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1 INTRODUCTION – VLASOV MATTER

1.1 Vlasov matter: a model for many astrophysical phenomena

Assumptions of Vlasov matter: ensemble of collisonless particles (collisionless Boltzmann equation)

• Mass distribution of globular clusters (King’s model, cf. e.g. Heggie, Giersz 2007)

• (disc) galaxies: understanding e.g. velocity curves (Andréasson, Rein 2015)

• Simulation of collisions: Milkyway ↔ Andromeda

• Matter accretion of black holes (e.g. Rioseco, Sarbach 2016)

• Gravitational collapse (e.g. Andréasson 2010)
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1 INTRODUCTION – VLASOV MATTER

1.2 Vlasov matter – with Newtonian gravity

• Matter described by a particle distribution function f = f(t, ~x, ~v) defined on phase space.

• Gravity modeled by gravitational (Newtonian) potential φ







∆φ(t, ~x) = 4π

∫

R3

f(t, ~x, ~v)dv1dv2dv3

∂tf(t, ~x, ~v) + ~v · ∇~xf(t, ~x, ~v)−∇~xφ(t, ~x) · ∇~vf(t, ~x, ~v) = 0

• Characteristic system:
~̇x(t) = ~v(t), ~̇v(t) = −∇φ(t, ~x).
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1.3 Vlasov matter – with Einstein gravity

• Relevant in the realm of concentrated matter or high particle velocities

• Vlasov-Poisson: global existence of time evolution (Lions, Perthame 1991, Pfaffelmose, Scha-
effer 1991/2004)

• Einstein-Vlasov system: different behavior in certain situations

• Let (M , g) be a 4-dim Lorentzian manifold. Einstein-Vlasov system:

Gµν [g] = 4πTµν [f ]

T µν [f ] =

∫

R3

f(t, ~x, ~p)pµpν
√

| det g|

−p0
dp1dp2dp3

p0∂tf(t, ~x, ~p) + pi∂xif(t, ~x, ~p)− Γi
µνp

µpνf(t, ~x, ~p) = 0

Christoffel symbol: Γα
βγ = 1

2
gαδ (∂βgγδ + ∂γgδβ − ∂δgβγ).

Einstein-Tensor: Gµν = Rµν −
1
2
Rgµν

Ricci tensor: Rµν , Ricci scalar: R.
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1 INTRODUCTION – VLASOV MATTER

1.4 Particle trajectories

• Particles move on geodesics

• Characteristic system

Ẋµ(s) = P µ(s),

Ṗ µ(s) = −Γµ
αβP

αP β

• Curves (Xµ(s), P ν(s)) in TM

• particles’ rest mass: m2 := −gµνp
µpν → conserved

• Curves stay in the mass shell

Pm = {(xµ, pµ) ∈ TM : gµνp
µpν = −m2, p future directed}

• Massshell condition yields relation for p0 → f = f(t, ~x, ~p).

5



2 CONCEPTS IN THE ANALYSIS OF SPEHERICALLY SYMMETRIC STEADY STATES

2 Concepts in the Analysis of Speherically Symmetric Steady

States

6



2 CONCEPTS IN THE ANALYSIS OF SPEHERICALLY SYMMETRIC STEADY STATES

2.1 Static solutions in spherical symmetry

Spherically symmetric + static space-time ⇒ ∃ coordinates such that

g = −e2µ(r)dt2 + e2λ(r)dr2 + r2dϑ2 + r2 sin2(ϑ)dϕ2.

A solution on Rt × R
3
x is characterized by

• Metric functions µ(r), λ(r)

• Matter quantities

̺(r) := T00(r)e
−2µ(r), p(r) := T11(r)e

−2λ(r), pT (r) = gijT
ij − p(r).

Important results:

• G. Rein, A. Rendall (1992, 1993, 1999: existence, finite support),

• T. Ramming, G. Rein (2007: on finite support),

• H. Andréasson, M. Kunze, G. Rein (2014: axially symmetric solutions)
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2 CONCEPTS IN THE ANALYSIS OF SPEHERICALLY SYMMETRIC STEADY STATES

2.2 Illustration: A multishell solution

An anisotropic particle distribution forming a multishell.

r

̺

The matter is arranged in shells separated by vacuum.
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2 CONCEPTS IN THE ANALYSIS OF SPEHERICALLY SYMMETRIC STEADY STATES

2.3 The Buchdahl inequality - a feature in Einstein gravity

• Hawking mass:

m(r) = 4π

∫ r

0

s2̺(s)ds.

• Buchdahl inequality

Γ := sup
r∈(0,∞)

2m(r)

r
≤

8

9
.

• Originally for stars where ̺′(r) ≤ 0, isotropic pressure (Buchdahl 1959)

• Generalized to a broad class of matter models: ̺(r) ≥ p(r) + 2pT (r) (Andréasson 2006)

• Rules out an adiabatic black hole transition.
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2 CONCEPTS IN THE ANALYSIS OF SPEHERICALLY SYMMETRIC STEADY STATES

2.4 The “thin shell limit”

• Introduced by H. Andréasson in 2007 to prove that the Buchdahl inequality Γ ≤ 8
9

is sharp.

• Sequence {fn, gn,Rt × R
3
x}n∈N of static, spherically symmetric solutions; the matter quantities

are supported on [R1,n, R2,n].

• This sequence then converges to the thin shell limit if

R1,n

R2,n

→ 1, as n → ∞.

• Properties of the thin shell limit

– The inequality Γ ≤ 8
9

becomes sharp

– the energy condition ̺ ≥ p+ 2pT becomes sharp

– the transversal pressure pT dominates the radial pressure p

• Important for: Buchdahl-type inequalities, massless particles, stability questions (?)
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2.5 Geodesics in a shell
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2.6 Geodesics in a thin shell

The behavior is very different from the “Einstein cluster”, which has 2M
R

≤ 2
3
.
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3 Charged Particles
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3 CHARGED PARTICLES

3.1 Charge - a poor man’s angular momentum

• With angular momentum: Stationary solutions with ergoregions observed (Andréasson, Ames,
Logg 2016)

• In the charged case: Einstein-Vlasov-Maxwell system → solution characterized by (µ, λ, q, ̺, p, pT )
– a Buchdahl-like inequality holds (Andréasson 2007)

• Coordinate singularity if: q(r)
r

→ 1 & Buchdahl inequality saturated

• Saturation observed in two scenarios: (Andréasson, Eklund, Rein 2009)

̺ ̺

r r

q(r)
r

→ 0

Q = M = R
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3 CHARGED PARTICLES

3.2 The Einstein-Vlasov-Maxwell system

A solution of the EVM-system for particles with mass m0 ≥ 0 and charge q0 ≥ 0 is a 4-dim. Lorentzian
manifold (M , g), a particle distribution function f ∈ C(Pm0

;R+), and an electro-magnetic field
tensor F ∈ Λ2(TM ) such that the EVM-system,

Rµν [g]−
1

2
R[g]gµν = 8π (Tµν [f ] + τµν [F ]) ,

Tµν [f ] = gµαgνβ

∫

Px

f(x, p)pαpβµPx
,

τµν [F ] =
1

4π

(

−
1

4
gµνFαβF

αβ + FναF
α

µ

)

,

(

vµ∂xµ +
(

q0F
i
νp

ν − Γi
αβp

αpβ
)

∂vi
)

f = 0,

dF = 0,

∇αF
αβ = −4πq0

∫

Px

f(x, p)pβµPx

is satisfied.
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3 CHARGED PARTICLES

3.3 The reduced static system in spherical symmetry

• Simplifications due to staticity and spherical symmetry

g = −e2µ(r)dt2 + e2λ(r)dr2 + r2dϑ2 + r2 sin2 ϑdϕ2,

f(t, x, p) = f(r, w, L),

F (t, x) = F (r).

• “Elimination” of the Vlasov equation with the method of characteristics

– Recall: f solves the Vlasov equation iff. d
ds
f(Xµ(s), P ν(s)) = 0

– Identify conserved quantities E, L

– Construct a solution of the Vlasov equation f = Φ(E,L)

– Matter quantities become explicite functions of r, µ, λ, . . . , like e.g.

̺(r) = gΦ(r, µ(r), . . . ).
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3 CHARGED PARTICLES

3.4 The system in spherical symmetry

The system reduces to a system of three coupled ordinary integro-differential equations.

An asympt. flat solution of the EVM-system is a triple (µ, λ, q) ∈ (C1([0,∞)))
3

such that

e−2λ(r) = 1−
8π

r

∫ r

0

s2gΦ(s, µ(s), Iq(s))ds−
1

r

∫ r

0

q2(s)

s2
ds,

µ′(r) = e2λ(r)

(

4πrhΦ(r, µ(r), Iq(r)) +
4π

r2

∫ r

0

s2gΦ(s, µ(s), Iq(s))ds−
q2(r)

2r3
+

1

2r2

∫ r

0

q2(s)

s2
ds

)

,

q′(r) = 4πr2q0e
λ(r)kΦ(r, µ(r), Iq(r)),

and
µ(0) = µc and λ(0) = q(0) = lim

r→∞

µ(r) = lim
r→∞

λ(r) = 0.
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3 CHARGED PARTICLES

3.5 Existence of solutions

Theorem. Let (µ0, λ0)µc
be a uncharged background solution corresponding to the

central value µc < 0 with matter quantities supported on [0, Rvac]. Let ∆ > 0, such

that (µ0, λ0)µc
has a vacuum region on [Rvac, Rvac +∆].

Then, if q0 is chosen sufficiently small there exists a spherically symmetric, asymp-

totically flat, static solution (µ, λ, q)µc
of the Einstein-Vlasov-Maxwell system whose

matter quantities are supported on [0, Rvac +∆].
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3 CHARGED PARTICLES

3.6 Perturbation method

1. Local existence: Picard iteration. Ψµc := (µ, λ, q)µc
exists on the intervall [0, δ].

2. Continuation criterion: Assume the solution exists on [0, Rc). If

e2λ(r) =
1

1− 2mλ(r)
r

≤ C < ∞

for all r ∈ [0, Rc), then ∃δ > 0 s.t. solution exists on [0, Rc + δ).

3. Consider a background solution Ψµc

0 with vaccum region [Rvac,∞).

4. Bootstrap assumption: Let R > 0 be s.t. for some d > 0

|Ψµc(r)−Ψµc

0 (r)| ≤ d for all r ∈ [0, T ].

5. Improve with Grönwall inequality, provided q0 is small. Derive

‖Ψµc −Ψµc

0 ‖∞ ≤ d on [0, Rvac +∆],

for some ∆ > 0. Deduce that Ψµc has a vacuum region on [Rvac + ∆,∞) due to closeness to
Ψµc

0 .
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3 CHARGED PARTICLES

3.7 Thin shells

Theorem. Let q0 > 0 be arbitrary and let µ̂c < 0 be chosen such that −µ̂c is suffi-

ciently large. Then for all µc ≤ µ̂c there exists a solution (µ, λ, q)µc
of the Einstein-

Vlasov-Maxwell system with the same particle charge q0. The matter quantities of

these solutions are supported on [R1(µc), R2(µc)] and we have

lim
µc→−∞

R2

R1
= 1.

Furthermore we have

lim
µc→−∞

q(r)

r
= 0.
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3 CHARGED PARTICLES

3.8 Constraints on the particles’ support

• The particle energy is given by

E = eµ(r)
√

m2
0 + w2 +

L

r2
− Iq(r).

• Assuming an ansatz Φ such that Φ(E) = 0, for E ≥ E0 implies constraints on the support.

• Analyze the characteristic function

γ(r) = ln(E0 + Iq(r))− µ(r)−
1

2
ln

(

m2
0 +

L2
0

r2

)

.

• For small r there is a close connection to the matter quantities:

̺ ≈ C
γκ

r4
, p ≈ C

γκ+1

r4
, ̺q ≈ Cq0e

λ(r)γ
κ

r3
.

• Choose central data µc such that R1 small ⇒ ∃ radius r∗ such that 2m(r∗)/r∗ > 0.8.

• γ has a zero after r∗, a vacuum exterior can be glued to the matter region.
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3.9 Outlook and conclusion

Achieved results

• Static solutions, with particles of small charge parameter, close to chargeless solutions

• For arbitrary particle charges: existence of a sequence of charged solutions approaching the
thin shell limit, saturating the Buchdahl inequality

Open questions

• New classes of saturating solutions of the EVM-system with Q = M = R

• (In)Stability of thin shell solutions
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