Ehlers-Kundt conjecture and the initial value problem for gravitational waves

Miguel Sánchez (U. Granada)

Based on joint work with JL FLORES, arxiv: 1706.03855

Hamburg, March 19-23, 2018

M. Sánchez Ehlers-Kundt conjecture

My talk, in a nutshell

Ehlers-Kundt conjecture: physical assertion on gravitational waves related to its *lack of predictability* from initial data

My talk, in a nutshell

- **Ehlers-Kundt conjecture**: physical assertion on gravitational waves related to its *lack of predictability* from initial data
- 2 Mathematically, equivalent to a "Newtonian problem": Given V : ℝ² × ℝ → ℝ,
 (a) V(z, u) harmonic in z, (b) with complete trajectories for

$$\ddot{z}(s) = -\nabla_z V(z(s), s)$$

must $V(\cdot, u)$ be polynomial of degree ≤ 2 in $z = (x, y) \in \mathbb{R}^2$?

My talk, in a nutshell

- **Ehlers-Kundt conjecture**: physical assertion on gravitational waves related to its *lack of predictability* from initial data
- 2 Mathematically, equivalent to a "Newtonian problem": Given V : ℝ² × ℝ → ℝ,
 (a) V(z, u) harmonic in z, (b) with complete trajectories for

$$\ddot{z}(s) = -\nabla_z V(z(s), s)$$

must V(·, u) be polynomial of degree ≤ 2 in z = (x, y) ∈ ℝ²?
3 Assuming V(z, u) polynomially bounded for finite values of u, → we will give a positive answer

My talk, in a nutshell

- **Ehlers-Kundt conjecture**: physical assertion on gravitational waves related to its *lack of predictability* from initial data
- 2 Mathematically, equivalent to a "Newtonian problem": Given V : ℝ² × ℝ → ℝ,
 (a) V(z, u) harmonic in z, (b) with complete trajectories for

$$\ddot{z}(s) = -\nabla_z V(z(s), s)$$

must $V(\cdot, u)$ be polynomial of degree ≤ 2 in $z = (x, y) \in \mathbb{R}^2$?

- 3 Assuming V(z, u) polynomially bounded for finite values of u,
 → we will give a positive answer
- In general, including autonomous case $V(z, u) \equiv V(z)$, open Basic question in potential theory!!

My talk, in a nutshell

Aims: to explain

1 Background:

- Gravitational waves
- Initial value problem in this framework
- Original Ehlers-Kundt conjecture
- Reformulation with a Newtonian potential

My talk, in a nutshell

Aims: to explain

1 Background:

- Gravitational waves
- Initial value problem in this framework
- Original Ehlers-Kundt conjecture
- Reformulation with a Newtonian potential
- 2 To sketch the ideas for
 - 1 Technical setup
 - 2 Main steps of the solved polynomial case.

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

GW: (too) short experimental summary

Gravitational waves: prediction by Einstein

- Hulse and Taylor (1974): undirect evidence
- LIGO experiment: direct measurement '15 reported in '16 ...just the first step (eLISA, etc.)

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

→ < ∃ →</p>

GW: theoretical viewpoint

Some highlights:

Einstein'18: prediction in the framework of GR (after more speculative introduction by Poincaré), introducing a celebrated quadrupole formula.

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

GW: theoretical viewpoint

- Einstein'18: prediction in the framework of GR (after more speculative introduction by Poincaré), introducing a celebrated quadrupole formula.
- Einstein double reversal:
 - Einstein and Rosen argued their inexistence in a paper submitted to Phys. Rev. ('36).
 - Negative report (gap found by Robertson), but paper accepted elsewhere (J. Frank. Inst. '37)
 - Einstein rectifies in the galley proofs

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

GW: theoretical viewpoint

- Einstein'18: prediction in the framework of GR (after more speculative introduction by Poincaré), introducing a celebrated quadrupole formula.
- Einstein double reversal:
 - Einstein and Rosen argued their inexistence in a paper submitted to Phys. Rev. ('36).
 - Negative report (gap found by Robertson), but paper accepted elsewhere (J. Frank. Inst. '37)
 - Einstein rectifies in the galley proofs
- Bondi'57 non-singular solution; Pirani '57, link to curvature invariants, Trautman'58 conditions at infinity

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

GW: theoretical viewpoint

- Einstein'18: prediction in the framework of GR (after more speculative introduction by Poincaré), introducing a celebrated quadrupole formula.
- Einstein double reversal:
 - Einstein and Rosen argued their inexistence in a paper submitted to Phys. Rev. ('36).
 - Negative report (gap found by Robertson), but paper accepted elsewhere (J. Frank. Inst. '37)
 - Einstein rectifies in the galley proofs
- Bondi'57 non-singular solution; Pirani '57, link to curvature invariants, Trautman'58 conditions at infinity
- Historic meeting at Chapel Hill'57 (Feynmann explained his sticky bead argument)

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

GW: theoretical viewpoint

- Einstein'18: prediction in the framework of GR (after more speculative introduction by Poincaré), introducing a celebrated quadrupole formula.
- Einstein double reversal:
 - Einstein and Rosen argued their inexistence in a paper submitted to Phys. Rev. ('36).
 - Negative report (gap found by Robertson), but paper accepted elsewhere (J. Frank. Inst. '37)
 - Einstein rectifies in the galley proofs
- Bondi'57 non-singular solution; Pirani '57, link to curvature invariants, Trautman'58 conditions at infinity
- Historic meeting at Chapel Hill'57 (Feynmann explained his sticky bead argument)
- End 50's waves in mainstream: Bondi, Pirani, Robinson '59 = ...

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

GW: theoretical viewpoint

By the way:

 Bondi, Pirani, Robinson'59 solution, obtained with great effort by physicists along decades...

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

GW: theoretical viewpoint

By the way:

- Bondi, Pirani, Robinson'59 solution, obtained with great effort by physicists along decades...
- …had been studied by the mathematician Brinkmann'25

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

Parallelly propagated plane-fronted waves

pp-wave: \mathbb{R}^4 endowed with:

 $g = dx^2 + dy^2 + 2 du dv + H(z, u) du^2, \quad z := (x, y), \quad (x, y, u, v) \in \mathbb{R}^4$

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

Parallelly propagated plane-fronted waves

pp-wave: \mathbb{R}^4 endowed with:

$$g = dx^2 + dy^2 + 2 \ du \ dv + H(z, u) \ du^2, \quad z := (x, y), \quad (x, y, u, v) \in \mathbb{R}^4$$

gravitational (Ricci-flat): H(z, u) harmonic in z:

$$\Delta_z H(z,u) := (\partial_x^2 H + \partial_y^2 H)(z,u) \equiv 0.$$

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

A (1) > A (2) > A

Parallelly propagated plane-fronted waves

pp-wave: \mathbb{R}^4 endowed with:

$$g = dx^2 + dy^2 + 2 \ du \ dv + H(z, u) \ du^2, \quad z := (x, y), \quad (x, y, u, v) \in \mathbb{R}^4$$

gravitational (Ricci-flat): H(z, u) harmonic in z:

$$\Delta_z H(z,u) := (\partial_x^2 H + \partial_y^2 H)(z,u) \equiv 0.$$

plane wave: at each $u \in \mathbb{R}$, *H* polynomial in *x*, *y* of degree ≤ 2 .

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

Penrose's remarkable property

Penrose's observation '65: plane waves are not globally hyperbolic no spacelike hypersurface exists in the spacetime which is adequate for the global specification of Cauchy data

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

Penrose's remarkable property

Penrose's observation '65: plane waves are not globally hyperbolic no spacelike hypersurface exists in the spacetime which is adequate for the global specification of Cauchy data

So:

at what extent plane waves are physically meaningful or just idealizations of the model

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

About global hyperbolicity

(M,g) globally hyperbolic if any of the following holds:

- It is (necessarily strongly) causal and has no naked singularities, i.e. $J^+(p) \cap J^-(q)$ is compact for any $p, q \in M$.
- It admits a (topological) Cauchy hypersurface S (S: subset crossed exactly once by any inextensible timelike curve)
- 3 It admits a Cauchy temporal function τ (τ smooth with spacelike and Cauchy levels τ = constant). So, orthogonal Cauchy splitting:

 $M = \mathbb{R} imes S, g = -\Lambda(\tau, x) d\tau^2 + g_{ au}$

[Topological assertions: Geroch '70. Weakening of strong causality: Bernal & S. '07 Smoothening: Bernal & S. '03,'05 (improvements in Müller & S, '11, Müller'16; other approaches: Fathi & Siconolfi '13, Chrusciel et al. '16, Bernard & Suhr '18.)]

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

About global hyperbolicity

(M,g) globally hyperbolic if any of the following holds:

- It is (necessarily strongly) causal and has no naked singularities, i.e. $J^+(p) \cap J^-(q)$ is compact for any $p, q \in M$.
- It admits a (topological) Cauchy hypersurface S (S: subset crossed exactly once by any inextensible timelike curve)
- It admits a Cauchy temporal function τ (τ smooth with spacelike and Cauchy levels τ = constant).
 So, orthogonal Cauchy splitting: M = ℝ × S, g = -Λ(τ, x)dτ² + gτ

Moreover, in this case (Bernal & S. '06):

- Any compact acausal spacelike hyp. with boundary is extensible to a spacelike Cauchy hyp.
- Any spacelike Cauchy hyp. S is the level of some τ

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

Relaxing to conformal boundaries

 (\overline{M}, g) globally hyp. with **timelike boundary** Loosen global hyp.: allow naked singularities at (conformal) ∂M

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

Relaxing to conformal boundaries

(\overline{M}, g) globally hyp. with **timelike boundary** Loosen global hyp.: allow naked singularities at (conformal) ∂M

Theorem (Aké, Flores, S. '18)

 (\overline{M},g) admits a splitting $M = \mathbb{R} \times \overline{S}$ where each slice \overline{S}_{τ} is a Cauchy hyp. with boundary

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Relaxing to conformal boundaries

(\overline{M}, g) globally hyp. with **timelike boundary**

Loosen global hyp.: allow naked singularities at (conformal) ∂M

Theorem (Aké, Flores, S. '18)

 (\overline{M},g) admits a splitting $M = \mathbb{R} \times \overline{S}$ where each slice \overline{S}_{τ} is a Cauchy hyp. with boundary

This suggests *mixed hyperbolic problems* with:

- Initial conditions on $\{0\} \times \overline{S}$ (slice $\tau \equiv 0$) +
- Boundary conditions on $\mathbb{R} \times \partial S$ (= ∂M) +
- Compatibility on $\{0\} \times \partial S$ (= ($\{0\} \times \overline{S}$) \cap ($\mathbb{R} \times \partial S$))

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

Conformal boundary for plane waves

Plane waves are not globally hyperbolic but, how is their conformal boundary?

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

Conformal boundary for plane waves

Plane waves are not globally hyperbolic but, how is their conformal boundary?

Berenstein & Natase '02: the conformal boundary of some plane waves is "1-dimensional and lightlike"
 Interesting boundary for holographic principle...
 but not a good timelike one for the initial value

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

Conformal boundary for plane waves

Plane waves are not globally hyperbolic but, how is their conformal boundary?

- Marolf & Ross '02 '03: examples with no conformal bd. (bad even for holographic principle)

 extended study including the causal boundary

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

Conformal vs causal boundary

Reasonable conformal boundaries are **not** always available:

 Alternative causal boundary ∂_cM (starting at a seminal idea by Geroch, Kronheimer and Penrose '72): intrinsic and general for strongly causal spacetimes

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

Conformal vs causal boundary

Reasonable conformal boundaries are **not** always available:

- Alternative causal boundary ∂_cM (starting at a seminal idea by Geroch, Kronheimer and Penrose '72): intrinsic and general for strongly causal spacetimes
- Historic problems: redefinition by Marolf-Ross (in order to study pp-waves)

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

< ロ > < 同 > < 三 > < 三 >

Conformal vs causal boundary

Reasonable conformal boundaries are **not** always available:

- Alternative causal boundary ∂_cM (starting at a seminal idea by Geroch, Kronheimer and Penrose '72): intrinsic and general for strongly causal spacetimes
- Historic problems: redefinition by Marolf-Ross (in order to study pp-waves)
- Boundary points: (P, F)
 - $P = I^{-}(\gamma)$, where γ inextendible, future-directed timelike
 - $F = I^+(\tilde{\gamma})$, where $\tilde{\gamma}$ inextendible, past-directed timelike
 - (P, F) constitute a pair when they are S-related (Szabados'88)
 → pairs (P, Ø) or (Ø, F) are allowed otherwise

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

Conformal vs causal boundary

Redefinition and systematic study (Flores, Herrera, S '11):

1 A strongly causal s.t is globally hyp \iff S-relation is trivial (all $(P, F) \in \partial_c M$ has $P = \emptyset$ or $F = \emptyset$)

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

Conformal vs causal boundary

Redefinition and systematic study (Flores, Herrera, S '11):

- A strongly causal s.t is globally hyp \iff S-relation is trivial (all $(P, F) \in \partial_c M$ has $P = \emptyset$ or $F = \emptyset$)
- Under general conditions (applicable to globally hyp. s.t. with timelike bd, up to i[±]) the conformal and causal boundaries agree

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

・ 同 ト ・ ヨ ト ・ ヨ ト

Conformal vs causal boundary

Redefinition and systematic study (Flores, Herrera, S '11):

- A strongly causal s.t is globally hyp \iff S-relation is trivial (all $(P, F) \in \partial_c M$ has $P = \emptyset$ or $F = \emptyset$)
- Under general conditions (applicable to globally hyp. s.t. with timelike bd, up to i[±]) the conformal and causal boundaries agree
- 3 When a conf. bound. ∂M is C¹ + chronologically complete (inextensible timelike curves have an endpoint at ∂M):
 M is glob. hyp. ⇔ T(∂M) is nowhere timelike (consistency with globally hyp. s.t. with timelike boundary)

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

Causal boundary for plane waves

Plane waves did not have a good timelike conformal boundary, how is their causal bd. ?

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

Causal boundary for plane waves

Plane waves did not have a good timelike conformal boundary, how is their causal bd. ?

Marolf & Ross '02 '03: interesting particular cases
Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

Causal boundary for plane waves

Plane waves did not have a good timelike conformal boundary, how is their causal bd. ?

- Marolf & Ross '02 '03: interesting particular cases
- Flores & S. '08: systematic study c-boundary of pp-waves
 - Characterization possible dimensions of $\partial_c M$: $1, \ldots, n-1$.
 - Analysis conformal $\partial M \neq$ causal $\partial_c M$
 - many problematic examples
 - including pp-waves non-strongly causal (nor distinguishing)!
 - ...neither the conformal nor the c-boundary make sense!

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

EK conjecture: physical statement

Ehlers and Kundt '62: summary on gravitational waves.

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

EK conjecture: physical statement

Ehlers and Kundt '62: summary on gravitational waves.

After proving that plane waves are (geodesically) complete they posed *EK conjecture*:

Prove the plane waves to be the only complete [gravitational] **pp-waves**, no matter which topology one chooses.

< ロ > < 同 > < 三 > < 三 >

EK conjecture: physical statement

Ehlers and Kundt '62: summary on gravitational waves.

After proving that **plane waves** are (geodesically) complete they posed *EK conjecture*:

Prove the plane waves to be the only complete [gravitational] **pp-waves**, no matter which topology one chooses.

Under their viewpoint:

- Complete and Ricci flat pp-waves would represent a graviton field independent of any matter by which it would be generated
- Such gravitons (allegedly plane waves), would correspond to source-free photons in electrodynamics.

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

EK conjecture: the loose end

Recall:

- Source-free photons, represented by monocromatic sine waves, constitute an idealization (very useful: the basis of the Fourier analysis of homogeneous electromagnetic waves).
- EK conjecture assigns a similar role to gravitational plane waves.

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

A (1) < A (1) < A (1) < A (1) </p>

EK conjecture: the loose end

Recall:

- Source-free photons, represented by monocromatic sine waves, constitute an idealization (very useful: the basis of the Fourier analysis of homogeneous electromagnetic waves).
- EK conjecture assigns a similar role to gravitational plane waves.
- In connection with the commented ideas, EK conjecture:
 - 1 assigns the idealized role suggested by Penrose
 - 2 circumvents the initial/mixed value problem for plane waves
 - 3 for pp-waves, problem transferred to incompleteness ~> something is missed in the modelling (so, add a source!)

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

Precise mathematical problem

$\begin{array}{c} \text{Ricci-flat} \\ (\Delta_z H = 0) \\ + \\ \text{Complete} \end{array} \end{array} \right\} \text{ pp-wave (any H)} \Longrightarrow \text{ plane wave (quad. polyn. } x, y)$

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

Reformulation in Lagrangian (Newtonian) Mechanics

Theorem

Put V = -H. A pp-wave is complete \Leftrightarrow all the trajectories of

$$\ddot{z}(s) = -\nabla_z V(z(s), s)$$
 (1)

are complete.

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

Reformulation in Lagrangian (Newtonian) Mechanics

Theorem

Put V = -H. A pp-wave is complete \Leftrightarrow all the trajectories of

$$\ddot{z}(s) = -\nabla_z V(z(s), s)$$
 (1)

are complete.

EK conjecture is equivalent to the following

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

- 4 目 ト - 4 目 ト - 4

Reformulation in Lagrangian (Newtonian) Mechanics

Theorem

Put V = -H. A pp-wave is complete \Leftrightarrow all the trajectories of

$$\ddot{z}(s) = -\nabla_z V(z(s), s)$$
 (1)

are complete.

EK conjecture is equivalent to the following

Conjecture (Alternative EK Lagrangian conjecture)

Let V(z, u) non-autonomous potential on \mathbb{R}^2 , harmonic in z. The dynamical system (1) is complete \iff V(z, u) is a (at most) quadratic polynomial in z, $\forall u \in \mathbb{R}$.

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

Nomenclature for known results

• *H* polynomially bounded at finite *u*-times or just polynomially *u*-bounded:

 $\forall u_0 \in \mathbb{R}, \exists \epsilon_0 > 0 \text{ and polynomial } q_0$:

 $H(z,u) \leq q_0(z)$ $\forall (z,u) \in \mathbb{R}^2 \times (u_0 - \epsilon_0, u_0 + \epsilon_0)$

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

Nomenclature for known results

• *H* polynomially bounded at finite *u*-times or just polynomially *u*-bounded:

 $\forall u_0 \in \mathbb{R}, \exists \epsilon_0 > 0 \text{ and polynomial } q_0$:

$$H(z, u) \leq q_0(z)$$
 $\forall (z, u) \in \mathbb{R}^2 \times (u_0 - \epsilon_0, u_0 + \epsilon_0)$

• *H* quadratically polynomially *u*-bounded: q_0 degree $\leq 2 \forall u_0 \in \mathbb{R}$.

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

▲ 伊 ▶ ▲ 王 ▶

Known results

(a) **Ehlers-Kundt'62:** All plane waves (gravitational or not) are complete (ODE system with enough symmetries)

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

Known results

- (a) **Ehlers-Kundt'62:** All plane waves (gravitational or not) are complete (ODE system with enough symmetries)
- (b) Flores-S. '06+ Candela-Romero-S. '13: all pp-waves whenever H = -V is quadratically polynomially u-bounded (use Lagrangian viewpoint). As a consequence, EK conjecture true in this case

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

< ロ > < 同 > < 三 > < 三 > <

Known results

- (a) **Ehlers-Kundt'62:** All plane waves (gravitational or not) are complete (ODE system with enough symmetries)
- (b) Flores-S. '06+ Candela-Romero-S. '13: all pp-waves whenever H = -V is quadratically polynomially u-bounded (use Lagrangian viewpoint). As a consequence, EK conjecture true in this case
- (c) Leistner-Schliebner'16: focus on the vague assertion
 "No matter which topology one chooses".
 It can be extended rigorously (by taking a locally pp-wave metric on a compact manifold) and:
 the problem becomes equivalent to the standard one on R⁴.
 - (+ further extensions by **Costa-Flores-Herrera'16**)

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

▲ 伊 ▶ ▲ 王 ▶

Our goal: proof of polynomial EK conjecture

Theorem (Flores-S., arxiv 1706.03855)

EK conjecture is true when H(z, u) is polynomially u-bounded.

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

Discussion

1 Necessity of the polynomial bound:

- z-harmonicity ⇒ z-analiticity ⇒ z-polynomial series
 → but the technique crashes for infinite series.
- Physically: EK conj holds at any finite perturbative order

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

Discussion

1 Necessity of the polynomial bound:

■ *z*-harmonicity ⇒ *z*-analiticity ⇒ *z*-polynomial series → but the technique crashes for infinite series.

Physically: EK conj holds at any finite perturbative order

2 Significative (even in the autonomous case $V(z, u) \equiv V(z)$)

- z-harmonicity: new type of hypothesis for incompleteness
- Links with the theory of polynomial holomorphic vector on C² (result natural but unknown there) and other fields

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

Discussion

1 Necessity of the polynomial bound:

■ *z*-harmonicity ⇒ *z*-analiticity ⇒ *z*-polynomial series → but the technique crashes for infinite series.

Physically: EK conj holds at any finite perturbative order

2 Significative (even in the autonomous case $V(z, u) \equiv V(z)$)

- z-harmonicity: new type of hypothesis for incompleteness
- Links with the theory of polynomial holomorphic vector on C² (result natural but unknown there) and other fields
- Open case of physical and mathematical interest:
 Relativity + Classical Mechanics + Dynamical systems

Physical viewpoint and geometric model (Non-) Global Hyperbolicity and EK conjecture Reformulation and known results

• □ • • • • • • • • • • •

Discussion

1 Necessity of the polynomial bound:

■ *z*-harmonicity ⇒ *z*-analiticity ⇒ *z*-polynomial series → but the technique crashes for infinite series.

Physically: EK conj holds at any finite perturbative order

2 Significative (even in the autonomous case $V(z, u) \equiv V(z)$)

- z-harmonicity: new type of hypothesis for incompleteness
- Links with the theory of polynomial holomorphic vector on C² (result natural but unknown there) and other fields
- Open case of physical and mathematical interest:
 Relativity + Classical Mechanics + Dynamical systems
- Natural smoothness in the non-autonomous case: C¹ (existence of geodesics)
 - ~ Analiticity will not be used in our techniques.

Controlling harmonic potentials Completeness of dynamical systems Heuristic idea of the proof

Preliminaries on V = -H

■ Focus on the Lagrangian problem in Classical Mechanics: use V(z, u) ("potential energy") rather than -H(z, u)

▲ □ ▶ ▲ □ ▶ ▲

Controlling harmonic potentials Completeness of dynamical systems Heuristic idea of the proof

Preliminaries on V = -H

- Focus on the Lagrangian problem in Classical Mechanics: use V(z, u) ("potential energy") rather than -H(z, u)
- Classically u is the "external time" (but u is not a time function in the relativistic sense for the pp-wave)

Controlling harmonic potentials Completeness of dynamical systems Heuristic idea of the proof

Which approach should be used?

Autonomous case: complex variable for V = -H?

・ 同 ト ・ ヨ ト ・ ヨ ト

Controlling harmonic potentials Completeness of dynamical systems Heuristic idea of the proof

Which approach should be used?

Autonomous case: complex variable for V = -H?

Theorem (Rellich'40)

If h = h(z) is an entire function that is not a polynomial of degree at most 1, then every entire solution of the complex analytic differential equation z'' = -h(z) is constant.

・ 一 マ ト ・ 日 ト ・

Controlling harmonic potentials Completeness of dynamical systems Heuristic idea of the proof

Which approach should be used?

Autonomous case: complex variable for V = -H?

Theorem (Rellich'40)

If h = h(z) is an entire function that is not a polynomial of degree at most 1, then every entire solution of the complex analytic differential equation z'' = -h(z) is constant.

1 Given V, complexify to an entire V_C and solve $z'' = -V'_C$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Controlling harmonic potentials Completeness of dynamical systems Heuristic idea of the proof

Which approach should be used?

Autonomous case: complex variable for V = -H?

Theorem (Rellich'40)

If h = h(z) is an entire function that is not a polynomial of degree at most 1, then every entire solution of the complex analytic differential equation z'' = -h(z) is constant.

Given V, complexify to an entire V_C and solve $z'' = -V'_C$ $\rightsquigarrow h_1(z) = \partial_x V - i \partial_y V$ introduces a wrong sign

・ 同 ト ・ ヨ ト ・ ヨ ト

Controlling harmonic potentials Completeness of dynamical systems Heuristic idea of the proof

Which approach should be used?

Autonomous case: complex variable for V = -H?

Theorem (Rellich'40)

If h = h(z) is an entire function that is not a polynomial of degree at most 1, then every entire solution of the complex analytic differential equation z'' = -h(z) is constant.

Given V, complexify to an entire V_C and solve z" = −V'_C → h₁(z) = ∂_xV − i∂_yV introduces a wrong sign
 Choose h₂(z) = ∂_xV + i∂_yV → anti-holomorphic

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Controlling harmonic potentials Completeness of dynamical systems Heuristic idea of the proof

Which approach should be used?

Autonomous case: complex variable for V = -H?

Theorem (Rellich'40)

If h = h(z) is an entire function that is not a polynomial of degree at most 1, then every entire solution of the complex analytic differential equation z'' = -h(z) is constant.

 Given V, complexify to an entire V_C and solve z" = -V'_C → h₁(z) = ∂_xV - i∂_yV introduces a wrong sign

 Choose h₂(z) = ∂_xV + i∂_yV → anti-holomorphic

 Choose h₃(z) = ∂_yV + i∂_xV holomorphic
 → but x, y are switched in the equation

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Controlling harmonic potentials Completeness of dynamical systems Heuristic idea of the proof

Which approach should be used?

Autonomous case: complex variable for V = -H?

Theorem (Rellich'40)

If h = h(z) is an entire function that is not a polynomial of degree at most 1, then every entire solution of the complex analytic differential equation z'' = -h(z) is constant.

 Given V, complexify to an entire V_C and solve z" = -V'_C → h₁(z) = ∂_xV - i∂_yV introduces a wrong sign
 Choose h₂(z) = ∂_xV + i∂_yV → anti-holomorphic
 Choose h₃(z) = ∂_yV + i∂_xV holomorphic → but x, y are switched in the equation
 ... choose h₄(z) = ih₃ holomorphic and un-switch the coordinates → but this is again h₁

< ロ > < 同 > < 回 > < 回 > .

Controlling harmonic potentials Completeness of dynamical systems Heuristic idea of the proof

Which approach should be used?

Autonomous case: complex variable for V = -H?

Theorem (Rellich'40)

If h = h(z) is an entire function that is not a polynomial of degree at most 1, then every entire solution of the complex analytic differential equation z'' = -h(z) is constant.

 Given V, complexify to an entire V_C and solve z" = -V'_C → h₁(z) = ∂_xV - i∂_yV introduces a wrong sign
 Choose h₂(z) = ∂_xV + i∂_yV → anti-holomorphic
 Choose h₃(z) = ∂_yV + i∂_xV holomorphic → but x, y are switched in the equation
 ... choose h₄(z) = ih₃ holomorphic and un-switch the coordinates → but this is again h₁

Incompatibility, complex variable does not seem to work!

Controlling harmonic potentials Completeness of dynamical systems Heuristic idea of the proof

Explicit form of V = -H

Result 1: expression of V in polar coordinates

• Autonomous case: z-harmonic + polynomially u-bounded \implies

$$V(\rho,\theta) = -\lambda \rho^n \cos n(\theta + \alpha) - \sum_{m=0}^{n-1} \lambda_m \rho^m \cos m(\theta + \alpha_m),$$
(2)

 $\lambda > 0$ and $\lambda_m, \alpha, \alpha_m$ constants.

< /₽ > < E >

Controlling harmonic potentials Completeness of dynamical systems Heuristic idea of the proof

Tool: harmonic polynomials on $\mathbb{C} = \mathbb{R}^2$

- **1** *V* harmonic \Leftrightarrow real part of an entire function V_C
- **2** V (upper) bounded by a polynomial \Leftrightarrow V polynomial
- 3 *V* harmonic polynomial of degree $n \Leftrightarrow$ terms of degree $m (\in \{1, ..., n\})$ harmonic p_m
- 4 Homogeneous harmonic polynomials degree m > 0: 2-dim $p_m(\rho, \theta) = A_m \rho^m \cos(m\theta) + B_m \rho^m \sin(m\theta)$ $= \lambda_m \rho^m \cos m(\theta + \alpha_m)$
- 5 Thus, V harmonic polynomial p of degree n > 0: $p = \sum_{m=0}^{n} p_m$

・ 同 ト ・ ヨ ト ・ ヨ ト

Controlling harmonic potentials Completeness of dynamical systems Heuristic idea of the proof

u-dependence

Non autonomous case: expected explicit form

$$V(\rho, \theta, u) = -\lambda(u)\rho^{n} \cos n(\theta + \alpha(u)) -\sum_{m=0}^{n-1} \lambda_{m}(u)\rho^{m} \cos m(\theta + \alpha_{m}(u)),$$
(3)

 $\lambda(u) > 0$, C^1 -smooth $\lambda(u), \lambda_m(u), \alpha(u), \alpha_m(u)$.

- 4 目 ト - 三 ト - 4

Controlling harmonic potentials Completeness of dynamical systems Heuristic idea of the proof

u-dependence

Non autonomous case: expected explicit form

$$V(\rho, \theta, u) = -\lambda(u)\rho^{n} \cos n(\theta + \alpha(u)) -\sum_{m=0}^{n-1} \lambda_{m}(u)\rho^{m} \cos m(\theta + \alpha_{m}(u)),$$
(3)

 $\lambda(u) > 0$, C^1 -smooth $\lambda(u), \lambda_m(u), \alpha(u), \alpha_m(u)$.

...but only in some (dense) intervals $I = (u_0 - \epsilon_0, u_0 + \epsilon_0)$

$$V(z,u) = \begin{cases} e^{-1/u^2} \rho^n \cos(n\theta + 1/u) & u \neq 0\\ 0 & u = 0 \end{cases}$$

 \rightsquigarrow non-continuous lpha(u)=1/u

< 🗇 🕨 < 🖻 🕨

Controlling harmonic potentials Completeness of dynamical systems Heuristic idea of the proof

EK conjecture vs Lagrangian EK conjecture

Theorem

Put V = -H. A pp-wave is complete \Leftrightarrow all the trajectories of

$$\ddot{z}(s) = -\nabla_z V(z(s), s) \tag{4}$$

< A > <

are complete.

Controlling harmonic potentials Completeness of dynamical systems Heuristic idea of the proof

EK conjecture vs Lagrangian EK conjecture

Theorem

Put V = -H. A pp-wave is complete \Leftrightarrow all the trajectories of

$$\ddot{z}(s) = -\nabla_z V(z(s), s) \tag{4}$$

・ 一 マ ト ・ 日 ト ・

are complete.

Proof. Geodesic eqn (z(s), u(s), v(s)): $u(s) = \dot{u}(0)s + u(0)$
Controlling harmonic potentials Completeness of dynamical systems Heuristic idea of the proof

EK conjecture vs Lagrangian EK conjecture

Theorem

Put V = -H. A pp-wave is complete \Leftrightarrow all the trajectories of

$$\ddot{z}(s) = -\nabla_z V(z(s), s) \tag{4}$$

are complete.

Proof. Geodesic eqn (z(s), u(s), v(s)): $u(s) = \dot{u}(0)s + u(0)$ v(s) directly computable from u(s), z(s) on their (common) domain.

Controlling harmonic potentials Completeness of dynamical systems Heuristic idea of the proof

EK conjecture vs Lagrangian EK conjecture

Theorem

Put V = -H. A pp-wave is complete \Leftrightarrow all the trajectories of

$$\ddot{z}(s) = -\nabla_z V(z(s), s)$$
 (4)

▲ □ ▶ ▲ □ ▶ ▲

are complete.

Proof. Geodesic eqn (z(s), u(s), v(s)): $u(s) = \dot{u}(0)s + u(0)v(s)$ directly computable from u(s), z(s) on their (common) domain.

 $\ddot{z}(s) = -\lambda^2
abla_z V(z(s), u(s))$ with $\lambda^2 = \dot{u}(0)^2/2 \ge 0$

Controlling harmonic potentials Completeness of dynamical systems Heuristic idea of the proof

EK conjecture vs Lagrangian EK conjecture

Theorem

Put V = -H. A pp-wave is complete \Leftrightarrow all the trajectories of

$$\ddot{z}(s) = -\nabla_z V(z(s), s)$$
 (4)

・ 同 ト ・ ヨ ト ・ ヨ ト

are complete.

Proof. Geodesic eqn (z(s), u(s), v(s)): $u(s) = \dot{u}(0)s + u(0)$ v(s) directly computable from u(s), z(s) on their (common) domain.

 $\ddot{z}(s) = -\lambda^2 \nabla_z V(z(s), u(s))$ with $\lambda^2 = \dot{u}(0)^2/2 \ge 0$ completeness for $V \iff$ completeness for $\lambda^2 V$ with $\lambda \ne 0$ \Box

Controlling harmonic potentials Completeness of dynamical systems Heuristic idea of the proof

EK conjecture vs Lagrangian EK conjecture

Theorem

Put V = -H. A pp-wave is complete \Leftrightarrow all the trajectories of

$$\ddot{z}(s) = -\nabla_z V(z(s), s) \tag{4}$$

< ロ > < 同 > < 三 > < 三 >

are complete.

Proof. Geodesic eqn (z(s), u(s), v(s)): $u(s) = \dot{u}(0)s + u(0)$ v(s) directly computable from u(s), z(s) on their (common) domain.

 $\ddot{z}(s) = -\lambda^2 \nabla_z V(z(s), u(s))$ with $\lambda^2 = \dot{u}(0)^2/2 \ge 0$ completeness for $V \iff$ completeness for $\lambda^2 V$ with $\lambda \neq 0$ Recall: V complete $\neq \to -V$ complete

Controlling harmonic potentials Completeness of dynamical systems Heuristic idea of the proof

Criterion for completeness: upper quadratic bound of -V

Proposition

(-V) quadratically polynomially u-bounded, that is,

 $-V(z,u) \leq a(u)|z|^2 + b(u)$

\Rightarrow complete trajectories

Controlling harmonic potentials Completeness of dynamical systems Heuristic idea of the proof

Criterion for completeness: upper quadratic bound of -V

Proposition

(-V) quadratically polynomially u-bounded, that is,

 $-V(z,u) \leq a(u)|z|^2 + b(u)$

\Rightarrow complete trajectories

Rough idea. Autonomous case: constant energy $E = \frac{1}{2}\dot{z}^2(s) + V(z(s))$

Controlling harmonic potentials Completeness of dynamical systems Heuristic idea of the proof

Criterion for completeness: upper quadratic bound of -V

Proposition

(-V) quadratically polynomially u-bounded, that is,

 $-V(z,u) \leq a(u)|z|^2 + b(u)$

\Rightarrow complete trajectories

Rough idea. Autonomous case: constant energy $E = \frac{1}{2}\dot{z}^2(s) + V(z(s)) \Rightarrow |\dot{z}(s)| \leq |z(s)| \Rightarrow \text{length}(z|_{[0,s]}) \leq e^{C|s|}$ \Rightarrow in a finite time, z(s) covers a finite length (Lagrangian viewpoint) \rightsquigarrow completeness (Non-autonomous bound too \rightsquigarrow restrict to compact $[u_0, u_1]$) \Box

Controlling harmonic potentials Completeness of dynamical systems Heuristic idea of the proof

Criterion for incompleteness: lower radial quadratic bound

 \rightsquigarrow For EK, focus on $n \ge 3$ and incompleteness

Controlling harmonic potentials Completeness of dynamical systems Heuristic idea of the proof

Criterion for incompleteness: lower radial quadratic bound

→ For EK, focus on $n \ge 3$ and incompleteness Trajectory in polar coordinates, $(\rho(s), \theta(s))$

Lemma (Criterion incompleteness of ρ)

For n > 2, assume:

 $\ddot{
ho}(s)\geq n\lambda_0
ho^{n-1}(s), \qquad \qquad
ho(0)>0, \qquad \dot{
ho}(0)\geq 0.$

 $\lambda_0 > 0 \Rightarrow$ all the solutions are incomplete (to the right)

・ 同 ト ・ ヨ ト ・ ヨ ト

Controlling harmonic potentials Completeness of dynamical systems Heuristic idea of the proof

Criterion for incompleteness: lower radial quadratic bound

→ For EK, focus on $n \ge 3$ and incompleteness Trajectory in polar coordinates, $(\rho(s), \theta(s))$

Lemma (Criterion incompleteness of ρ)

For n > 2, assume:

 $\ddot{
ho}(s)\geq n\lambda_0
ho^{n-1}(s), \qquad \qquad
ho(0)>0, \qquad \dot{
ho}(0)\geq 0.$

 $\lambda_0 > 0 \Rightarrow$ all the solutions are incomplete (to the right)

Idea of the proof. After some manipulations

$$\int_{
ho(0)}^{
ho}rac{dar
ho}{\sqrt{2\lambda_0(ar
ho^n-
ho(0)^n)+\dot
ho(0)^2}}\geq s(
ho)$$

and the integral is finite for $\rho = \infty$. \Box

イロト イヨト イヨト

Controlling harmonic potentials Completeness of dynamical systems Heuristic idea of the proof

Precise result

For $n \ge 3$, autonomous case, assuming with no loss of generality:

$$V(\rho, \theta) = -\frac{\lambda \rho^n \cos n\theta}{-\sum_{m=0}^{n-1} \lambda_m \rho^m \cos m(\theta + \alpha_m)},$$

Proposition

For any $0 < \theta_0 < \theta_+ < \pi/(2n) \exists \rho_0 > 0$: any trajectory γ with

 $\gamma(\mathbf{0}) = (\rho(\mathbf{0}), \theta(\mathbf{0})) \in D[\rho_0, \theta_0] := \{(\rho, \theta) : \rho > \rho_0, |\theta| < \theta_0\}$

and $\dot{\rho}(0) \ge 0, \dot{\theta}(0) = 0$, satisfies: (a) γ remains in $D[\rho_0, \theta_+]$ (b) whenever in this region, $\ddot{\rho}(s) \ge \lambda_0 n \rho^{n-1}(s)$,

Thus, γ is incomplete

Controlling harmonic potentials Completeness of dynamical systems Heuristic idea of the proof

The role of harmonicity

• If $V(\rho, \theta) = -\lambda \rho^n \cos n\theta$ (only leading term):

incomplete trajectory γ_0 reparametrizing positive x-axis.

In general: γ₀ is not a trajectory but a direction of maximum asymptotic decreasing

・ 一 マ ト ・ 日 ト ・

Controlling harmonic potentials Completeness of dynamical systems Heuristic idea of the proof

The role of harmonicity

- If V(ρ, θ) = −λρⁿ cos nθ (only leading term): incomplete trajectory γ₀ reparametrizing positive x-axis.
- In general: γ₀ is not a trajectory but a direction of maximum asymptotic decreasing
- Region D[ρ₀, θ₀]: by harmonicity each point of γ₀ is a strict minimum of V under θ-variations → oscillations
 → confinement in D[ρ₀, θ₊] (where V decreases enough fast)

Controlling harmonic potentials Completeness of dynamical systems Heuristic idea of the proof

Summing up: claims

In general:

- No hope to find an (incomplete) radial trajectory
- ... but a radial direction γ_0 so that V decreases fast on γ_0 and:
 - **1** Trajectories $(\rho(s), \theta(s))$ starting at some $D[\rho_0, \theta_0]$ will have bounded angular oscillations around γ_0
 - 2 ...so that they remain in some bigger $D[\rho_0, \theta_+]$, $\theta_0 < \theta_+ < \pi/(2n)$
 - 3 and $\rho(s)$ satisfies the differential inequality ensuring incompleteness on $D[\rho_0, \theta_+]$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Steps and aim Bounds on V and balance of energies Bounds on V and balance of energies

Preliminary step: steepest V-decreasing direction

 Identify a radial direction \(\gamma_0\) with steepest decreasing \(V\) (provided by the leading mononomial of \(V\))

Steps and aim Bounds on V and balance of energies Bounds on V and balance of energies

Potential and its gradient

Identification of θ_k for radial γ_k :

$$V(\rho,\theta) = -\rho^n \cos(n\theta) - \sum_{m=1}^{n-1} \lambda_m \rho^m \cos m(\theta + \alpha_m),$$

(up to a rotation and homothety), thus

$$-\nabla V = \left(n\rho^{n-1}\cos(n\theta) + \sum_{m=1}^{n-1}m\lambda_m\rho^{m-1}\cos m(\theta + \alpha_m)\right)\partial_\rho \\ - \left(n\rho^{n-2}\sin(n\theta) + \sum_{m=1}^{n-1}m\lambda_m\rho^{m-2}\sin m(\theta + \alpha_m)\right)\partial_\theta$$

 $\partial_{\theta} V$ vanish for big ρ at *n* angles $\vartheta_k(\rho) \in [0, 2\pi)$:

$$\lim_{\rho\to\infty}\vartheta_k(\rho)=\hat{\theta}_k:=2\pi k/n, \qquad k=0,\ldots,n-1.$$

 $(\hat{ heta}_k := (2\pi k - lpha(u))/n$ in the non-autonomous case).

Steps and aim

Bounds on *V* and balance of energies Bounds on *V* and balance of energies

Aim

Focus on the angle $\hat{\theta}_0 = 0$, choose $0 < \theta_0 < \theta_+ < \pi/(2n)$:

(日)

3)) B

Steps and aim Bounds on V and balance of energy Bounds on V and balance of energy

Focus on the angle $\hat{\theta}_0 = 0$, choose $0 < \theta_0 < \theta_+ < \pi/(2n)$:

Proposition

V harmonic polynomial of degree $n \ge 3$ $\exists \rho_0 > 0$: any V-trajectory γ with

 $\gamma(0) = (\rho(0), \theta(0)) \in D[\rho_0, \theta_0] \qquad \dot{\rho}(0) \ge 0, \ \dot{\theta}(0) = 0,$ (5)

remains in $D[\rho_0, \theta_+]$ and is incomplete.

A ≥ ►

Steps and aim Bounds on V and balance of energies Bounds on V and balance of energies

Step 0: for big ρ₀ > 0 study the region D[ρ₀, θ₊] to find suitable technical bounds for V, ∂V/∂ρ (necessary for confinement and incompleteness)

(日)

Steps and aim Bounds on V and balance of energi Bounds on V and balance of energi

Steps

For suitably prescribed ρ_0 , and any trajectory γ ($\gamma(0) \in D[\rho_0, \theta_0] \subset D[\rho_0, \theta_+]$) as in Prop.:

・ 一 マ ト ・ 日 ト ・

э

Steps and aim Bounds on V and balance of energies Bounds on V and balance of energies

Steps

For suitably prescribed ρ_0 , and any trajectory γ ($\gamma(0) \in D[\rho_0, \theta_0] \subset D[\rho_0, \theta_+]$) as in Prop.:

 Bound the growth of |θ(s)|-peaks in terms of ρ(s). (the biggest starting point ρ(s₀), the smallest growth)
 Tool: careful balance of the energies of the trajectories in comparison with their projections in radial directions.

Steps and aim Bounds on V and balance of energies Bounds on V and balance of energies

Steps

For suitably prescribed ρ_0 ,

and any trajectory γ ($\gamma(0) \in D[\rho_0, \theta_0] \subset D[\rho_0, \theta_+]$) as in Prop.:

- Bound the growth of |θ(s)|-peaks in terms of ρ(s). (the biggest starting point ρ(s₀), the smallest growth)
 Tool: careful balance of the energies of the trajectories in comparison with their projections in radial directions.
- Check that, from peak to peak, ρ increases very fast, so that the increasing of the amplitudes of the oscillations will not allow γ to escape from D[ρ₀, θ₊].
 Tool: introduce a notion of angular length θ and derive a formula showing that along each possible oscillation, ρ grows

exponentially with $\bar{\theta}$

| 4 同 ト 4 ヨ ト 4 ヨ ト

Steps and aim Bounds on V and balance of energies Bounds on V and balance of energies

Steps

For suitably prescribed ρ_0 ,

and any trajectory γ ($\gamma(0) \in D[\rho_0, \theta_0] \subset D[\rho_0, \theta_+]$) as in Prop.:

- Bound the growth of |θ(s)|-peaks in terms of ρ(s). (the biggest starting point ρ(s₀), the smallest growth)
 Tool: careful balance of the energies of the trajectories in comparison with their projections in radial directions.
- 2 Check that, from peak to peak, ρ increases very fast, so that the increasing of the amplitudes of the oscillations will not allow γ to escape from $D[\rho_0, \theta_+]$.

Tool: introduce a notion of angular length $\bar{\theta}$ and derive a formula showing that along each possible oscillation, ρ grows **exponentially** with $\bar{\theta}$

 $\rightsquigarrow \rho$ will arrive ∞ (in finite time) before an oscillation moving γ outside $D[\rho_0, \theta_+]$ can occur.

Steps and aim Bounds on V and balance of energies Bounds on V and balance of energies

Step 0: technical bounds for V from its harmonicity

Proposition

(Incompleteness) $\forall \theta_+ \in (0, \pi/(2n)) \ \delta_0 \in (0, \cos(n\theta_+)), \exists \rho_0 > 1:$ $-\partial_{\rho}V(\rho,\theta) > \delta_0 n \rho^{n-1} \ (>0), \forall \rho \ge \rho_0, \forall \theta \in (-\theta_+,\theta_+).$ (Confinement) Chosen $0 < \epsilon < \theta_{-} < \theta_{+}, \exists \rho_0 > 1, \delta > 0$ s. t. $\forall \theta_1 \in [\theta_-, \theta_+], \ \forall \rho > \rho_0$ $V(\rho, \theta_1) - V(\rho, \theta) > \delta(\theta_1 - \theta)\rho^n, \forall \theta \in (-\theta_1 + \epsilon, \theta_1),$ $V(\rho, -\theta_1) - V(\rho, \theta) > \delta(\theta_1 + \theta)\rho^n, \forall \theta \in (-\theta_1, \theta_1 - \epsilon),$ $\partial_{\theta} V(\rho, \theta_1) - \partial_{\theta} V(\rho, \theta) > \delta n(\theta_1 - \theta) \rho^{n-1}, \forall \theta \in (-\theta_1 + \epsilon, \theta_1),$ $\partial_{\theta} V(\rho, -\theta_1) - \partial_{\theta} V(\rho, \theta) > \delta n(\theta_1 + \theta) \rho^{n-1}, \forall \theta \in (-\theta_1, \theta_1 - \epsilon).$ Moreover, chosen $0 < \theta_{-} < \theta_{+} < \pi/(2n)$, one can find A > 0, $\rho_0 > 1$ such that all the previous inequalities hold for $\rho \geq \rho_0$, by replacing ϵ and δ by A/ρ and $1/\rho$, resp.,

 $\epsilon > 0 \rightarrow$ lower order asymmetry of $V \epsilon \rho \sim A > 0$; $\theta_1 \rightarrow$ use to bound the amplitude of oscillation $P \in \mathbb{P} \setminus \mathbb{P} \setminus \mathbb{P} \setminus \mathbb{P}$ M. Sánchez Ehlers-Kundt conjecture

Steps and aim Bounds on V and balance of energies Bounds on V and balance of energies

Step 1: Radial projection

- Trajectory $\gamma(s) \equiv (\rho(s), \theta(s)), s \in [0, b)$: and $\theta_1 \in \mathbb{R}$: θ_1 -projection: $\gamma_{\theta_1}(s) \equiv (\rho(s), \theta_1)$
- Energy $\gamma_{\theta_1}(s)$ = radial kinetic $\gamma(s)$ + potential $V(\rho(s), \theta_1)$
- In particular, choosing $s_1 \in [0, b)$, energy $\theta(s_1)$ -projection: Energy[$\theta(s_1)$ -proj]: $F(s) = \frac{1}{2}\dot{\rho}(s)^2 + V(\rho(s), \theta(s_1))$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Step 1: bounding angular peaks by the radial distance

First estimate of the (angular) peaks.

Key: whenever $\theta(s)$ is monotonous, the energy F cannot decrease.

Proposition

Choose $0 < \theta_- < \theta_+ < \pi/(2n)$ and let $A, \rho_0 > 0$ as above. Let $(\rho(s), \theta(s))$, trajectory with $(\rho(s_0), \theta(s_0)) \in D[\rho_0, \theta_+], \dot{\theta}(s_0) = 0$ and $\dot{\rho}(s_0) \ge 0$ for some $s_0 \in [0, b)$. If $s_1 \in (s_0, b)$ satisfies $|\theta(s_0)| < |\theta(s_1)| < \theta_+$, and $\theta(s)$ is (non-necessarily strictly) monotonous on (s_0, s_1) , then $|\theta(s_1)| - |\theta(s_0)| \le A/\rho(s_0)$.

| 4 同 ト 4 ヨ ト 4 ヨ ト

Steps and aim Bounds on V and balance of energies Bounds on V and balance of energies

Step 2: Angular length

Such an inequality is not enough to confine γ in D[ρ, θ₊]: we must assure that the radial coordinate grows enough fast in each oscillation.

Steps and aim Bounds on V and balance of energies Bounds on V and balance of energies

Step 2: Angular length

Such an inequality is not enough to confine γ in D[ρ, θ₊]: we must assure that the radial coordinate grows enough fast in each oscillation.

Angular length:

$$\overline{\theta}(s) := \int_{s_0}^s |\dot{\theta}(\sigma)| d\sigma, \quad s \in [s_0, b)$$
(6)

Steps and aim Bounds on V and balance of energies Bounds on V and balance of energies

Step 2: Bound of the angular length

Lemma

For some ρ_0 big enough, any solution $\gamma : [s_0, b) \to \mathbb{R}^2$ starting at $D[\rho_0, \theta_+]$ with $\dot{\rho}(s_0) > 0$, $\dot{\theta}(s_0) = 0$ satisfies (for $\Lambda := 8/\cos(n\theta_+) > 1$):

 $ho(s) >
ho(s_0) e^{\overline{ heta}(s)/\Lambda}$

for all $s \in (s_0, b)$ such that $\gamma([s_0, s]) \subset D[\rho_0, \theta_+]$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Steps and aim Bounds on V and balance of energies Bounds on V and balance of energies

Step 2: Bound of the angular length

Lemma

For some ρ_0 big enough, any solution $\gamma : [s_0, b) \to \mathbb{R}^2$ starting at $D[\rho_0, \theta_+]$ with $\dot{\rho}(s_0) > 0, \dot{\theta}(s_0) = 0$ satisfies (for $\Lambda := 8/\cos(n\theta_+) > 1$):

 $ho(s) >
ho(s_0) e^{\overline{ heta}(s)/\Lambda}$

for all $s \in (s_0, b)$ such that $\gamma([s_0, s]) \subset D[\rho_0, \theta_+]$.

Discussing the possible cases (none/finite/infinite oscillations), this bound combined with the previous one, implies the confinement in $D[\rho_0, \theta_+] \square$

< ロ > < 同 > < 三 > < 三 >

Steps and aim Bounds on V and balance of energies Bounds on V and balance of energies

Conclusion

Achievements:

- Clarify physical and mathematical grounds of EK conjecture
- Solve the significative polynomial case

Steps and aim Bounds on V and balance of energies Bounds on V and balance of energies

Conclusion

Achievements:

- Clarify physical and mathematical grounds of EK conjecture
- Solve the significative polynomial case

Interest:

- **1 Relativity**: foundational basis of gravitational waves.
- Classical Mechanics: the forces under consideration (coming from a divergence free gradient potential) are the most standard ones in Mechanics!!
- **3 Dynamical Systems**: proof completely original, no standard tool on stability and attractors seem to be appliable
- Complex variable (theory of holomorphic vector fields): also in this framework, only the polynomial case has been fully developed

Steps and aim Bounds on V and balance of energies Bounds on V and balance of energies

Conclusion

Obvious open lines of research:

- Non-polynomial case
- Beyond the original motivation: higher dimensions, impulsive waves, Finslerian modifications of the waves...

Steps and aim Bounds on V and balance of energies Bounds on V and balance of energies

Conclusion

Obvious open lines of research:

- Non-polynomial case
- Beyond the original motivation: higher dimensions, impulsive waves, Finslerian modifications of the waves...

What is more EK conjecture introduces the pattern

Source-free dynamics $\implies \begin{cases} \text{Natural (mathematical) vacuum, or} \\ \text{Incompleteness (eventually missed source),} \end{cases}$

which may serve as a paradigm for other parts of Physics, as well as for its mathematical modelling.

Steps and aim Bounds on V and balance of energies Bounds on V and balance of energies

Some references: "heroic epoch"

- A. Einstein, Über Gravitationswellen, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften Berlin (1918) part 1: 154–167.
- H. Bondi, Pirani, Robinson, Gravitational waves in general relativity III. Exact plane waves, *Proc. R. Soc. London, A* 251 (1959), 519-53.
- J. Ehlers and K. Kundt, Exact solutions of the gravitational field equations, in *Gravitation: an introduction to current research*, L. Witten (ed.), J. Wiley & Sons, New York (1962) pp. 49-101.
- R. Penrose, A remarkable property of plane waves in general relativity, *Rev. Modern Phys.* 37 (1965) 215-220.

Some references: Global hyperbolicity

- R. P. Geroch, Domain of dependence, J. Math. Phys. 11 (1970) 437 -449
- A.N. Bernal, M. Sánchez,
 - 1 Comm. Math. Phys. 243 (2003) 461-470
 - 2 Comm. Math. Phys. 257 (2005) 43-50
 - **3** Lett. Math. Phys. 77 (2006) 183-197
 - 4 Class. Quant. Grav. 24 (2007) 745-750
- O. Müller, M. Sánchez, Trans. AMS 363 (2011) 5367-5379
- A. Fathi, A. Siconolfi, M. P. Cambridge 152 (2012) 303-339
- O. Müller, Lett. Math. Phys. 106 (2016), no. 7, 959-971
- P. Chrusciel, E. Minguzzi, J. Grant, Ann. H. Poincaré (2016) 2801-2824
- P. Bernard, S. Suhr, Comm. Math. Phys. (to appear)
- L. Aké, J.L. Flores, M. Sánchez, in progress (2018).
Steps and aim Bounds on V and balance of energies Bounds on V and balance of energies

Some references: causal-conformal boundaries/ waves

- R.P. Geroch, E.H. Kronheimer, R. Penrose, Ideal points in spacetime, Proc. Roy. Soc. Lond. A 237 (1972) 545-567
- L.B. Szabados, Class. Quant. Grav. 5 (1988) 121-134
- J.L. Flores, J. Herrera, M. Sánchez, Adv. Theor. Math. Phys. 15 4 (2011) 991-1058
- R.M. Wald, General Relativity, U. Chicago Press (1984)

Boundaries of waves

- D. Berenstein, H. Nastase, On lightcone string field theory from super Yang-Mills and holography, arXiv: 0205048
- D. Marolf, S. Ross, Class. Quant. Grav. 19 (2002) 6289-6302; 20 (2003) 4085-4117
- J.L. Flores, M. Sánchez, J. High Energy Phys 3 (2008) 036

Steps and aim Bounds on V and balance of energies Bounds on V and balance of energies

Some references: EK conjecture

- J. Bicak: Selected solutions of Einstein's field equations, *Lect. Notes Phys.* 540 (2000).
- V.E. Hubeny, M. Rangamani, **12** (2002), 043 (39 pp).
- T. Leistner, D. Schliebner, *Math. Ann.* 364 (2016), no. 3-4, 1469-1503.
- I. Costa e Silva, J.L. Flores, J. Herrera, Adv. Theor. Math. Phys., to appear, arxiv:1605.03619.
- J.L. Flores and M. Sánchez:
 - **1** Class Quantum Grav. **20** (2003) 2275-2291.
 - In: Analytical and numerical approaches to mathematical relativity, 79–98. Lecture Notes in Phys., 692,
 - 3 Ehlers-Kundt Conjecture about Gravitational Waves and Dynamical Systems, arxiv: 1706.03855.

Steps and aim Bounds on V and balance of energies Bounds on V and balance of energies

Some references: background on completeness

- R. Abraham, J.E. Marsden, Foundations of Mechanics, 2nd Ed. Addison-Wesley Publishing Co., Boston (1987)
- A.M. Candela, J.L. Flores, M. Sánchez, General Relativity Gravitation 35 (2003), no. 4, 631–649.
- A.M. Candela, A. Romero, M. Sánchez, Arch. Ration. Mech. Anal. 208 (2013), no. 1, 255-274.
- M. Sánchez, in: Geometry, mechanics, and dynamics, 343-372, Fields Inst. Commun., 73, Springer, New York (2015).

Steps and aim Bounds on V and balance of energies Bounds on V and balance of energies

Some references: polynomial holomorphic v. f. on \mathbb{C}^2

- F. Forstneric, Math. Z. 223 (1996), no. 1, 123-153.
- M. Brunella, Topology 43 (2004), no. 2, 433-445.
- A. Bustinduy, L. Giraldo, Adv. Math. 285 (2015), 1339-1357.
- J.L. López, J. Muciño-Raymundo, in: Complex analysis and related topics (Cuernavaca, 1996), 171-195, Oper. Theory Adv. Appl., 114, Birkhäuser, Basel (2000).

Steps and aim Bounds on V and balance of energies Bounds on V and balance of energies

Some references: beyond classical gravitational waves

- C. Sämann, R. Steinbauer, R. Švarc, Completeness of general pp-wave spacetimes and their impulsive limit, *Class. Quantum Grav.* 33 (2016), no. 21, 215006
- A. Fuster, C. Pabst, Finsler pp-waves, *Physical Review D*, 94 (2016) 104072

Gravitational waves Technical setup Main steps of the proof Steps and aim Bounds on V and balance of energies Bounds on V and balance of energies

Thank you for your attention

▲ 同 ▶ ▲ 三