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1.1 Vlasov matter: a model for many astrophysical phenomena

Assumptions of Vlasov matter: ensemble of collisonless particles (collisionless Boltzmann equation)

e Mass distribution of globular clusters (King’s model, cf. e.g. Heggie, Giersz 2007)

(disc) galaxies: understanding e.g. velocity curves (Andréasson, Rein 2015)

Simulation of collisions: Milkyway <> Andromeda

Matter accretion of black holes (e.g. Rioseco, Sarbach 2016)

Gravitational collapse (e.g. Andréasson 2010)
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1.2 Vlasov matter — with Newtonian gravity

e Matter described by a particle distribution function f = f(t, Z,¥) defined on phase space.

e Gravity modeled by gravitational (Newtonian) potential ¢

Ag(t, %) = 4n [ f(t,Z,¥)dv dv*de?

RS

e Characteristic system:

2ty =dt),  Ut) = -Vt 7).
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1.3

Vlasov matter — with Einstein gravity

Relevant in the realm of concentrated matter or high particle velocities

Vlasov-Poisson: global existence of time evolution (Lions, Perthame 1991, Pfaffelmose, Scha-
effer 1991,/2004)

Einstein-Vlasov system: different behavior in certain situations

Let (#,g) be a 4-dim Lorentzian manifold. Einstein-Vlasov system:

G;w [g] = 47TT;L1/ [f]
det
W / it 7y - VAT IR
p08t (tu $7]7> +p18xzf(t,$,m — ]-_\Lyp pyf(t7 fa@ =0

Christoffel symbol: I'z, = %g‘w (085 + 04955 — Os9p-)-
Einstein-Tensor: G, = R, — 1ng,

Ricci tensor: R,,, Ricci scalar: R.
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1.4 Particle trajectories

e Particles move on geodesics

Characteristic system

XH(s) = P"(s),
Pt(s)y = —Th,P*P°

Curves (X*(s), P*(s)) in T.#

2.

particles’ rest mass: m —guwpt'p” — conserved

Curves stay in the mass shell

P ={(a",p") €T M : g,,p'p" = —m?, pfuture directed}

Massshell condition yields relation for p° — f = f(¢, Z, p).
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2 Concepts in the Analysis of Speherically Symmetric Steady
States
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2.1 Static solutions in spherical symmetry

Spherically symmetric + static space-time = 3 coordinates such that
g = —e2Mdt? 4 20 Ar? 4+ r2d9? + r? sin?(9)dy?.

A solution on R; x R3 is characterized by

e Metric functions pu(r), A(r)
e Matter quantities
o(r) = Too(r)e_zu(r), p(r) = Tll(r)e_z)‘(r), pr(r) = gijTij — p(r).

Important results:

e G. Rein, A. Rendall (1992, 1993, 1999: existence, finite support),
e T. Ramming, G. Rein (2007: on finite support),

e H. Andréasson, M. Kunze, G. Rein (2014: axially symmetric solutions)
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2.2 Illustration: A multishell solution

An anisotropic particle distribution forming a multishell.

The matter is arranged in shells separated by vacuum.
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2.3 The Buchdahl inequality - a feature in Einstein gravity

e Hawking mass:

m(r) = 4 /0 " $2o(s)ds.

Buchdahl inequality

Originally for stars where ¢/(r) < 0, isotropic pressure (Buchdahl 1959)

Generalized to a broad class of matter models: o(r) > p(r) + 2pr(r) (Andréasson 2006)

Rules out an adiabatic black hole transition.
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2.4 The “thin shell limit”

Introduced by H. Andréasson in 2007 to prove that the Buchdahl inequality I' < % is sharp.

Sequence {fn, gn, Ry x R3}, oy of static, spherically symmetric solutions; the matter quantities
are supported on [Ry ,,, Ry ).

This sequence then converges to the thin shell limit if

Rl,n
R2,n

— 1, as n — oo.

Properties of the thin shell limit

— The inequality ' < g becomes sharp
— the energy condition ¢ > p + 2pr becomes sharp

— the transversal pressure pr dominates the radial pressure p

Important for: Buchdahl-type inequalities, massless particles, stability questions (?)

10
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2.5 Geodesics in a shell
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2.6 Geodesics in a thin shell
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The behavior is very different from the “Einstein cluster”, which has %

<
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3 Charged Particles
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3.1 Charge - a poor man’s angular momentum

e With angular momentum: Stationary solutions with ergoregions observed (Andréasson, Ames,
Logg 2016)

e In the charged case: Einstein-Vlasov-Maxwell system — solution characterized by (u, A, ¢, o, p, pr)
— a Buchdahl-like inequality holds (Andréasson 2007)

e Coordinate singularity if: 4r) _y 1 & Buchdahl inequality saturated

T

e Saturation observed in two scenarios: (Andréasson, Eklund, Rein 2009)

Y 0

o8 ar)

T

14



) CHALMERS

3 CHARGED PARTICLES

3.2 The Einstein-Vlasov-Maxwell system
A solution of the EVM-system for particles with mass mg > 0 and charge ¢y > 0 is a 4-dim. Lorentzian
manifold (.#,g), a particle distribution function f € C(Z,,;R,), and an electro-magnetic field
tensor F' € A*(T.#) such that the EVM-system,
1
Ryulg] — §R[Q]guv = 8™ (Tw[f]+ 1w [F7])

Twlf] = 9uagus / f(z,p)p°p 1,
Py

1/ 1
Tyur [ F] <__9wFa6F“B+FvaFua)’

Tar \ 4
(v“@zu + (quin” — Fflﬁpo‘pﬁ) 81,1-) f=0,
dF =0,

VaFaﬁ = —471'(]0/ f(x7p)pﬁluﬁ"z
Py

is satisfied.

15
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3.3 The reduced static system in spherical symmetry

e Simplifications due to staticity and spherical symmetry

g = —ed? 4+ PO dr? + r2d9? + r?sin® 9dy?,

f(t,x,p) = f(r,w,L),
F(t,z) = F(r).

e “Elimination” of the Vlasov equation with the method of characteristics

— Recall: f solves the Vlasov equation iff. & f(X*(s), P"(s)) =0
— Identify conserved quantities £, L
— Construct a solution of the Vlasov equation f = ®(F, L)

Matter quantities become explicite functions of r, u, A, ..., like e.g.

o(r) = go(r, u(r),...).

16



CHALMERS

3 CHARGED PARTICLES

3.4 The system in spherical symmetry

The system reduces to a system of three coupled ordinary integro-differential equations.

An asympt. flat solution of the EVM-system is a triple (11, X, q) € (C([0,00)))” such that

q , 1 r 2
e 20 =1 -0 [ 2g4(s, u(s), I(s))ds — _/ : (ZS)dS’
r 0 " Jo 5

(1) = 20 (47T7“h<1>(7“,,u(7°)7]q(r)) X ‘7{_7; /0 s2go (s, u(s), I(s))ds — ‘12_52) . % /0 ‘-’S@ds)

q(r) = 477r2q0e M kg (r, p(r), I,(r)),

and
1(0) = p. and A(0) =¢(0) = lim pu(r) = lim A(r) = 0.

r—00 r—00
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3.5 Existence of solutions

Theorem. Let (1, \o),u. be a uncharged background solution corresponding to the
central value p. < 0 with matter quantities supported on [0, Ry.]. Let A > 0, such
that (o, Ao)u. has a vacuum region on [Ryac, Ryac + Al.

Then, if qo is chosen sufficiently small there exists a spherically symmetric, asymp-
totically flat, static solution (p1, \, q),, of the Einstein-Viasov-Mazwell system whose
matter quantities are supported on [0, Ryae + A].

18
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3.6 Perturbation method

1. Local existence: Picard iteration. W#< := (i, A, q),. exists on the intervall [0, d].

2. Continuation criterion: Assume the solution exists on [0, R..). If

NG D S R
1— 2ma(r) —

for all € [0, R.), then 36 > 0 s.t. solution exists on [0, R. + 9).
3. Consider a background solution ¥§° with vaccum region [Ryq., 00).
4. Bootstrap assumption: Let R > 0 be s.t. for some d > 0
|WHe(r) — Whe(r)| < d forall r € [0,T].

5. Improve with Gronwall inequality, provided ¢q is small. Derive

|UHe — U]l <d on [0, Ry + 4],

for some A > 0. Deduce that U#e has a vacuum region on [Ry,. + A, 00) due to closeness to
whe.

19
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3.7 Thin shells

Theorem. Let gy > 0 be arbitrary and let ji. < O be chosen such that —fi. is suffi-
ciently large. Then for all 1. < fi. there exists a solution (i, A, q),. of the Einstein-

Vlasov-Mazwell system with the same particle charge qo. The matter quantities of
these solutions are supported on [Ry(fi.), Ra(pte)] and we have

Ry
li — =1.
Mcif{loo R

FPurthermore we have

20
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3.8 Constraints on the particles’ support

e The particle energy is given by

L
E = ey fmd 4+ w? + = — I,(r).
r

e Assuming an ansatz ® such that ®(E) = 0, for £ > E, implies constraints on the support.

Analyze the characteristic function

(1) = (B + 1) = tr) = g (i + 2.

2 72

For small r there is a close connection to the matter quantities:

"
0q = Caqoel )ﬁ-

Choose central data p. such that Ry small = 3 radius r* such that 2m(r*)/r* > 0.8.

e 7 has a zero after r*, a vacuum exterior can be glued to the matter region.

21
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3.9 Outlook and conclusion
Achieved results

e Static solutions, with particles of small charge parameter, close to chargeless solutions

e For arbitrary particle charges: existence of a sequence of charged solutions approaching the
thin shell limit, saturating the Buchdahl inequality

Open questions

e New classes of saturating solutions of the EVM-system with Q = M = R

e (In)Stability of thin shell solutions
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