Geometry and classification of string AdS backgrounds

George Papadopoulos

King's College London

Field equations on Lorentzian space-times

University of Hamburg Germany 19-23 March 2018

Work presented is in collaboration with

Sam Beck, Ulf Gran, Jan Gutowski, Sebastian Lautz, Alexander Haupt

AdS •000000000	Geometry 0000	Superalgebra	Classification	Conclusions O

Supersymmetry of AdS backgrounds

- ► The classification of AdS supergravity backgrounds, $AdS_n \times_w M^{D-n}$, is a longstanding problem raised in the context of supergravity compactifications [Freund-Rubin] that goes back into the early '80s
- Recently they have found applications in string theory and in M-theory as near horizon geometries for black holes and branes
- ▶ In AdS/CFT, supergravity $AdS_n \times_w M^{D-n}$ solutions are associated to the vacuum state of a dual superconformal theory. Fluctuations of $AdS_n \times_w M^{D-n}$ are associated to certain gauge invariant operators of the dual theory.

AdS	Geometry	Superalgebra	Classification	Conclusions
•000000000	0000	0000000		O

Supersymmetry of AdS backgrounds

- ► The classification of AdS supergravity backgrounds, $AdS_n \times_w M^{D-n}$, is a longstanding problem raised in the context of supergravity compactifications [Freund-Rubin] that goes back into the early '80s
- Recently they have found applications in string theory and in M-theory as near horizon geometries for black holes and branes
- ▶ In AdS/CFT, supergravity $AdS_n \times_w M^{D-n}$ solutions are associated to the vacuum state of a dual superconformal theory. Fluctuations of $AdS_n \times_w M^{D-n}$ are associated to certain gauge invariant operators of the dual theory.

AdS	Geometry	Superalgebra	Classification	Conclusions
•00000000	0000	0000000		O

Supersymmetry of AdS backgrounds

- ► The classification of AdS supergravity backgrounds, $AdS_n \times_w M^{D-n}$, is a longstanding problem raised in the context of supergravity compactifications [Freund-Rubin] that goes back into the early '80s
- Recently they have found applications in string theory and in M-theory as near horizon geometries for black holes and branes
- ► In AdS/CFT, supergravity $AdS_n \times_w M^{D-n}$ solutions are associated to the vacuum state of a dual superconformal theory. Fluctuations of $AdS_n \times_w M^{D-n}$ are associated to certain gauge invariant operators of the dual theory.

AdS ○●○○○○○○○○	Geometry 0000	Superalgebra	Classification	Conclusions O
Objectives				

- Describe some aspects of the geometry of the internal space M^{D-n} in 10- and 11-dimensional supergravities. These include new Lichnerowicz type of theorems
- ▶ Present the classification of warped AdS backgrounds, AdS_n ×_w M^{D-n} , with the most general allowed fluxes in D = 10and 11 dimensions that preserve more than 16, N > 16, supersymmetries

AdS	Geometry	Superalgebra	Classification	Conclusions
○●○○○○○○○○	0000		0000000000	O
Objectives				

- Describe some aspects of the geometry of the internal space M^{D-n} in 10- and 11-dimensional supergravities. These include new Lichnerowicz type of theorems
- ▶ Present the classification of warped AdS backgrounds, AdS_n ×_w M^{D-n} , with the most general allowed fluxes in D = 10and 11 dimensions that preserve more than 16, N > 16, supersymmetries

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	0000000	0000000000	O
New developments				

The problem has become tractable because of three key recent developments

- ► The Killing spinor equations (KSEs) of type II 10- and 11-dimensional supergravities have been solved over the AdS subspace for all $AdS_n \times_w M^{D-n}$ backgrounds with the most general allowed fluxes leading to the identification of the number of supersymmetries that can be preserved [Beck, Gutowski, GP]
- The proof of the homogeneity theorem which states that all backgrounds which preserve more than 1/2 of supersymmetry are homogeneous Lorentzian spaces [Figueroa-O'Farrill, Hustler]
- The identification of all Killing superalgebras of AdS backgrounds in 10- and 11-dimensions [Beck, Gutowski, Gran, GP]

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	0000000	0000000000	O
New developments				

The problem has become tractable because of three key recent developments

- ► The Killing spinor equations (KSEs) of type II 10- and 11-dimensional supergravities have been solved over the AdS subspace for all $AdS_n \times_w M^{D-n}$ backgrounds with the most general allowed fluxes leading to the identification of the number of supersymmetries that can be preserved [Beck, Gutowski, GP]
- The proof of the homogeneity theorem which states that all backgrounds which preserve more than 1/2 of supersymmetry are homogeneous Lorentzian spaces [Figueroa-O'Farrill, Hustler]
- The identification of all Killing superalgebras of AdS backgrounds in 10- and 11-dimensions [Beck, Gutowski, Gran, GP]

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	0000000	0000000000	O
New developments				

The problem has become tractable because of three key recent developments

- ► The Killing spinor equations (KSEs) of type II 10- and 11-dimensional supergravities have been solved over the AdS subspace for all $AdS_n \times_w M^{D-n}$ backgrounds with the most general allowed fluxes leading to the identification of the number of supersymmetries that can be preserved [Beck, Gutowski, GP]
- The proof of the homogeneity theorem which states that all backgrounds which preserve more than 1/2 of supersymmetry are homogeneous Lorentzian spaces [Figueroa-O'Farrill, Hustler]
- The identification of all Killing superalgebras of AdS backgrounds in 10- and 11-dimensions [Beck, Gutowski, Gran, GP]

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	0000000	0000000000	O
Assumptions				

- ► The fields of warped AdS backgrounds, AdS_n ×_w M^{D-n}, are assumed to be smooth and invariant under the isometries of the AdS subspace. No other assumptions are made on the fields including assumptions on the form of Killing spinors
- Moreover the focus will be on warped AdS solutions with the most general allowed fluxes that admit a compact without boundary internal space M^{D-n}
- The novelty of the approach is that it is completely general

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	0000000		O
Assumptions				

- ► The fields of warped AdS backgrounds, AdS_n ×_w M^{D-n}, are assumed to be smooth and invariant under the isometries of the AdS subspace. No other assumptions are made on the fields including assumptions on the form of Killing spinors
- ► Moreover the focus will be on warped AdS solutions with the most general allowed fluxes that admit a compact without boundary internal space M^{D-n}

• The novelty of the approach is that it is completely general

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	0000000		O
Assumptions				

- ► The fields of warped AdS backgrounds, AdS_n ×_w M^{D-n}, are assumed to be smooth and invariant under the isometries of the AdS subspace. No other assumptions are made on the fields including assumptions on the form of Killing spinors
- ► Moreover the focus will be on warped AdS solutions with the most general allowed fluxes that admit a compact without boundary internal space M^{D-n}
- The novelty of the approach is that it is completely general

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	000000	0000000000	0

D=11 supergravity

D=11 Supergravity: The bosonic fields are the metric g and a 4-form field strength, F, dF = 0. The Einstein field equation of the theory is

$$R_{MN} = \frac{1}{12} F_{ML_1L_2L_3} F_N^{L_1L_2L_3} - \frac{1}{144} g_{MN} F_{L_1L_2L_3L_4} F^{L_1L_2L_3L_4} .$$

and the field equation of the 4-form field strength is

$$d\star_{11}F-\frac{1}{2}F\wedge F=0,$$

The KSE is the vanishing condition of the supersymmetry variation of the gravitino

$$\mathcal{D}_{M}\epsilon \equiv \nabla_{M}\epsilon - \left(\frac{1}{288}\Gamma_{M}{}^{L_{1}L_{2}L_{3}L_{4}}F_{L_{1}L_{2}L_{3}L_{4}} - \frac{1}{36}F_{ML_{1}L_{2}L_{3}}\Gamma^{L_{1}L_{2}L_{3}}\right)\epsilon = 0$$

where ϵ is a 32 component Majorana $\mathfrak{spin}(10, 1)$ spinor.

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	0000000	0000000000	0

The gravitino KSE is a parallel transport equation. The associated connection has holonomy in a GL group

- The 10-dimensional supergravities have an additional KSE, the dilatino KSE Aε = 0, where A depends on the fields but it is algebraic in ε.
- If there exist a € ≠ 0 solution to the KSEs, then the associated solution to the field equations is called supersymmetric.
- ► The number *N* of linear independent solutions to the KSEs is the number of supersymmetries preserved by a background.

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	0000000	0000000000	0

- The gravitino KSE is a parallel transport equation. The associated connection has holonomy in a GL group
- The 10-dimensional supergravities have an additional KSE, the dilatino KSE Aε = 0, where A depends on the fields but it is algebraic in ε.
- If there exist a $\epsilon \neq 0$ solution to the KSEs, then the associated solution to the field equations is called supersymmetric.
- ► The number *N* of linear independent solutions to the KSEs is the number of supersymmetries preserved by a background.

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	0000000	0000000000	0

- The gravitino KSE is a parallel transport equation. The associated connection has holonomy in a GL group
- The 10-dimensional supergravities have an additional KSE, the dilatino KSE Aε = 0, where A depends on the fields but it is algebraic in ε.
- If there exist a € ≠ 0 solution to the KSEs, then the associated solution to the field equations is called supersymmetric.
- ► The number *N* of linear independent solutions to the KSEs is the number of supersymmetries preserved by a background.

AdS	Geometry	Superalgebra	Classification	Conclusions
0000000000	0000	0000000	0000000000	O
AdS backgrounds				

The a priori number of sypersymmetries preserved by D=11, IIB and IIA AdS backgrounds are [Beck, Gutowski, GP]

AdS_n	N
<i>n</i> = 2	$2k, k \leq 32$
<i>n</i> = 3	$2k, k \leq 32$
<i>n</i> = 4	$4k, k \leq 8$
<i>n</i> = 5	8, 16, 24, 32
<i>n</i> = 6	16,32
n = 7	16,32

Table: The proof for AdS_2 requires an application of Hopf's maximum principle. For the rest, no such assumption is necessary.

AdS	Geometry	Superalgebra	Classification	Conclusions
0000000000	0000	000000	0000000000	0

Sketching the proof

The warp, flux, AdS backgrounds are special cases of near horizon geometries. For n > 2, the metric is

$$ds^{2} = 2du(dr + rh) + A^{2}(dz^{2} + e^{2z/\ell} \sum_{a=1}^{n-3} (dx^{a})^{2}) + ds^{2}(M^{11-n}),$$

with

$$h = -\frac{2}{\ell}dz - 2A^{-1}dA ,$$

A is the warp factor and ℓ the AdS radius.

To find the number of supersymmetries preserved

- Solve the KSEs along the lightcone directions (u, r)
- **b** solve the KSEs along z and then the remaining x^a coordinates
- count the multiplicity of Killing spinors

AdS	Geometry	Superalgebra	Classification	Conclusions
0000000000	0000	000000	0000000000	0

Sketching the proof

The warp, flux, AdS backgrounds are special cases of near horizon geometries. For n > 2, the metric is

$$ds^{2} = 2du(dr + rh) + A^{2}(dz^{2} + e^{2z/\ell} \sum_{a=1}^{n-3} (dx^{a})^{2}) + ds^{2}(M^{11-n}),$$

with

$$h = -\frac{2}{\ell}dz - 2A^{-1}dA ,$$

A is the warp factor and ℓ the AdS radius. To find the number of supersymmetries preserved

- Solve the KSEs along the lightcone directions (u, r)
- **•** solve the KSEs along z and then the remaining x^a coordinates
- count the multiplicity of Killing spinors

AdS	Geometry	Superalgebra	Classification	Conclusions
0000000000	0000	000000	0000000000	0

The solution of the KSEs along the AdS subspace give

$$\epsilon = \sigma_+ + \sigma_- - \ell^{-1} e^{\frac{z}{\ell}} x^a \Gamma_{az} \sigma_- - \ell^{-1} A^{-1} u \Gamma_{+z} \sigma_- + e^{-\frac{z}{\ell}} \tau_+ - \ell^{-1} A^{-1} r e^{-\frac{z}{\ell}} \Gamma_{-z} \tau_+ - \ell^{-1} x^a \Gamma_{az} \tau_+ + e^{\frac{z}{\ell}} \tau_-$$

where $\Gamma_{\pm}\sigma_{\pm} = \Gamma_{\pm}\tau_{\pm} = 0$. The remaining independent KSEs on the internal space M^{D-n} are

$$D_i^{(\pm)}\sigma_{\pm} = 0 , \quad D_i^{(\pm)}\tau_{\pm} = 0 ,$$

which are the naive restriction of the gravitino KSEs onto the internal space, and

$$\mathcal{A}^{(\pm)}\sigma_{\pm} = \mathcal{A}^{(\pm)}\tau_{\pm} = 0 \; ; \quad \mathcal{B}^{(\pm)}\sigma_{\pm} = 0 \; , \quad \mathcal{C}^{(\pm)}\tau_{\pm} = 0 \; ,$$

where $\mathcal{A}^{(\pm)}$ are the naive restrictions of the dilatino KSEs onto the internal space and

► the integration over z introduces new algebraic KSEs denoted by B^(±) and C^(±)

AdS	Geometry	Superalgebra	Classification	Conclusions
0000000000	0000	000000	0000000000	0

The solution of the KSEs along the AdS subspace give

$$\epsilon = \sigma_+ + \sigma_- - \ell^{-1} e^{\frac{z}{\ell}} x^a \Gamma_{az} \sigma_- - \ell^{-1} A^{-1} u \Gamma_{+z} \sigma_- + e^{-\frac{z}{\ell}} \tau_+ - \ell^{-1} A^{-1} r e^{-\frac{z}{\ell}} \Gamma_{-z} \tau_+ - \ell^{-1} x^a \Gamma_{az} \tau_+ + e^{\frac{z}{\ell}} \tau_-$$

where $\Gamma_{\pm}\sigma_{\pm} = \Gamma_{\pm}\tau_{\pm} = 0$. The remaining independent KSEs on the internal space M^{D-n} are

$$D_i^{(\pm)}\sigma_{\pm} = 0 , \quad D_i^{(\pm)}\tau_{\pm} = 0 ,$$

which are the naive restriction of the gravitino KSEs onto the internal space, and

$$\mathcal{A}^{(\pm)}\sigma_{\pm} = \mathcal{A}^{(\pm)}\tau_{\pm} = 0 \; ; \quad \mathcal{B}^{(\pm)}\sigma_{\pm} = 0 \; , \quad \mathcal{C}^{(\pm)}\tau_{\pm} = 0 \; ,$$

where $\mathcal{A}^{(\pm)}$ are the naive restrictions of the dilatino KSEs onto the internal space and

► the integration over z introduces new algebraic KSEs denoted by B^(±) and C^(±)

AdS	Geometry	Superalgebra	Classification	Conclusions
0000000000	0000	000000	0000000000	0

The solution of the KSEs along the AdS subspace give

$$\epsilon = \sigma_+ + \sigma_- - \ell^{-1} e^{\frac{z}{\ell}} x^a \Gamma_{az} \sigma_- - \ell^{-1} A^{-1} u \Gamma_{+z} \sigma_- + e^{-\frac{z}{\ell}} \tau_+ - \ell^{-1} A^{-1} r e^{-\frac{z}{\ell}} \Gamma_{-z} \tau_+ - \ell^{-1} x^a \Gamma_{az} \tau_+ + e^{\frac{z}{\ell}} \tau_-$$

where $\Gamma_{\pm}\sigma_{\pm} = \Gamma_{\pm}\tau_{\pm} = 0$. The remaining independent KSEs on the internal space M^{D-n} are

$$D_i^{(\pm)}\sigma_{\pm} = 0 , \quad D_i^{(\pm)}\tau_{\pm} = 0 ,$$

which are the naive restriction of the gravitino KSEs onto the internal space, and

$$\mathcal{A}^{(\pm)}\sigma_{\pm} = \mathcal{A}^{(\pm)}\tau_{\pm} = 0 \; ; \quad \mathcal{B}^{(\pm)}\sigma_{\pm} = 0 \; , \quad \mathcal{C}^{(\pm)}\tau_{\pm} = 0 \; ,$$

where $\mathcal{A}^{(\pm)}$ are the naive restrictions of the dilatino KSEs onto the internal space and

the integration over z introduces new algebraic KSEs denoted by B^(±) and C^(±)

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	0000000		O
The counting				

To count the multiplicity, it turns out that if σ_{\pm} is a solution, so is

 $\tau_{\pm} = \Gamma_{za} \sigma_{\pm}$

and vice-versa

Similarly, if σ_+, τ_+ is a solution, so is

 $\sigma_{-} = A\Gamma_{-}\Gamma_{z}\sigma_{+} , \quad \tau_{-} = A\Gamma_{-}\Gamma_{z}\tau_{+}$

and vice-versa.

Furthermore, if σ_+ is Killing spinor, then

$$\sigma'_+ = \Gamma_{ab}\sigma_+ \;, \quad a < b \;,$$

is also a Killing spinor.

The number of supersymmetries are derived by counting the linearly independent solutions

AdS 000000000	Geometry •000	Superalgebra	Classification	Conclusions O

Lichnerowicz Theorem

This relates the zero modes of the Dirac operator to parallel spnors. In particular notice that $D^2 = \nabla^2 - \frac{1}{4}R$ where *D* is the Dirac operator and ∇ is the Levi-Civita connection. Then after a partial integration

$$\int \parallel D\epsilon \parallel^2 = \int \parallel \nabla\epsilon \parallel^2 + \frac{1}{4} \int R \parallel \epsilon \parallel^2$$

- If R = 0, all zero modes of the Dirac operator are parallel
- if R > 0, the Dirac operator has no zero modes

Some applications include

- Counting problems, ie the number of parallel (Killing) spinors of 8-d manifolds with holonomy strictly Spin(7), SU(4), Sp(2) and ×²Sp(1) is given by the index of the Dirac operator
- Necessary conditions for the existence of metrics with R > 0

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	000000	0000000000	0

New Lichnerowicz type of theorems

One can establish new Lichnerowicz type theorems (D = 11) as

$$\mathscr{D}^{(\pm)}\sigma_{\pm}=0 \Longleftrightarrow D^{(\pm)}_i\sigma_{\pm}=0\,, \ \ \mathcal{B}^{(\pm)}\sigma_{\pm}=0\,,$$

where $\mathscr{D}^{(\pm)} = \Gamma^i D_i^{(\pm)} + q \mathcal{B}^{(\pm)}$ for some $q \in \mathbb{R}$. These are based on maximum principle formulae

$$\begin{aligned} \nabla^2 &\| \ \sigma_+ \ \|^2 + nA^{-1}\partial^i A \partial_i \ \| \ \sigma_+ \ \|^2 = 2 \langle \mathbb{D}_i^{(+)} \sigma_+, \mathbb{D}^{(+)i} \sigma_+ \rangle \\ &+ 2 \frac{9n - 18}{11 - n} \ \| \ \mathcal{B}^{(+)} \sigma_+ \ \|^2 \ , \end{aligned}$$

which is established after using the field equations, where $\mathbb{D}_i^{(+)} = D_i^{(+)} + \frac{2-n}{11-n}\Gamma_i \mathcal{B}^{(+)}.$

▶ If the solution is smooth, the warp factor *A* is nowhere zero.

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	000000	0000000000	0

New Lichnerowicz type of theorems

One can establish new Lichnerowicz type theorems (D = 11) as

$$\mathscr{D}^{(\pm)}\sigma_{\pm} = 0 \Longleftrightarrow D^{(\pm)}_i\sigma_{\pm} = 0 \ , \ \ \mathcal{B}^{(\pm)}\sigma_{\pm} = 0 \ ,$$

where $\mathscr{D}^{(\pm)} = \Gamma^i D_i^{(\pm)} + q \mathcal{B}^{(\pm)}$ for some $q \in \mathbb{R}$. These are based on maximum principle formulae

$$\begin{aligned} \nabla^2 &\| \ \sigma_+ \ \|^2 + nA^{-1}\partial^i A \partial_i \ \| \ \sigma_+ \ \|^2 = 2 \langle \mathbb{D}_i^{(+)} \sigma_+, \mathbb{D}^{(+)i} \sigma_+ \rangle \\ &+ 2 \frac{9n - 18}{11 - n} \ \| \ \mathcal{B}^{(+)} \sigma_+ \ \|^2 \ , \end{aligned}$$

which is established after using the field equations, where $\mathbb{D}_i^{(+)} = D_i^{(+)} + \frac{2-n}{11-n}\Gamma_i \mathcal{B}^{(+)}.$

▶ If the solution is smooth, the warp factor *A* is nowhere zero.

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	000000	0000000000	0

Homogeneity

Conjecture: All solutions of a supergravity theory preserving more than half of the supersymmetry are homogenous. [Meessen]

Theorem: All solutions of D = 11, IIB and IIA supergravities that preserve strictly more than 16 supersymmetries are homogeneous [Figueroa-O'Farrill, Hustler]

Proof: One can show that given two Killing spinors ϵ_1 and ϵ_2 , the 1-form bilinear

$\langle \epsilon_1, \Gamma_M \epsilon_2 \rangle_D dx^M$

is Killing and leaves all the remaining fields invariant. In the Euclidean case where $\langle \cdot, \cdot \rangle$ is positive definite, the proof simplifies. If the vector bilinears do not span the tangent space of the spacetime there is an *X* such that

 $X^M \langle \epsilon_1, \Gamma_M \epsilon_2
angle = \langle \epsilon_1, X \epsilon_2
angle = 0$

Thus the spinors $\cancel{k}\epsilon$ for every Killing spinor ϵ are orthogonal to all Killing spinors, and so

$X: \mathcal{K} o \mathcal{K}^{\perp}$

But $X^2 = |X|^2 1$ and as $X \neq 0$, the map is an injection. However this cannot be if dim $\mathcal{K}^{\perp} < \dim \mathcal{K}$ which is the case for more than 16 supersymmetries. Thus X = 0 and the spacetime is homogenous.

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	000000	0000000000	0

Homogeneity

Conjecture: All solutions of a supergravity theory preserving more than half of the supersymmetry are homogenous. [Meessen]

Theorem: All solutions of D = 11, IIB and IIA supergravities that preserve strictly more than 16 supersymmetries are homogeneous [Figueroa-O'Farrill, Hustler]

Proof: One can show that given two Killing spinors ϵ_1 and ϵ_2 , the 1-form bilinear $\langle \epsilon_1, \Gamma_M \epsilon_2 \rangle_D dx^M$

is Killing and leaves all the remaining fields invariant. In the Euclidean case where $\langle \cdot, \cdot \rangle$ is positive definite, the proof simplifies. If the vector bilinears do not span the tangent space of the spacetime there is an *X* such that

 $X^M\langle\epsilon_1,\Gamma_M\epsilon_2
angle=\langle\epsilon_1,X\!\!\!/\epsilon_2
angle=0$

Thus the spinors $\cancel{k}\epsilon$ for every Killing spinor ϵ are orthogonal to all Killing spinors, and so

$$X: \mathcal{K} o \mathcal{K}^{\perp}$$

But $X^2 = |X|^2 \mathbf{1}$ and as $X \neq 0$, the map is an injection. However this cannot be if dim $\mathcal{K}^{\perp} < \dim \mathcal{K}$ which is the case for more than 16 supersymmetries. Thus X = 0 and the spacetime is homogenous.

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	0000000	0000000000	0

Homogeneity

Conjecture: All solutions of a supergravity theory preserving more than half of the supersymmetry are homogenous. [Meessen]

Theorem: All solutions of D = 11, IIB and IIA supergravities that preserve strictly more than 16 supersymmetries are homogeneous [Figueroa-O'Farrill, Hustler]

Proof: One can show that given two Killing spinors ϵ_1 and ϵ_2 , the 1-form bilinear

$\langle \epsilon_1, \Gamma_M \epsilon_2 \rangle_D dx^M$

is Killing and leaves all the remaining fields invariant. In the Euclidean case where $\langle \cdot, \cdot \rangle$ is positive definite, the proof simplifies. If the vector bilinears do not span the tangent space of the spacetime there is an *X* such that

Thus the spinors $\cancel{k}\epsilon$ for every Killing spinor ϵ are orthogonal to all Killing spinors, and so

$X: \mathcal{K} \to \mathcal{K}^{\perp}$

But $X^2 = |X|^2 \mathbf{1}$ and as $X \neq 0$, the map is an injection. However this cannot be if dim $\mathcal{K}^{\perp} < \dim \mathcal{K}$ which is the case for more than 16 supersymmetries. Thus X = 0 and the spacetime is homogenous.

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	000000	0000000000	0

One of the issues that arise in the classification of warped AdS backgrounds [Gran, Gutowski, GP] is that the metric on AdS_{k+1} can be written as a warped product $AdS_k \times_w \mathbb{R}$

 $ds^{2}(AdS_{k+1}) = \ell^{2}dy^{2} + \ell^{2}\cosh^{2} y \, ds^{2}(AdS_{k}) , \quad y \in \mathbb{R} ,$

Any $AdS_n \times_w M^{D-n}$ solution can be re-interpreted as a $AdS_k \times_w M^{D-k}$ solution for k < n.

- ▶ The Killing spinors of AdS backgrounds do not factorize into Killing spinors on AdS and Killing spinors on the internal space. This is particularly obvious for $\mathbb{R}^k \times_w M^{D-k}$ solutions.
- ▶ D=11 supergravity admits $AdS_k \times_w M^{11-k}$ maximally supersymmetric solutions for $k \le 7$. Similar results apply to other theories.
- There are de Sitter supersymmetric solutions in 10- and 11-dimensional supergravities
- This nesting of warped AdS backgrounds presents one of the difficulties in the classification

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	000000	0000000000	0

One of the issues that arise in the classification of warped AdS backgrounds [Gran, Gutowski, GP] is that the metric on AdS_{k+1} can be written as a warped product $AdS_k \times_w \mathbb{R}$

 $ds^{2}(AdS_{k+1}) = \ell^{2}dy^{2} + \ell^{2}\cosh^{2} y \, ds^{2}(AdS_{k}) , \quad y \in \mathbb{R} ,$

- Any $AdS_n \times_w M^{D-n}$ solution can be re-interpreted as a $AdS_k \times_w M^{D-k}$ solution for k < n.
- ► The Killing spinors of AdS backgrounds do not factorize into Killing spinors on AdS and Killing spinors on the internal space. This is particularly obvious for $\mathbb{R}^k \times_w M^{D-k}$ solutions.
- ▶ D=11 supergravity admits $AdS_k \times_w M^{11-k}$ maximally supersymmetric solutions for $k \leq 7$. Similar results apply to other theories.
- There are de Sitter supersymmetric solutions in 10- and 11-dimensional supergravities
- This nesting of warped AdS backgrounds presents one of the difficulties in the classification

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	000000	0000000000	0

One of the issues that arise in the classification of warped AdS backgrounds [Gran, Gutowski, GP] is that the metric on AdS_{k+1} can be written as a warped product $AdS_k \times_w \mathbb{R}$

 $ds^{2}(AdS_{k+1}) = \ell^{2}dy^{2} + \ell^{2}\cosh^{2} y \, ds^{2}(AdS_{k}) , \quad y \in \mathbb{R} ,$

- Any $AdS_n \times_w M^{D-n}$ solution can be re-interpreted as a $AdS_k \times_w M^{D-k}$ solution for k < n.
- ▶ The Killing spinors of AdS backgrounds do not factorize into Killing spinors on AdS and Killing spinors on the internal space. This is particularly obvious for $\mathbb{R}^k \times_w M^{D-k}$ solutions.
- ▶ D=11 supergravity admits $AdS_k \times_w M^{11-k}$ maximally supersymmetric solutions for $k \le 7$. Similar results apply to other theories.

There are de Sitter supersymmetric solutions in 10- and 11-dimensional supergravities

This nesting of warped AdS backgrounds presents one of the difficulties in the classification

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	000000	0000000000	0

One of the issues that arise in the classification of warped AdS backgrounds [Gran, Gutowski, GP] is that the metric on AdS_{k+1} can be written as a warped product $AdS_k \times_w \mathbb{R}$

 $ds^{2}(AdS_{k+1}) = \ell^{2}dy^{2} + \ell^{2}\cosh^{2} y \, ds^{2}(AdS_{k}) , \quad y \in \mathbb{R} ,$

- Any $AdS_n \times_w M^{D-n}$ solution can be re-interpreted as a $AdS_k \times_w M^{D-k}$ solution for k < n.
- ▶ The Killing spinors of AdS backgrounds do not factorize into Killing spinors on AdS and Killing spinors on the internal space. This is particularly obvious for $\mathbb{R}^k \times_w M^{D-k}$ solutions.
- ▶ D=11 supergravity admits $AdS_k \times_w M^{11-k}$ maximally supersymmetric solutions for $k \leq 7$. Similar results apply to other theories.
- There are de Sitter supersymmetric solutions in 10- and 11-dimensional supergravities
- This nesting of warped AdS backgrounds presents one of the difficulties in the classification

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	000000	0000000000	0

One of the issues that arise in the classification of warped AdS backgrounds [Gran, Gutowski, GP] is that the metric on AdS_{k+1} can be written as a warped product $AdS_k \times_w \mathbb{R}$

 $ds^2(AdS_{k+1}) = \ell^2 dy^2 + \ell^2 \cosh^2 y \, ds^2(AdS_k) , \quad y \in \mathbb{R} ,$

- Any $AdS_n \times_w M^{D-n}$ solution can be re-interpreted as a $AdS_k \times_w M^{D-k}$ solution for k < n.
- ▶ The Killing spinors of AdS backgrounds do not factorize into Killing spinors on AdS and Killing spinors on the internal space. This is particularly obvious for $\mathbb{R}^k \times_w M^{D-k}$ solutions.
- ▶ D=11 supergravity admits $AdS_k \times_w M^{11-k}$ maximally supersymmetric solutions for $k \leq 7$. Similar results apply to other theories.
- There are de Sitter supersymmetric solutions in 10- and 11-dimensional supergravities
- This nesting of warped AdS backgrounds presents one of the difficulties in the classification

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	•000000	0000000000	O

Killing superalgebras

The Killing superalgebras $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ with $\mathfrak{g}_0 = \mathbb{R} \langle V_{K_{mn}} \rangle$ and $\mathfrak{g}_1 = \mathbb{R} \langle Q_{\epsilon_m} \rangle$ of supersymmetric backgrounds are defined as follows [Gauntlett, Myers, Townsend; Figueroa-O'Farrill]:

$$\{\mathcal{Q}_{\epsilon_{\mathbf{m}}},\mathcal{Q}_{\epsilon_{\mathbf{n}}}\}=V_{K_{\mathbf{m}\mathbf{n}}}\;,\quad [V_{K_{\mathbf{m}\mathbf{n}}},\mathcal{Q}_{\epsilon_{\mathbf{p}}}]=\mathcal{Q}_{\mathcal{L}_{K_{\mathbf{m}\mathbf{n}}}\epsilon_{\mathbf{p}}}\;,\quad [V_{K_{\mathbf{m}\mathbf{n}}},V_{K_{\mathbf{p}\mathbf{q}}}]=V_{[K_{\mathbf{m}\mathbf{n}},K_{\mathbf{p}\mathbf{q}}]}\;,$$

where $K_{\mathbf{mn}} = \langle \Gamma_0 \epsilon_{\mathbf{m}}, \Gamma_M \epsilon_{\mathbf{n}} \rangle dx^M$ is the 1-form bilinear, $[K_{\mathbf{mn}}, K_{\mathbf{pq}}]$ is the Lie commutator of two vector fields and

$$\mathcal{L}_X \epsilon =
abla_X \epsilon + rac{1}{8} dX_{MN} \Gamma^{MN} \epsilon \; ,$$

is the spinorial Lie derivative of ϵ with respect to the vector field X.

►
$$V_{K_{mn}} = V_{mn}$$
 are the even generators and $Q_{\epsilon_m} = Q_m$ are the odd ones.

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	○●○○○○○		O

AdS_k Killing Superalgebras

The Killing superalgebras of warped AdS_k , k > 3, backgrounds are

Ν	AdS ₄	AdS ₅	AdS ₆	AdS ₇
4	$\mathfrak{osp}(1 4)$	-	-	-
8	$\mathfrak{osp}(2 4)$	$\mathfrak{sl}(1 4)$	-	-
12	$\mathfrak{osp}(3 4)$	-	-	-
16	$\mathfrak{osp}(4 4)$	$\mathfrak{sl}(2 4)$	$\mathfrak{f}^*(4)$	$\mathfrak{osp}(6,2 2)$
20	$\mathfrak{osp}(5 4)$	-	-	-
24	$\mathfrak{osp}(6 4)$	$\mathfrak{sl}(3 4)$	-	-
28	$\mathfrak{osp}(7 4)$	-	-	-
32	$\mathfrak{osp}(8 4)$	$\mathfrak{sl}(4 4)/1_{8\times 8}$	-	$\mathfrak{osp}(6,2 4)$

 $AdS_k KSAs in D = 10 and D = 11$

Table: For AdS_k backgrounds with compact without boundary internal space $\mathfrak{g}_0 = \mathfrak{so}(k-1,2) \oplus \mathfrak{t}_0$. $\mathfrak{f}^*(4)$ is a different real form to $\mathfrak{f}(4)$ which appears in the AdS₃ case.

AdS 0000000000	Geometry	Superalgebra ○○●○○○○	Classification	Conclusions O

AdS₃ superalgebras

AdS₃ is locally a group manifold and the Killing superalgebra \mathfrak{g} decomposes as $\mathfrak{g} = \mathfrak{g}_L \oplus \mathfrak{g}_R$.

N _L	$\mathfrak{g}_L/\mathfrak{c}$
2 <i>n</i>	$\mathfrak{osp}(n 2)$
4n, n > 1	$\mathfrak{sl}(n 2)$
8n, n > 1	$\mathfrak{osp}^*(4 2n)$
16	f(4)
14	g(3)
8	$\mathfrak{D}(2,1,lpha)$
8	$\mathfrak{sl}(2 2)/1_{4\times 4}$

AdS₃ KSAs in type II and d = 11

Table: If the internal space is compact without boundary, $(\mathfrak{g}_L/\mathfrak{c})_0=\mathfrak{so}(1,2)\oplus\mathfrak{t}_0/\mathfrak{c}.$ The may be a central term \mathfrak{c}

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000 0	0000	000000	0000000000	0

Isometry algebras of internal space

N	AdS ₄	AdS ₅	AdS ₆	AdS ₇
4	0	-	-	-
8	$\mathfrak{so}(2)$	$\mathfrak{u}(1)$	-	-
12	$\mathfrak{so}(3)$	-	-	-
16	$\mathfrak{so}(4)$	$\mathfrak{u}(2)$	$\mathfrak{so}(3)$	$\mathfrak{so}(3)$
20	$\mathfrak{so}(5)$	-	-	-
24	$\mathfrak{so}(6)$	$\mathfrak{u}(3)$	-	-
28	$\mathfrak{so}(7)$	-	-	-
32	$\mathfrak{so}(8)$	$\mathfrak{su}(4)$	-	$\mathfrak{so}(5)$

Table: These algebras must act effectively on the internal spaces of AdS backgrounds

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	0000000	0000000000	0

Isometry algebras of internal space for AdS₃

Table: AdS₃ Killing superalgebras in type II and 11D

NL	$\mathfrak{g}_L/\mathfrak{c}_L$	$(\mathfrak{t}_L)_0/\mathfrak{c}_L$	$\dim \mathfrak{c}_L$
2 <i>n</i>	$\mathfrak{osp}(n 2)$	$\mathfrak{so}(n)$	0
4n, n > 2	$\mathfrak{sl}(n 2)$	$\mathfrak{u}(n)$	0
8n, n > 1	$\mathfrak{osp}(4 2n)$	$\mathfrak{sp}(n) \oplus \mathfrak{sp}(1)$	0
16	$\mathfrak{f}(4)$	$\mathfrak{spin}(7)$	0
14	$\mathfrak{g}(3)$	\mathfrak{g}_2	0
8	$\mathfrak{D}(2,1,lpha)$	$\mathfrak{so}(3)\oplus\mathfrak{so}(3)$	0
8	$\mathfrak{sl}(2 2)/1_{4 imes 4}$	$\mathfrak{su}(2)$	≤ 3

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	○○○○○●○	0000000000	O
Sketch of proof				

These results have been established under the assumptions either that

• the field are smooth and the internal space is compact without boundary or that

► the even part of the superalgebra decomposes to that of isometries of AdS and those of the internal space, g₀ = iso(AdS) ⊕ t₀.

As the dependence of the Killing spinors on the AdS coordinates is known some of the (anti-) commutators of the Killing superalgebra can be explicitly calculated. These are

$$\blacktriangleright \{Q,Q\} = V_{\mathfrak{iso}(AdS)} + V_{\mathfrak{t}_0}$$

$$\blacktriangleright [V_{iso(AdS)}, Q]$$

The key commutator that remains to be evaluated is $[V_{t_0}, Q]$. It turns out that for AdS_n , $n \ge 4$, this can also be found uniquely as a consequence of the assumptions above and the super-Jacobi identities.

For AdS_n , n = 2, 3 this is not the case. However the problem can be still solved as it can be shown to be related to groups acting transitively and effectively on spheres. \Box

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	○○○○○○●	0000000000	O

Main points

The main conclusions of the analysis are

- The internal spaces of AdS backgrounds must admit an almost effective action of a group with Lie algebra t₀
- ▶ For solutions that preserve more than half of supersymmetry (N > 16) the internal space must admit a transitive and an almost effective action of a group with Lie algebra t₀

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	○○○○○○●		O
Main points				

The main conclusions of the analysis are

- The internal spaces of AdS backgrounds must admit an almost effective action of a group with Lie algebra t₀
- ▶ For solutions that preserve more than half of supersymmetry (N > 16) the internal space must admit a transitive and an almost effective action of a group with Lie algebra t₀

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	○○○○○○●		O
Main points				

The main conclusions of the analysis are

- The internal spaces of AdS backgrounds must admit an almost effective action of a group with Lie algebra t₀
- ► For solutions that preserve more than half of supersymmetry (N > 16) the internal space must admit a transitive and an almost effective action of a group with Lie algebra t₀

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	0000000		O
AdS ₆ and AdS ₇				

Th [Figueroa-O'Farrill, GP]: The maximal supersymmetric AdS solutions (N = 32) in 10 and 11 dimensions up to a local isometry are as follows. D = 11: AdS₄ × S⁷ and AdS₇ × S⁴ D = 10 IIB: AdS₅ × S⁵

 AdS_6 and AdS_7 backgrounds can preserve either 16 or 32 supersymmetries. So for N > 16, these solutions must be maximally supersymmetric. Thus

- There are no $N > 16 \text{ AdS}_6$ supersymmetric solutions
- The N > 16 supersymmetric AdS₇ solutions are locally isometric to the maximally supersymmetric AdS₇ × S⁴ solution of 11-dimensional supergravity

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	0000000		O
AdS ₆ and AdS ₇				

Th [Figueroa-O'Farrill, GP]: The maximal supersymmetric AdS solutions (N = 32) in 10 and 11 dimensions up to a local isometry are as follows.
D = 11: AdS₄ × S⁷ and AdS₇ × S⁴
D = 10 IIB: AdS₅ × S⁵

 AdS_6 and AdS_7 backgrounds can preserve either 16 or 32 supersymmetries. So for N > 16, these solutions must be maximally supersymmetric. Thus

- There are no N > 16 AdS₆ supersymmetric solutions
- The N > 16 supersymmetric AdS₇ solutions are locally isometric to the maximally supersymmetric AdS₇ × S⁴ solution of 11-dimensional supergravity

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	0000000	000000000	0

AdS₅

AdS₅ backgrounds preserve 8k supersymmetries.

Th[Beck, Gutowski, GP]: Let the internal space of AdS₅ backgrounds be compact without boundary.

- There are no solutions which preserve 24 and 32 supersymmetries in (massive) IIA and 11-dimensional supergravities.
- ▶ In IIB, all solutions that preserve N > 16 supersymmetries are locally isometric to the maximally supersymmetric AdS₅ × S⁵ solution

AdS 000000000	Geometry 0000	Superalgebra	Classification	Conclusions O
AdS ₅				

AdS₅ backgrounds preserve 8k supersymmetries.

Th[Beck, Gutowski, GP]: Let the internal space of AdS₅ backgrounds be compact without boundary.

- There are no solutions which preserve 24 and 32 supersymmetries in (massive) IIA and 11-dimensional supergravities.
- ▶ In IIB, all solutions that preserve N > 16 supersymmetries are locally isometric to the maximally supersymmetric $AdS_5 \times S^5$ solution

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	0000000		O

Th: There are no smooth AdS_5 solutions preserving 24 supersymmetries with compact without boundary internal space in D = 11 supergravity.

There are plenty of AdS_5 solutions apart from the IIB $AdS_5 \times S^5$ preserving less supersymmetry. Previous systematic investigations include [Apruzzi, Fazzi, Passias, Tomasiello].

Proof: The background is

$$\begin{split} ds^2 &= 2du(dr+rh) + A^2(ds^2 + e^{\frac{2i}{\ell}}(dx^a)^2) + ds^2(M^6) \ , \\ F &= X \ , \quad h = -\frac{2}{\ell}dz - 2A^{-1}dA \ . \end{split}$$

In this case

$$D_i^{(\pm)} = D_i \pm \frac{1}{2} \partial_i \log A - \frac{1}{288} \Gamma_i^{j_1 \dots j_4} X_{j_1 \dots j_4} + \frac{1}{36} X_{ij_1 j_2 j_3} \Gamma^{j_1 j_2 j_3}$$
$$\mathcal{B}^{(\pm)} = -\frac{1}{2} \Gamma_z \Gamma^i \partial_i \log A \mp \frac{1}{2\ell} A^{-1} + \frac{1}{288} \Gamma_z \Gamma^{j_1 \dots j_4} X_{j_1 \dots j_4}$$

AdS 000000000	Geometry 0000	Superalgebra	Classification	Conclusions O

Th: There are no smooth AdS_5 solutions preserving 24 supersymmetries with compact without boundary internal space in D = 11 supergravity.

There are plenty of AdS_5 solutions apart from the IIB $AdS_5 \times S^5$ preserving less supersymmetry. Previous systematic investigations include [Apruzzi, Fazzi, Passias, Tomasiello].

Proof: The background is

$$ds^{2} = 2du(dr + rh) + A^{2}(ds^{2} + e^{\frac{2z}{\ell}}(dx^{a})^{2}) + ds^{2}(M^{6}) ,$$

$$F = X , \quad h = -\frac{2}{\ell}dz - 2A^{-1}dA .$$

In this case

$$D_i^{(\pm)} = D_i \pm \frac{1}{2} \partial_i \log A - \frac{1}{288} \Gamma_i^{j_1 \dots j_4} X_{j_1 \dots j_4} + \frac{1}{36} X_{ij_1 j_2 j_3} \Gamma^{j_1 j_2 j_3}$$
$$\mathcal{B}^{(\pm)} = -\frac{1}{2} \Gamma_z \Gamma^i \partial_i \log A \mp \frac{1}{2\ell} A^{-1} + \frac{1}{288} \Gamma_z \Gamma^{j_1 \dots j_4} X_{j_1 \dots j_4}$$

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	0000000		O

Th: There are no smooth AdS_5 solutions preserving 24 supersymmetries with compact without boundary internal space in D = 11 supergravity.

There are plenty of AdS_5 solutions apart from the IIB $AdS_5 \times S^5$ preserving less supersymmetry. Previous systematic investigations include [Apruzzi, Fazzi, Passias, Tomasiello].

Proof: The background is

$$\begin{aligned} ds^2 &= 2du(dr+rh) + A^2(ds^2 + e^{\frac{2z}{\ell}}(dx^a)^2) + ds^2(M^6) ,\\ F &= X , \quad h = -\frac{2}{\ell}dz - 2A^{-1}dA . \end{aligned}$$

In this case

$$D_i^{(\pm)} = D_i \pm \frac{1}{2} \partial_i \log A - \frac{1}{288} \Gamma_i^{j_1 \dots j_4} X_{j_1 \dots j_4} + \frac{1}{36} X_{ij_1 j_2 j_3} \Gamma^{j_1 j_2 j_3} \mathcal{B}^{(\pm)} = -\frac{1}{2} \Gamma_z \Gamma^i \partial_i \log A \mp \frac{1}{2\ell} A^{-1} + \frac{1}{288} \Gamma_z \Gamma^{j_1 \dots j_4} X_{j_1 \dots j_4}$$

AdS 000000000	Geometry	Superalgebra	Classification	Conclusions O

Using the gravitino and algebraic KSEs and maximum principle, one can establish that

 $\| \sigma_+ \| = \text{const}$

Furthermore

 $W_i = A \langle \sigma_+, \Gamma_{z12i} \sigma_+ \rangle$

is Killing and leaves the fields invariant. t_0 is spanned by the W's. Moreover, from the algebraic KSE one has

$$i_W \star_6 X = 6 \parallel \sigma_+ \parallel^2 dA ,$$

This implies

$$i_W dA = 0$$

Then the homogeneity theorem gives *A* constant and X = 0. The fluxes vanish and the warp factor field equation cannot be satisfied. \Box

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	0000000		O
AdS ₄				

 AdS_4 solutions preserve 4k supersymmetries.

Th [Lautz, Haupt, GP]: Let the internal space of AdS₄ backgrounds be compact without boundary.

- There are no AdS₄ solutions in IIB and massive IIA supergravities that preserve N > 16 supersymmetries.
- All AdS₄ solutions of 11-dimensional supergravity that preserve N > 16 supersymmetries are locally isometric to the maximally supersymmetric AdS₄ × S⁷ solution.
- ► All IIA AdS₄ solutions that preserve $16 < N \le 24$ supersymmetries are locally isometric to the AdS₄ × *CP*³, N = 24, solution of IIA supergravity. There are no IIA AdS₄ solutions that preserve 28 and 32 supersymmetries.

Sketching the proof:

Unlike the AdS₅ case to establish the above theorem one has to investigate in detail the homogeneous *G/H* spaces with Lie *G* = t₀ = so(*k*) for *k* > 4

AdS 000000000	Geometry 0000	Superalgebra	Classification	Conclusions O
Sketching the pro	oof:			

Consider the 11-dimensional case where the internal space is a 7-dimensional homogeneous manifold. First one establishes that

 $\parallel \sigma_+ \parallel = \text{const}$

and that for N > 16 supersymmetries the warp factor A is constant as well. Therefore

- ▶ all N > 16 AdS₄ backgrounds are products AdS₄ × M^7 , where M^7 is a homogeneous space admitting a transitive and effective $\mathfrak{so}(k)$ action.
- The proof proceeds with a case by case analysis

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	000000	0000000000	0

Table: 7-dimensional compact, simply connected, homogeneous spaces

	$M^7 = G/H$
(1)	$\frac{\text{Spin}(8)}{\text{Spin}(7)} = S^7$, symmetric space
(2)	$\frac{\operatorname{Spin}(7)}{G_2} = S^7$
(3)	$\frac{SU(4)}{SU(3)}$ diffeomorphic to S^7
(4)	$\frac{S_P(2)}{S_P(1)}$ diffeomorphic to S^7
(5)	$\frac{Sp(2)}{Sp(1)_{max}}$, Berger space
(6)	$rac{Sp(2)}{\Delta(Sp(1))} = V_2(\mathbb{R}^5)$, not spin
(7)	$\frac{SU(3)}{\Delta_{k,l}(U(1))} = W^{k,l}$ k, l coprime, Aloff-Wallach space
(8)	$\frac{SU(2) \times SU(3)}{\Delta_{k,l}(U(1)) \cdot (1 \times SU(2))} = N^{k,l} \ k, l \text{ coprime}$
(9)	$\frac{SU(2)^3}{\Delta_{p,q,r}(U(1)^2)} = Q^{p,q,r} p, q, r \text{ coprime}$
(10)	$M^4 \times M^3, \ M^4 = \frac{\text{Spin}(5)}{\text{Spin}(4)}, \ \frac{SU(3)}{S(U(1) \times U(2))}, \ \frac{SU(2)}{U(1)} \times \frac{SU(2)}{U(1)}$
	$M^3 = SU(2)$, $\frac{SU(2) \times SU(2)}{\Delta(SU(2))}$
(11)	$M^5 \times \frac{SU(2)}{U(1)}, \ M^5 = \frac{\text{Spin}(6)}{\text{Spin}(5)}, \ \frac{SU(3)}{SU(2)}, \ \frac{SU(2) \times SU(2)}{\Delta_{k,l}(U(1))}, \ \frac{SU(3)}{SO(3)}$

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	0000000	00000000000	0

Classification of N > 16 AdS backgrounds

Assuming that the internal space is compact without boundary, a summary of the results so far is as follows

	AdS_4	AdS_5	AdS_6	AdS_7
N = 20	—			
N = 24	IIA	_		
N = 28	—			
N = 32	D = 11	IIB	-	D = 11

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	0000000		O
AdS_3 and AdS_2				

AdS₃ and AdS₂ backgrounds preserve 2*k* supersymmetries. There are several possibilities for the existence of such backgrounds with N > 16 supersymmetries. However one finds Th [Lautz, Haupt, GP]:Let the internal space be compact without boundary. There are no AdS₃ solutions that preserve N > 16 supersymmetries in (massive) IIA, IIB and 11-dimensional supergravities

Th [Beck, Gutowski. Gran, GP]: Under the same assumptions, there are no AdS_2 solutions that preserve N > 16 supersymmetries in (massive) IIA, IIB and 11-dimensional supergravities

Sketching the **proof**: The proof is similar to that of AdS_4 case. The main difference is that the group which acts on the internal space may not even be semisimple.

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	0000000		O
AdS ₃ and AdS ₂				

AdS₃ and AdS₂ backgrounds preserve 2k supersymmetries. There are several possibilities for the existence of such backgrounds with N > 16supersymmetries. However one finds

Th [Lautz, Haupt, GP]:Let the internal space be compact without boundary. There are no AdS₃ solutions that preserve N > 16 supersymmetries in (massive) IIA, IIB and 11-dimensional supergravities

Th [Beck, Gutowski. Gran, GP]: Under the same assumptions, there are no AdS_2 solutions that preserve N > 16 supersymmetries in (massive) IIA, IIB and 11-dimensional supergravities

Sketching the proof: The proof is similar to that of AdS_4 case. The main difference is that the group which acts on the internal space may not even be semisimple. \Box

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000		○○○○○○○○●○	O
Heterotic				

Th: In heterotic theory with dH = 0

• There are no AdS_n , n > 3, supersymmetric backgrounds

- There are no smooth AdS₂ backgrounds for which the internal space is compact without boundary
- AdS₃ backgrounds preserve 2,4,6 and 8 supersymmetries
- Smooth AdS₃ backgrounds preserving 8 supersymmetries with compact without boundary internal space are locally isometric to either AdS₃ × S³ × T⁴ or AdS₃ × S³ × K₃
- Although there is no classification of all possible backgrounds, there is a clear overview of all possibilities and what equations should be solved to achieve the task.

AdS 000000000	Geometry 0000	Superalgebra	Classification	Conclusions O
Heterotic				

- Th: In heterotic theory with dH = 0
 - There are no AdS_n , n > 3, supersymmetric backgrounds
 - There are no smooth AdS₂ backgrounds for which the internal space is compact without boundary
 - AdS₃ backgrounds preserve 2,4,6 and 8 supersymmetries
 - Smooth AdS₃ backgrounds preserving 8 supersymmetries with compact without boundary internal space are locally isometric to either AdS₃ × S³ × T⁴ or AdS₃ × S³ × K₃
 - Although there is no classification of all possible backgrounds, there is a clear overview of all possibilities and what equations should be solved to achieve the task.

AdS 000000000	Geometry 0000	Superalgebra	Classification	Conclusions O
Heterotic				

- Th: In heterotic theory with dH = 0
 - There are no AdS_n , n > 3, supersymmetric backgrounds
 - There are no smooth AdS₂ backgrounds for which the internal space is compact without boundary
 - ► *AdS*₃ backgrounds preserve 2,4,6 and 8 supersymmetries

Smooth AdS_3 backgrounds preserving 8 supersymmetries with compact without boundary internal space are locally isometric to either $AdS_3 \times S^3 \times T^4$ or $AdS_3 \times S^3 \times K_3$

Although there is no classification of all possible backgrounds, there is a clear overview of all possibilities and what equations should be solved to achieve the task.

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000		○○○○○○○○●○	O
Heterotic				

- Th: In heterotic theory with dH = 0
 - There are no AdS_n , n > 3, supersymmetric backgrounds
 - There are no smooth AdS₂ backgrounds for which the internal space is compact without boundary
 - ► *AdS*₃ backgrounds preserve 2,4,6 and 8 supersymmetries
 - Smooth AdS_3 backgrounds preserving 8 supersymmetries with compact without boundary internal space are locally isometric to either $AdS_3 \times S^3 \times T^4$ or $AdS_3 \times S^3 \times K_3$
 - Although there is no classification of all possible backgrounds, there is a clear overview of all possibilities and what equations should be solved to achieve the task.

AdS 0000000000	Geometry 0000	Superalgebra	Classification	Conclusions O
Heterotic				

- Th: In heterotic theory with dH = 0
 - There are no AdS_n , n > 3, supersymmetric backgrounds
 - There are no smooth AdS₂ backgrounds for which the internal space is compact without boundary
 - ► *AdS*₃ backgrounds preserve 2,4,6 and 8 supersymmetries
 - Smooth AdS_3 backgrounds preserving 8 supersymmetries with compact without boundary internal space are locally isometric to either $AdS_3 \times S^3 \times T^4$ or $AdS_3 \times S^3 \times K_3$
 - Although there is no classification of all possible backgrounds, there is a clear overview of all possibilities and what equations should be solved to achieve the task.

AdS	Geometry	Superalgebra	Classification	Conclusions
0000000000	0000	0000000	000000000●	O
Geometry				

The geometry of AdS₃ backgrounds is as follows:

N	M^7	B^k	
2	G_2		
4	<i>SU</i> (3)	U(3)	S^1
6	SU(2)	self – dual – Weyl	S^3
8	SU(2)	hyper – Kahler	S^3

Table: The G-structure of M^7 is compatible with a connection with skew-symmetric torsion. For $N = 4, 6, 8, M^7$ is a local (twisted) fibration over a base space B^k with fibre either S^1 or S^3 . The base spaces B are conformally balanced with respect to the associated fundamental forms.

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	0000000		O
Geometry				

The geometry of AdS₃ backgrounds is as follows:

N	M^7	B^k	fibre
2	G_2	_	-
4	<i>SU</i> (3)	<i>U</i> (3)	S^1
6	SU(2)	self – dual – Weyl	S^3
8	SU(2)	hyper – Kahler	S^3

Table: The G-structure of M^7 is compatible with a connection with skew-symmetric torsion. For $N = 4, 6, 8, M^7$ is a local (twisted) fibration over a base space B^k with fibre either S^1 or S^3 . The base spaces B are conformally balanced with respect to the associated fundamental forms.

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	0000000		•
Conclusion				

- AdS backgrounds in 10- and 11-dimensions exhibit some novel geometric features which have led to a generalization of classic results like the Lichnerowicz theorem.
- There is a classification up to local isometry of all smooth AdS backgrounds in 10- and 11-dimensions which preserve more than 16 supersymmetries and have internal space a compact manifold without boundary
- ▶ The next few years there will be much progress towards completing this programme for $N \le 16$ and exploring the applications in a variety of problems in gravity, gauge theory, string theory, AdS/CFT and geometry.

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	0000000		•
Conclusion				

- AdS backgrounds in 10- and 11-dimensions exhibit some novel geometric features which have led to a generalization of classic results like the Lichnerowicz theorem.
- There is a classification up to local isometry of all smooth AdS backgrounds in 10- and 11-dimensions which preserve more than 16 supersymmetries and have internal space a compact manifold without boundary
- ▶ The next few years there will be much progress towards completing this programme for $N \le 16$ and exploring the applications in a variety of problems in gravity, gauge theory, string theory, AdS/CFT and geometry.

AdS	Geometry	Superalgebra	Classification	Conclusions
000000000	0000	0000000		•
Conclusion				

- AdS backgrounds in 10- and 11-dimensions exhibit some novel geometric features which have led to a generalization of classic results like the Lichnerowicz theorem.
- There is a classification up to local isometry of all smooth AdS backgrounds in 10- and 11-dimensions which preserve more than 16 supersymmetries and have internal space a compact manifold without boundary
- ▶ The next few years there will be much progress towards completing this programme for $N \le 16$ and exploring the applications in a variety of problems in gravity, gauge theory, string theory, AdS/CFT and geometry.