laws system based on an appropriate transport equation such
that:
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- it contains a full family of entropy inequalities,

- it involves an additional variable ξ called kinetic or microscopic velocity,

- its ξ-moments recover the original equations and their entropy conditions.

A weaker version of this is the so-called Kinetic Representation since it uses
only the single entropy coming from the total energy (the motivation for this
can be seen in [8], sec 1.7), and it is an equivalent system to the SVE (1) and
(2). It is based on the condition h

hu
hu2 + g

2h
2

 =

∫
R

 1
ξ
ξ2

M(h, ξ − u) dξ (9)

called the representation formula, which is valid under the following conditions.
Consider the function χ(ω) on R, together with the properties

χ(ω) = χ(−ω) ≥ 0 (even non-negative function) (10)∫
R
χ(ω) dω = 1 and

∫
R
ω2χ(ω) dω = κ (11)

and define M(h, ξ − u), the density of particles as

M(h, ξ − u) =
√
h χ (

ξ − u√
h

) (12)

The proof of the representation formula is just a simple computation of the
right hand side of (9). Now, we can check by making integrations w.r.t. ξ against
weights 1 and ξ, and using the values in (9), that Q(t, x, ξ) some collision term
defined as

∂

∂t
M(h, ξ − u) + ξ

∂

∂x
M(h, ξ − u) := Q(t, x, ξ) (13)

satisfies the conservation relations∫
R
Qdξ = 0 and

∫
R
ξQdξ = 0 (14)

It is possible to consider (13) as the limit when ε→ 0 of the Boltzmann type
equation with a BGK relaxation term
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∂

∂t
f(t, x, ξ) + ξ

∂

∂x
f(t, x, ξ) =

1

ε
[M(h, ξ − u)− f(t, x, ξ)]

h(t, x) =

∫
R

f(t, x, ξ) dξ (15)

hu(t, x) =

∫
R

ξf(t, x, ξ) dξ (16)

where,

Q = lim
ε→0

1

ε
[M(h, ξ − u)− f(t, x, ξ)] (17)

As mentioned in Perthame [8] the rigorous proof of this consideration is still
an open problem.

3 Kinetic induced Moment System

3.1 Moment System from the Kinetic Model

Until now, all of the previous theory is well known and it is going to form the
basis of our work. Now, we want to derive a new system based on the SVE with
the use of the kinetic representation explained in Section 2.2, which will provide
useful information for numerical treatments and the general kinetic theory.

3.1.1 Boltzmann-type equation and BGK relaxation model

The Boltzmann equation describes the statistical distribution of the density of
particles f , it is formed by the effects of the free advection of particles (left
hand side), and the collisions between them since involves exchange of energy
and momentum (right hand side). One of the methods to express the collision
term in a simpler way (and the method used here) is the Bhatnagar-Gross-Krook
(BGK) model, where M(ρ, ξ − u) is called equilibrium function, f(t, x, ξ) is the
density of particles which at time t and position x moves with velocity ξ, and
ε� 1 is the mean free path 2.

∂

∂t
f(t, x, ξ) + ξ

∂

∂x
f(t, x, ξ) =

1

ε
[M(h, ξ − u)− f(t, x, ξ)] (18)

A more deep study on the Boltzmann equation and the BGK model can be
found in Struchtrup [10].

2Average distance traveled by a particle between collisions
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3.1.2 Moments of f(t, x, ξ)

The moments derived from the Boltzmann equation are an alternative descrip-
tion for f , since f is difficult to compute and is charge with a lot of information
that could be not useful. The moments are weighted averages of the distribu-
tion function much more approachable than f and form a complete set of partial
differential equations (see [10]); not all the moments must be considered only
those who give relevant information.

Consider the equations (15) and (16), the zeroth and the first moments of
the function f(t, x, ξ) are already known

W0 =

∫
R

f(t, x, ξ) dξ = h(t, x) (19)

W1 =

∫
R

ξ f(t, x, ξ) dξ = hu(t, x) (20)

The preceding moments are defined as

Wk =

∫
R
ξk f(t, x, ξ) dξ for k = 2,3,4,... (21)

3.1.3 Equilibrium function M(h, ξ − u)

A system is in equilibrium, if there are no changes taking place in time and
all the forces are balanced, i.e., it is in an homogeneous steady state. The first
three equilibrium values corresponding to the first three moments (k = 0, 1, 2) of
M(h, ξ−u) are already given by the kinetic representation formula (9), starting
from this it is possible to find with a little bit of algebra the general formula for
any k, which is shown below.

Wk |E=

∫
R

ξkM(h, ξ − u) dξ = huk +
k(k − 1)

4
g h2 uk−2 ∀k (22)

3.1.4 Moment System

Multiplying both sides of (18) by the weights 1, ξ and ξk and integrating over
the microscopic velocity we obtain the moment equations, that are infinite many
relations equivalent to the SVE. As a result, additional unknown quantities
appear, our aim is to find a finite number of moment equations that allow us
to obtain a closed system. The result of the multiplication and subsequent
integration yields
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∂h

∂t
+

∂

∂x
(hu) = 0 (23)

∂

∂t
(hu) +

∂

∂x
W2 = 0 (24)

∂

∂t
Wk +

∂

∂x
Wk+1 =

1

ε
[huk +

k(k − 1)

4
g h2 uk−2 −Wk] (25)

First order non-equilibrium system

The difference between the scalar variables and their equilibrium values is
called first order non-equilibrium values, these are useful variables because they
will vanish in equilibrium. These values are defined as

W
(1)
k = Wk −Wk |E for k = 2,3,4,... (26)

We can see that W
(1)
0 = W

(1)
1 = 0 and W

(1)
2 = W2 − (hu2 + g

2h
2). The

corresponding first order non-equilibrium moment system is given by

∂h

∂t
+

∂

∂x
(hu) = 0 (27)

∂

∂t
(hu) +

∂

∂x
W

(1)
2 +

∂

∂x
(hu2 +

g

2
h2) = 0 (28)

∂

∂t
W

(1)
k +

∂

∂t
(huk +

k(k − 1)

4
gh2uk−2) +

∂

∂x
W

(1)
k+1

+
∂

∂x
(huk+1 +

k(k + 1)

4
gh2uk−1) = −1

ε
W

(1)
k

(29)

where the last equation holds for k = 2, 3, 4, ....

The following step is to eliminate the second time derivative in (29). After
some algebraic computations we will get

∂

∂t
W

(1)
k +

∂

∂x
W

(1)
k+1 +

k

4
gh2

∂

∂x
(uk−1)− k(k − 1)(k − 2)

4
g2h2uk−3

∂h

∂x

−kuk−3[u2 − (k − 1)(k − 2)

4
gh

∂

∂x
W

(1)
2 = −1

ε
W

(1)
k

(30)

Expanding the moments in (30) according to the classical Chapman-Enskog
approach in the form

W
(1)
k = εW

(1)
k,1 + ε2W

(1)
k,2 for k = 2,3,4,... (31)

and taking the first order terms we get
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W
(1)
2,1 = −g

2
h2
∂u

∂x
(32)

W
(1)
k,1 = −k

4
gh2

∂

∂x
(uk−1) +

k(k − 1)(k − 2)

4
g2h2uk−3

∂h

∂x
(33)

(33) can be written as

W
(1)
k,1 =

k(k − 1)

2
uk−3[uW

(1)
2,1 +

(k − 2)

2
g2h2

∂h

∂x
] (34)

Therefore, the zero-th order system yields the inviscid SVE

∂h

∂t
+

∂

∂x
(hu) = 0 (35)

∂

∂t
(hu) +

∂

∂x

(
hu2 +

g

2
h2
)

= 0 (36)

and the first order system yields the viscous SVE

∂h

∂t
+

∂

∂x
(hu) = 0 (37)

∂

∂t
(hu) +

∂

∂x

(
hu2 +

g

2
h2
)

+
∂

∂x
W

(1)
2 = 0 (38)

where W
(1)
2 = εW

(1)
2,1 = −ε g2h

2 ∂u
∂x is the diffusion term.

Now a third variable W
(1)
2 has appeared but we only have two equations, in

order to have a closed system we need to find a third equation.

Second order non-equilibrium system

W
(2)
k = W

(1)
k − k(k−1)

2 uk−3[uW
(1)
2 + ε(k−2)

2 g2h2 ∂h∂x ] for k = 3,4,5,... (39)

with W
(1)
k = εW

(1)
k,1 .

The corresponding second order non-equilibrium moment system is given by
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∂h

∂t
+

∂

∂x
(hu) = 0 (40)

∂

∂t
(hu) +

∂

∂x
W

(1)
2 +

∂

∂x
(hu2 +

g

2
h2) = 0 (41)

∂

∂t
W

(1)
2 +

∂

∂x
W

(1)
3 +

g

2
h2
∂u

∂x
− 2u

∂

∂x
W

(1)
2 = −1

ε
W

(1)
2

∂

∂t
W

(1)
2 +

∂

∂x
W

(2)
3 +

3ε

2
g2

∂

∂x

(
h2
∂h

∂x

)
+

(
g

2
h2 + 3W

(1)
2

)
∂u

∂x
+ u

∂

∂x
W

(1)
2 = −1

ε
W

(1)
2

(42)

Equation (42) comes from (30) replacing k = 2 since W
(2)
k holds only for

k = 3, 4, 5, ..., and also replacing W
(1)
3 using (39). The final equation of the

system yields

∂

∂t
W

(2)
k +

k(k − 1)

2

∂

∂t
(uk−2W

(1)
2 +

ε(k − 2)

2
g2h2uk−3

∂h

∂x
) +

∂

∂x
W

(2)
k+1

+
k(k + 1)

2

∂

∂x
(uk−1W

(1)
2 +

ε(k − 1)

2
g2h2uk−2

∂h

∂x
) +

k

4
gh2

∂

∂x
(uk−1)

−k(k − 1)(k − 2)

4
g2h2uk−3

∂h

∂x
− kuk−3[u2 +

(k − 1)(k − 2)

4
gh]

∂

∂x
W

(1)
2

= −1

ε
[W

(2)
k +

k(k − 1)

2
uk−3(uW

(1)
2 +

ε(k − 2)

2
g2h2

∂h

∂x
)]

(43)

which holds only for k = 3, 4, 5, ....
The following step is to eliminate the second time derivative in (43). After some
algebraic computations we will get

∂

∂t
W

(2)
k +

∂

∂x
W

(2)
k+1 −

k(k − 1)

2
uk−2

∂

∂x
W

(2)
3

−k(k − 1)(k − 2)

2h
uk−3

[(
∂

∂x
W

(1)
2 + gh

∂h

∂x

)(
ε(k − 3)

g2

2
h2u−1

∂h

∂x
) +W

(1)
2

)
+
g

2
h2
(
εgh2

∂2u

∂x2
+

∂

∂x
W

(1)
2

)]
= −1

ε
W

(2)
k

(44)

For convenience we want to indicate the variables that are already expanded,

for this we write h = ĥ, u = û and W
(1)
2 = εŴ

(1)
2 , the system reads

∂ĥ

∂t
+

∂

∂x
(ĥû) = 0 (45)

∂

∂t
(ĥû) + ε

∂

∂x
Ŵ

(1)
2 +

∂

∂x
(ĥû2 +

g

2
ĥ2) = 0 (46)

∂

∂t
εŴ

(1)
2 +

∂

∂x
W

(2)
3 +

3ε

2
g2

∂

∂x

(
ĥ2
∂ĥ

∂x

)
+

(
g

2
ĥ2 + 3εŴ

(1)
2

)
∂û

∂x
+ û

∂

∂x
εŴ

(1)
2 = −Ŵ (1)

2

(47)
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∂

∂t
W

(2)
k +

∂

∂x
W

(2)
k+1 −

k(k − 1)

2
ûk−2

∂

∂x
W

(2)
3

− k(k − 1)(k − 2)

2ĥ
ûk−3

[(
∂

∂x
εŴ

(1)
2 + gĥ

∂ĥ

∂x

)(
ε(k − 3)

g2

2
ĥ2û−1

∂ĥ

∂x
) + εŴ

(1)
2

)
+
g

2
ĥ2
(
εgĥ2

∂2û

∂x2
+

∂

∂x
εŴ

(1)
2

)]
= −1

ε
W

(2)
k

(48)

Again, expanding the moments in (48) in the form

W
(2)
k = ε2W

(2)
k,2 + ε3W

(2)
k,3 for k = 3,4,5,... (49)

and taking the first order terms we get

W
(2)
3,2 =

3

2
g

[
2Ŵ

(1)
2

∂ĥ

∂x
+ ĥ

∂

∂x
Ŵ

(1)
2 + gĥ3

∂2û

∂x2

]
(50)

W
(2)
k,2 =

k(k − 1)(k − 2)

4
gûk−3

[
2Ŵ

(1)
2

∂ĥ

∂x
+ ĥ

∂

∂x
Ŵ

(1)
2 + gĥ3

∂2û

∂x2
+ (k − 3)g2ĥ2û−1

(
∂ĥ

∂x

)2]
(51)

(51) can be written as

W
(2)
k,2 =

k(k − 1)(k − 2)

4
ûk−3

[
2

3
W

(2)
3,2 + (k − 3)g3ĥ2û−1

(
∂ĥ

∂x

)2]
(52)

Third order system

Now if we define W
(2)
3 = ε2Ŵ

(2)
3 since it is already expanded, we can obtain

a third order system using (45), (46) and (47)

∂ĥ

∂t
+

∂

∂x
(ĥû) = 0 (53)

∂

∂t
(ĥû) + ε

∂

∂x
Ŵ

(1)
2 +

∂

∂x
(ĥû2 +

g

2
ĥ2) = 0 (54)

∂

∂t
Ŵ

(1)
2 + ε

∂

∂x
Ŵ

(2)
3 +

3

2
g2

∂

∂x

(
ĥ2
∂ĥ

∂x

)
+

(
g

2ε
ĥ2 + 3Ŵ

(1)
2

)
∂û

∂x
+ û

∂

∂x
Ŵ

(1)
2 = −1

ε
Ŵ

(1)
2

(55)

with

Ŵ
(2)
3 =

3

2
g

[
2Ŵ

(1)
2

∂ĥ

∂x
+ ĥ

∂

∂x
Ŵ

(1)
2 + gĥ3

∂2û

∂x2

]
(56)
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3.2 Moment System of third order

For simplicity we re-write ĥ = h, û = u, Ŵ
(1)
2 = W and replace the value of

Ŵ
(2)
3 found in the previous section. Then we will have a third order closed

system (showed below), which will be the focus of the present work.

∂h

∂t
+

∂

∂x
(hu) = 0 (57)

∂

∂t
(hu) +

∂

∂x
(hu2 +

g

2
h2) + ε

∂W

∂x
= 0 (58)

∂W

∂t
+

(
g

2ε
h2 + 3W

)
∂u

∂x
+ u

∂W

∂x
= −3

2
εg

∂

∂x

[
g

ε
h2
∂h

∂x
+

2W
∂h

∂x
+ h

∂W

∂x
+ gh3

∂2u

∂x2

]
− 1

ε
W

(59)

equation (59) can be written in balance form as

∂

∂t
(εW + hu2 +

g

2
h2) +

∂

∂x
(3εuW + hu3 +

3g

2
uh2) = −3g

2
ε2

∂

∂x

[
g

ε
h2
∂h

∂x
+

2W
∂h

∂x
+ h

∂W

∂x
+ gh3

∂2u

∂x2

]
−W

(60)

.

3.2.1 Inviscid system

The respective homogeneous-inviscid system for (57), (58) and (60) holds

 h
hu

εW + hu2 + g
2h

2


t

+M(h, u,W )

 h
hu

εW + hu2 + g
2h

2


x

=

 0
0
0

 (61)

with the Jacobian of the flux matrix equal to

M(h, u,W ) =

 0 1 0
0 0 1

−3
u(εW+hu2+ g

2h
2)

h + 4u3 3
εW+hu2+ g

2h
2

h − 6u2 3u

 (62)

The system is strictly hyperbolic for h > 0, and the eigenvalues ofM(h, u,W )
are given by
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λ1 = u−
√

3g

2
h+ 3ε

W

h
(63)

λ2 = u (64)

λ3 = u+

√
3g

2
h+ 3ε

W

h
(65)

Hence, we will have 3 characteristic curves and 3 waves, where informa-
tion can travel at the fluid velocity, or move as acoustic waves at speeds c =

∓
√

3g
2 h+ 3εWh . The 1-wave will move to the left, while the 3-wave will move to

the right; between these two waves the velocity is constant (um) and the 2-wave
will appear with velocity λ2 = um.

Then the corresponding eigenvectors will read

r1 =


1

u−
√

3g
2 h+ 3εWh

(u−
√

3g
2 h+ 3εWh )2

 (66)

r2 =

 1
u
u2

 (67)

r3 =


1

u+
√

3g
2 h+ 3εWh

(u+
√

3g
2 h+ 3εWh )2

 (68)

Shock and Rarefaction waves

The characteristic fields 1 and 3 are genuinely non-linear since ∇λp · rp 6= 0,
for p = 1, 3; the 1-wave and 3-wave will deform into shock or rarefaction waves,
given that λ1 and λ3 vary along the integral curves of r1 and r3 respectively.
The behavior of both waves is similar to the one described in Chapter 2 for
Saint-Venant System.

In order to keep physical meaning, the weak solution must satisfies the en-
tropy condition (8).

Contact discontinuity

On the contrary to fields 1 and 3, ∇λ2 · r2 = 0 and the second field is called
a linearly degenerate field. Nor shock nor rarefaction waves can occur in the
2-characteristic field, instead contact discontinuities appear.
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Contact discontinuities are linear discontinuities that propagates to the char-
acteristic speed (64) on each side, without distorting, given that λ2 = u is con-
stant along the integral curve of r2; the height will jump on the discontinuity as
do variables that depend on h(x, t). Characteristics will be parallel to the wave
in the x− t plane, rather than impinging on it.

3.2.2 Shock and rarefaction waves detector

In the formal limit ε→ 0, the system (57), (58) and (59) reads

∂h

∂t
+

∂

∂x
(hu) = 0

∂

∂t
(hu) +

∂

∂x
(hu2 +

g

2
h2) = 0

W = −g
2
h2
∂u

∂x
(69)

Therefore, as ε goes to zero and considering that h > 0, we have that if

∂u
∂x = 0 W = 0
∂u
∂x < 0 W > 0
∂u
∂x > 0 W < 0

Additionally, we could distinguish between shock and rarefaction waves,
since

∂u

∂x
→ −∞ W →∞ (shock wave)

∂u

∂x
→∞ W → −∞ (rarefaction wave)

As we saw in Section 2.1, the generic solution for the shallow water system
consists of two waves – depending on the initial data, each one will be either a
shock wave or a rarefaction wave.

In order to prove that our third order moment system (59), may act as an
indicator to detect shock and rarefaction waves; consider a discontinuity located

at s(t) with h(x, 0) ≡ h0 and

(
u(s(t−), t) = −u(s(t+), t)

)
, u(s(t−), t) > 0; such

that, we have a two–shock Riemann solution. The speed of the shock waves will
be given by the Rankine-Hugoniot conditions.

Hence, from (69) we can infer that for ε� 1 the solution of W (x, t) tends to
a δ -function located at the point of the discontinuity s(t). Scaling the variable
x as

η =
x− s(t)

ε

and introducing the scaled functions

13



ĥ(η, t) = h(εη + s(t), t)

û(η, t) = u(εη + s(t), t)

Ŵ (η, t) = εW (εη + s(t), t)

The system (57), (58) and (59) turn into

ε
∂ĥ

∂t
+ (û− ṡ(t))∂ĥ

∂η
+ ĥ

∂û

∂η
= 0 (70)

ε
∂

∂t
(ĥû) + (û− ṡ(t)) ∂

∂η
(ĥû) + ĥ

∂

∂η
(
1

2
u2 + gĥ) +

∂Ŵ

∂η
= 0 (71)

ε
∂Ŵ

∂t
+ (û− ṡ(t))∂Ŵ

∂η
+

(
g

2
ĥ2 + 3Ŵ

)
∂û

∂η
= −3g

2

∂

∂η

[
gĥ2

∂ĥ

∂η
+

2Ŵ
∂ĥ

∂η
+ ĥ

∂Ŵ

∂η
+ gĥ3

∂2û

∂η2

]
− Ŵ

(72)

Again, taking the formal limit ε → 0, the leading order of (70) and (71) is
given by

∂û

∂η
= (ṡ(t)− û)

1

ĥ

∂ĥ

∂η
(73)

∂Ŵ

∂η
= (ṡ(t)− û)ĥ

∂û

∂η
− gĥ∂ĥ

∂η
(74)

Moreover, the equations (57) and (58) can be written as

∂h

∂t
+

∂

∂x
(hu) = 0 (75)

∂

∂t
(hu) +

∂

∂x
(hu2 +

g

2
h2) +

1

ε

∂Ŵ

∂η
= 0 (76)

since ∂W
∂x = 1

ε2
∂Ŵ
∂η . Now, replacing (74) into (76), we will get

∂

∂t
(hu) +

∂

∂x
(hu2 +

g

2
h2) +

1

ε
(ṡ(t)− û)ĥ

∂û

∂η
− gĥ∂ĥ

∂η
= 0

∂

∂t
(hu) + u

∂

∂x
(hu) + ṡ(t)h

∂u

∂x
= 0

u
∂h

∂t
+ h

∂u

∂t
+ u

∂

∂x
(hu) + ṡ(t)h

∂u

∂x
= 0 (77)

And, replacing ∂h
∂t according to (75), leads to
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∂u

∂t
+ ṡ(t)

∂u

∂x
= 0

This demonstrate that in the limit ε → 0, the system (57), (58) and (59),
yields the correct shock propagation.

4 Numerical Example

We will use Godunov’s Method together with the Roe linearisation and the
Harten-Hyman Entropy Fix method (HHE) to get the numerical results from
both of our systems the inviscid Saint-Venant Equations (1) and (2), and the
third order moment system (57),(58),(60). The finite volume method is imple-
mented inside the CLAWPACK software for conservation laws [5].

The computational domain is given by [−15, 15] with M = 500 cells in the
x direction, with an initial time step ∆t = 0.1; the time step would be updated
accordingly with the desired cfl condition cfl = 0.9 and the maximum value
permitted cfl max = 1. The final time will be t final = 3.

4.1 Approximate Riemann Solvers

Define a function Q̂i− 1
2
(x/t) that approximates the true similarity solution of

the Riemann problem with data Qi−1 and Qi. The obvious choice is to use
an approximation based on the solution of the linear problem, therefore, this
function will consists of a m set of waves W p

i− 1
2

propagating at some speed sp
i− 1

2

.

Qi −Qi−1 =

m∑
p=1

W p

i− 1
2

(78)

Hence, we can use the waves and speed from the approximative solution and
define

A−∆Qi− 1
2

=

m∑
p=1

(sp
i− 1

2

)−W p

i− 1
2

(79)

A+∆Qi− 1
2

=

m∑
p=1

(sp
i− 1

2

)+W p

i− 1
2

(80)

where the minus and plus sign in the speed represents the min(λ, 0) and the
max(λ, 0) respectively, then we can use the fluctuations into (??).

4.1.1 Linearized Riemann Solvers and the Roe Linearization

Replace the non-linear problem by a linear one, in which at each cell interface
we get

∂q̂

∂t
+ Âi− 1

2

∂q̂

∂x
= 0 (81)
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The matrix Âi− 1
2

must satisfy:

- It is diagonalizable, with real eigenvalues

- Âi− 1
2
→ f ′(q) as Qi−1, Qi → q, since the new matrix is an approximation

of the original Jacobian matrix in a neighborhood of Qi−1, Qi.

Hence, the approximate Riemann solution consists of m waves proportional
to the eigenvectors r̂p

i− 1
2

of the matrix Âi− 1
2
, propagating with a speed equal to

the eigenvalues ŝp
i− 1

2

= λ̂p
i− 1

2

. Now, it is possible to solve the linear system

Qi −Qi−1 =

m∑
p=1

αp
i− 1

2

r̂p
i− 1

2

(82)

in order to obtain the values of αp
i− 1

2

and compute the waves W p

i− 1
2

= αp
i− 1

2

r̂p
i− 1

2

.

There are many choices for the linearized matrix, one of them and the one
studied in this thesis is the Roe linearisation which for the SVE problem will
provide very nice properties.

In the case when the exact Riemann solution consists of a single shock,
the approximate solution should agree with the exact one. Therefore it must
hold that: ”if Qi−1 and Qi are connected by a single wave W p= Qi −Qi−1 in
the exact Riemann solution, then W p should also be an eigenvector of Âi− 1

2
”.

Consequently, the Rankine-Hugoniot condition with ql = Qi−1 and qr = Qi
must be satisfied by both problems at the cell interface, then

f(Qi)− f(Qi−1) = ṡ(Qi −Qi−1) = Âi− 1
2
(Qi −Qi−1) (83)

since the single shock is an eigenvector of the linearized matrix. This property
will guarantee that (79) and (80) yield a conservative method, considering that
the following condition is satisfied[

A−∆Qi− 1
2

+A+∆Qi− 1
2

]
= f(Qi)− f(Qi−1) (84)

A way to obtain a suitable matrix Âi− 1
2
, is by integrating the Jacobian

matrix over an appropriate path in state space3 between Qi−1 and Qi.

Âi− 1
2

=

∫ 1

0

f ′(q(ζ))dζ (85)

where q(ζ) = Qi−1 + (Qi − Qi−1)ζ is a straight-line path parametrized for
0 ≤ ζ ≤ 1; nevertheless, the previous integral is not always easy to calculate.
We can introduce a change of variable to facilitate this integration.

Assume that z(q) is an invertible mapping so we know q(z) as well and f as
a function of z. The integration path will become, z(ζ) = Zi−1 + (Zi − Zi−1)ζ
where Zj = z(Qj) for j = i− 1, i. Now, we can write

3Graph of each possible state (h,hu) for the SVE
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f(Qi)− f(Qi−1) =

∫ 1

0

df(z(ζ))

dζ
dζ =

[ ∫ 1

0

df(z(ζ))

dz
dζ
]
(Zi − Zi−1) = Ĉi− 1

2
(Zi − Zi−1)

(86)

Qi −Qi−1 =

∫ 1

0

dq(z(ζ))

dζ
dζ =

[ ∫ 1

0

dq(z(ζ))

dz
dζ
]
(Zi − Zi−1) = B̂i− 1

2
(Zi − Zi−1)

(87)

replacing in (83) we obtain our desired matrix Âi− 1
2

= Ĉi− 1
2
B̂−1
i− 1

2

.

4.1.2 The Harten-Hyman Entropy Fix

In the case of transonic rarefaction waves (f ′(ql) < 0 < f ′(qr)) the entropy
condition will be violated and the use of (79) and (80) would lead to the wrong
solution. Therefore, in the case where λp < 0 to the left of the wave while λp > 0
to the right of the wave, it is necessary to modify the fluctuations performing
an entropy fix.

Define a transonic rarefaction in the k-th wave as (λkl < 0 < λkr ), where λkl,r
is the k-th eigenvalue of the Jacobian matrix computed in the states qkl,r to right
and left

qkl = Qi−1 +
∑k−1
p=1 W p, qkr = qkl + W k (88)

where W p = W p

i− 1
2

.

We want to replace the single wave W k with speed λ̂k by two waves; W k
l =

βW k propagating at speed λkl and W k
r = (1− β)W k propagating at speed λkr .

In order to keep conservation, it must hold that λkl W k
l + λkrW k

r = λ̂kW k and
then we can compute β.

β =
λkr − λ̂k

λkr − λkl
(89)

A more practical way to adjust the fluctuations in (79) and (80) is to change

the positive and negative parts of the speeds (ŝk = λ̂k) in the k-th field by

(λ̂k)− ≡ βλkl (90)

(λ̂k)+ ≡ (1− β)λkr (91)

they will sum up to λ̂k and will be non-zero in the transonic case.

For details in the Finite Volume Method and the Roe linearization see Lev-
eque [4].

4.2 Inviscid case of the SVE

The numerical results for this hyperbolic system are included in the shallow
water CLAWPACK package, here we use the same Roe Solver as used in Chapter
15 in [4].

17



4.2.1 Riemann Solver

Roe linearization

Using as a parameter vector z = h−
1
2 q, we can define[

z1

z2

]
=

[ √
h√
hu

]
(92)

then

q(z) =

[
(z1)2

z1z2

]
=⇒ ∂q

∂z
=

[
2z1 0
z2 z1

]
(93)

in a similar way we calculate

f(z) =

[
z1z2

(z2)2 + 1
2g(z1)4

]
=⇒ ∂f

∂z
=

[
z2 z1

2g(z1)3 2z2

]
(94)

At the end we will get

Âi− 1
2

=

[
0 1

−û2 + gh 2û

]
(95)

where h is the arithmetic average and û is the Roe Average.

h =
1

2
(hi−1 + hi) (96)

û =

√
hi−1ui−1 +

√
hiui√

hi−1 +
√
hi

(97)

The eigenvalues and the eigenvectors of our new matrix would be given by

λ̂1 = û− ĉ λ̂2 = û+ ĉ (98)

r̂1 =

[
1

û− ĉ

]
r̂2 =

[
1

û+ ĉ

]
(99)

with ĉ =
√
gh. Then

Qi −Qi−1 =

[
δ1

δ2

]
= α1

i− 1
2
r̂1 + α2

i− 1
2
r̂2 = W 1

i− 1
2

+ W 2
i− 1

2
(100)

Inverting the matrix of right eigenvectors we can compute the alpha coeffi-
cients by solving the linear system to the left and obtain
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α1
i− 1

2
=

(û+ ĉ)δ1 − δ2

2ĉ
(101)

α2
i− 1

2
=
−(û− ĉ)δ1 + δ2

2ĉ
(102)

Now we have all the information to compute the waves and to update the
fluctuations (79) and (80) in the Godunov’s Method using the eigenvalues as
the speeds.

sl = û− ĉ (103)

sr = û+ ĉ (104)

Sonic Entropy Fix

We want to identify the transonic rarefactions in order to modify the fluctu-
ations. Consider hr and ur the values to the right of the discontinuity; and hl,
ul the values to the left. For simplicity we do not use sub-indexes to denote the
right and the left states, since later we must include the position on the grid as
a sub-index.

- Check the 1-wave.

First we check the 1-wave (with velocity λ1) in the left state (i− 1)

s0 = uri−1 −
√
g ∗ hri−1 (105)

If s0 and sl are greater than zero then there are no left going waves and
we have a fully supersonic case, if not we must search if transonic waves
occur. Define s1 as the speed corresponding to λ1 to the right of the
1-wave. [

hr1
hur1

]
=

[
hri−1

hri−1 ∗ uri−1

]
+ W 1

i− 1
2

(106)

s1 =
hur1
hr1

−
√
g ∗ hr1 (107)

If s0 < 0 and s1 > 0 then there is a transonic rarefaction in the 1-wave
and the new speed will be given as in (90) and (91) by

s−1 = s0
( s1 − sl
s1 − s0

) (108)

On the other hand, if this is not the case we have two possibilities; that
sl < 0 and the 1-wave is left-going with s−1 = sl or if none of the previous
conditions hold then it is right-going.
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- Check the 2-wave.

Now we check the 2-wave corresponding to λ2 in the right state i

s3 = uli −
√
g ∗ hli (109)

Define s2 as the speed corresponding to λ2 to the left of the 2-wave.

fflffl

[
hl2
hul2

]
=

[
hli

hli ∗ uli

]
+ W 2

i− 1
2

(110)

s2 =
hul2
hl2
−
√
g ∗ hl2 (111)

If s2 < 0 and s3 > 0 then there is a transonic rarefaction in the 2-wave
and the new speed will be given as in (90) and (91) by

s−2 = s2
(s3 − sr
s3 − s2

) (112)

On the other hand, if this is not the case we have two possibilities; that
sr < 0 and the 2-wave is left-going with s−2 = sr or if none of the previous
conditions hold then it is right-going.

In order to compute the fluctuations we must define the total flux difference
which is td =

∑Mw

p=1 s
p

i− 1
2

W p

i− 1
2

, then finally

A−∆Qi− 1
2

= s−1 W
1
i− 1

2
+ s−2 W

2
i− 1

2
(113)

A+∆Qi− 1
2

= td−A−∆Qi− 1
2

(114)

4.2.2 Initial and Boundary Conditions

For the boundary conditions CLAWPACK has already some options inside the
input file; in our case we will apply a non-reflecting outflow using a zero-order
extrapolation, in the following manner

Qn0 = Qn1 Qn−1 = Qn1
QnM+1 = QnM QnM+2 = QnM

(115)

where the interior values are given by Qn1 , ..., Q
n
M and the boundaries are rep-

resented by x1 = −15 and xM+1 = 15. Since in our system’s solution we will
have right and left going waves, this approach will allow a non-incoming signal
avoiding fake reflections in the left and right boundaries.

The computational domain is extended with two ghost cells at the end of
both boundaries, in order to have the neighboring points needed for the compu-
tation of the fluxes. Furthermore, these cells will be useful for the discretization
of the derivatives in the source term of the third order moment system. On the
other hand, the initial conditions are not included in the software, this data will
be supplied by us for each one of the variables.
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h(x, 0) = tan−1(x) + 7, 5 ∀x (116)

u(x, 0) = 0 ∀x (117)

4.3 Moment system of third order

Making an analogy with the Euler Equations from gas dynamics presented in
Chapter 15 of [4], it is possible to define in a similar way the Roe–solver for
the homogeneous system (61). Then, the inhomogeneous part together with the
diffusion term would be solved by applying a fractional-step method.

The same computational data as in the SVE is used, including results for
three different values of the relaxation term, ε = 0.01, 0.1, 1.

4.3.1 Riemann Solver for the homogeneous system

Roe linearization

For the solution of the conservation law problem, we defineH =
3εW + hu2 + 3g

2 h
2

h
and

the parameter vector as  z1

z2

z3

 =


√
h√
hu√
hH

 (118)

then

q(z) =

 (z1)2

z1z2
1
3z

1z3 + 2
3 (z2)2

 =⇒ ∂q

∂z
=

2z1 0 0
z2 z1 0
1
3z

3 4
3z

2 1
3z

1

 (119)

in a similar way we calculate

f(z) =

 z1z2
1
3z

1z3 + 2
3 (z2)2

z2z3

 =⇒ ∂f

∂z
=

 z2 z1 0
1
3z

3 4
3z

2 1
3z

1

0 z3 z2

 (120)

At the end we will get

Âi− 1
2

=

 0 1 0
0 0 1

−ûĤ + 2û3 Ĥ − 4û2 3û

 (121)

where û and Ĥ are the Roe Averages.

û =

√
hi−1ui−1 +

√
hiui√

hi−1 +
√
hi

(122)

Ĥ =

√
hi−1Hi−1 +

√
hiHi√

hi−1 +
√
hi

(123)
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and Hi =
3εWi + hiu

2
i + 3g

2 h
2
i

hi
. The eigenvalues and the eigenvectors are given

by

λ̂1 = û− ĉ λ̂2 = û λ̂3 = û+ ĉ (124)

r̂1 =

 1
û− ĉ

(û− ĉ)2

 r̂2 =

 1
û

(û)2

 r̂3 =

 1
û+ ĉ

(û+ ĉ)2

 (125)

with ĉ =
√
Ĥ − û2. Then

Qi −Qi−1 =

 δ1

δ2

δ3

 = α1
i− 1

2
r̂1 + α2

i− 1
2
r̂2 + α3

i− 1
2
r̂3 = W 1

i− 1
2

+ W 2
i− 1

2
+ W 3

i− 1
2

(126)

Inverting the matrix of right eigenvectors we can compute the alpha coeffi-
cients by solving the linear system and obtain

α1
i− 1

2
=

1

2ĉ2
((û2 + ĉû)δ1 − (ĉ+ 2û)δ2 + δ3) (127)

α2
i− 1

2
=

1

ĉ2
((ĉ2 − û2)δ1 + 2ûδ2 − δ3) (128)

α3
i− 1

2
=

1

2ĉ2
((û2 − ĉû)δ1 + (ĉ− 2û)δ2 + δ3) (129)

Now we have all the information to update the fluctuations (79) and (80)
using the eigenvalues as the speeds.

Sonic Entropy Fix

The procedure to detect transonic rarefactions is very similar to the one
described in the SVE case, with the difference that in this case we have to use
the structure of the new eigenvalues for the computation of the speeds.

Also now the system has three waves, therefore we must also check the middle
one which its speed is given by the velocity u, if it is less than zero then it will
be right-going if not left-going, in this case a transonic wave will not occur.

4.3.2 Fractional-Step Method for the balance law system

In the case of Balance law equations4, instead of solving the entire system, an
easier approach is the use of fractional-step methods. Consider the following
system,

4A conservation law system with source terms
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∂q

∂t
+

∂

∂x
f(q) = γ(q, qx, qxx, ...) (130)

The idea is to split the complete system into two sub-problems, that can be
solved separately. The first problem will consist in the homogeneous conserva-
tion law system which can be resolved by using a finite volume method in time
step ∆t, later this solution will be used as initial condition in the discretization
of the second problem, which will change accordingly with the nature of the
source term. Therefore, the solution of the previous system will be equivalent
to solve

∂q

∂t
+

∂

∂x
f(q) = 0 (131)

∂q

∂t
= γ(q, qx, qxx, ...) (132)

Using the numerical solution of (61) as initial condition, now we can solve
the second problem resulting from the splitting of (57),(58),(60) accordingly
with (131) and (132), which is given by

 h
hu

εW + hu2 + g
2h

2


t

=


0
0

− 3g
2 ε

2 ∂
∂x

[
g
εh

2 ∂h
∂x + 2W ∂h

∂x + h∂W∂x + gh3 ∂
2u
∂x2

]
−W


(133)

The previous system can be written in an equivalent form as

 q1
q2
q3


t

=



0
0

−3gε
∂

∂x

[
∂q1
∂x

[
q3 −

(q2)2

q1

]
+
q1
2

∂

∂x

[
q3 −

(q2)2

q1
− g

2
(q1)2

]
+
g

2
ε(q1)3

∂2

∂x2
[q2
q1

]]
−1

ε

[
q3 −

(q2)2

q1
− g

2
(q1)2

]


(134)

For the discretization of this system we will use an explicit method with a
forward difference for the time derivative at tn and a central finite differences
for the space derivatives at position xi

Qn+1
i = Qi∗ + ∆t(γ(Qi∗)) (135)
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∂q

∂x
=
Qi+1 −Qi−1

2∆x
(136)

∂2q

∂x2
=
Qi+1 − 2Qi +Qi−1

(∆x)2
(137)

∂3q

∂x3
=
Qi+2 − 2Qi+1 + 2Qi−1 −Qi−2

2(∆x)3
(138)

where Qi∗ is the solution of the homogeneous system at each time step. The
ghost cells defined previously are used here for the computations at the bound-
aries.

4.3.3 Initial and Boundary Conditions

For the boundary condition, we will use again a non-reflecting outflow; as for the
initial conditions, they will be the same as in the SVE regarding the variables
h and u, together with W (x, 0) = 0 ∀x.

4.4 Results

Now we can compare the numerical solutions for both systems and demonstrate
that in practice W (x, t) will work as a singularities detector, also that the solu-
tions for height and velocity from the moment system of third order will tend to
the ones in the original SVE. The solutions are shown at times, t = 0, 1.875, 3
and ε = 0.01, 0.1, 1. For the initial time only the results of the first ε are pre-
sented, since they are equal for the others. The blue graphics correspond to the
SVE and the red ones to the third order system.
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t=0

Figure 1: Initial conditions for the SVE (blue) and the third order moment system
(red)
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t=1.875

Figure 2: Numerical results at t = 1.875 for the SVE and the third order moment
system with ε = 0.01
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Figure 3: Numerical results for the third order moment system at t = 1.875 with
ε = 0.1 (up) and ε = 1 (down)
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t=3

Figure 4: Numerical results at t = 3 for the SVE and the third order moment system
with ε = 0.01
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Figure 5: Numerical results for the third order moment system at t = 3 with ε = 0.1
(up) and ε = 1 (down)
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As we could see in the previous graphics, the initial condition for the height
of the water h(x, t) simulates the dam–break problem, which considers a wall
separating the two different levels of water with zero velocity.

As time starts running, the wall is removed and water starts moving to the
left side of the x−axis originating two different types of waves. The front wave
will steepen into a shock wave and the back wave will spread-out as a rarefaction
wave.

The formation of both waves can be observed in the Saint-Venant equations
as well as in the third order moment system, proving – as we were expecting
– that not only the solutions of the last system will approximate the original
SVE, but also that as we decrease the value of ε the approximation will im-
prove. On the other hand, the function W (x, t) indeed behave as δ–function at
discontinuities, going to ∞ in the point of the shock wave, to zero in the re-
gions where the velocity is constant and to −∞ in the region of the rarefaction
wave; this will hold true barely for ε = 1 where we can see that the behaviour
of W (x, t) is far from the theoretical result. Also, we should notice that the
position of the singularities is not approximated exactly, this can cause some
problems for example when using the third order moment system to construct
adaptive discretization techniques.

In order to measure the differences at a fixed time, between the numerical
solutions of h(x, t) and u(x, t) in both systems, we will use the discrete l1-norm
since for conservation laws the integral of the conserved quantities is of great
relevance (as seen in previous chapters); and the l∞-norm which helps us to
prove point-wise convergence. We will use Qnm to denote the solutions of the
third order moment system and qnm for the ones from the SVE.

ln1 =
1

M + 1

M∑
m=0

| Qnm − qnm | (139)

ln∞ = max
m=0,...,M

| Qnm − qnm | (140)

In table (1) the results for t = 0.75, 1.875, 3 and ε = 0.01 are shown, ad-
ditionally in table (2) the values where the l∞-norm is achieved are presented.
The errors are calculated only for the smallest value of ε since as we just saw on
the graphic results, as we increase the relaxation term the differences between
the SVE results and the third order moment system will increase. Capital let-
ters are used for the results from the third order moment system and lower case
letters for the ones from the SVE.

h(x,t) u(x,t)
t ln1 ln∞ ln1 ln∞

0,75 0,0242 0,2404 0,0126 0,1088
1,87 0,0762 0,7402 0,0315 0,2937

3 0,1283 1,0321 0,0499 0,4041

Table 1: lp errors between solutions of h(x,t) and u(x,t) for ε = 0, 01
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t x∞ H∞ h∞ U∞ u∞
0,75 -1,98 6,66 6,90 -0,172 -0,281
1,87 -4,74 6,36 7,10 -0,120 -0,414

3 -7,56 6,19 7,22 -0,0719 -0,476

Table 2: Positions and values where the l∞-norm is achieved for ε = 0, 01

The previous results allow us to see that as time advances the lp errors are
increasing, and at each time step the l∞-norm is achieved in the positions were
the discontinuities are formed; these large differences are in part due to the fact
that we are not in the formal limit of ε and shifts in the exact location of the
singularities will occur, becoming larger in time; another important reason for
these differences comes from the use of an explicit scheme for the discretization
of the source term which might not be the best approximation for the problem.

Nevertheless, in a general outlook the results obtained are very promising,
and for ε � 1 the third order system represents a fine approximation for the
Saint-Venant equations until now, as we can see with the l1-norm. However,
considerations in the approximation of the source term should be made together
with a deeper study on the convergence of the third order moment to the SVE.

5 Conclusions and Future Work

From a Boltzmann–like kinetic transport equation with BGK relaxation term
and using the moments of the density of particles f(x, t, ξ), it was possible to
reconstruct a relaxation model, such that, in the limit of ε → 0 the density
of particles will tend to an equilibrium function. This equilibrium function
can be constructed, with the help of the kinetic representation, to give first
three moment equations that will form an equivalent system to the Saint-Venant
equations.

As ε → 0, the system approaches to SVE together with a higher order
moment W (x, t), that may act as a shock and rarefaction waves detector, given
that in discontinuities it behaves like a δ -function.

On the other hand, the numerical results allow us to see that the theoretical
are confirmed, given that as ε is decreased, the solutions of h(x, t), u(x, t) and
W (x, t) are more close to the equilibrium values. Nonetheless, the numerical
errors show us that the convergence of the third order moment system to the
SVE has to be improved, since large differences arise in the positions of the
singularities. Hence, a more elaborated discretization for the source term should
be implemented, for example using implicit schemes instead of an explicit one.
Also, a deeper study of the system setting different initial conditions using the
Riemann invariants can give us more information on the behavior of the solution.

Until now, we have achieved very good results for the one-dimensional case
of the Saint–Venant equations, moreover we have built the basis for the con-
struction of an adaptive discretization method that will allows to improve the
time of the computations and the accuracy of the solutions. Along with this,
considerations on the change of topography and dry states (h(x, t) = 0) can be
made together with the two-dimensional case.
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