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I Outlook: formal thermodynamical relations
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Four-dimensional N = 2 vector multiplets coupled
to supergravity



Four-dimensional N = 2 vector multiplets

Bosonic Lagrangian:

e
�1
4 L4 = �

1

2
R(4) � g

AB̄
(z)@zA@zB +

1

4
IIJ(z)F

I

µ̂⌫̂F
J|µ̂⌫̂

+
1

4
RIJ(z)F

I

µ̂⌫̂ F̃
J|µ̂⌫̂

� V .

Special Kähler geometry:
Couplings g

AB̄
, IIJ , RIJ determined by a holomorphic prepotential

F (X I ), I = 0, 1, . . . n, homogeneous of degree two in
‘homogeneous scalars’ X I , which are subject to complex rescalings
X

I
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n physical scalars:
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n + 1 physical vector fields, including ‘graviphoton.’



Electric-magnetic duality

Field equations invariant under Sp(2n + 2,R), which acts linearly
on ‘symplectic vectors’:
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A�ne special Kähler manifolds

(N, g , J,r), where

I (N, g , J) Kähler with Kähler form ! = g(J·, ·).

I r is a flat, torsion-free, symplectic connection satisfying

d
r
J = 0 ,

equivalently:

rg totally symmetric rank 3 tensor .

Thus Kähler and Hessian.

Kähler potential has a holomorphic prepotential:

K = �i(X I
F̄I � X̄

I
FI ) .



Special real coordinates = r-a�ne coordinates which are
!-Darboux coordinates: (qa) = (x I , yI ), where

X
I = x

I + iu
I (x , y)

FI = yI + ivI (x , y) .

Metric has a Hesse potential:

gab = Hab :=
@H

@qa@qb
.

Hesse potential H(qa) and holomorphic prepotential F (X I ) are
related by a Legendre transformation

H(x , y) = 2
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⌘

.



Conical a�ne special Kähler manifolds

(N, g , J,r, ⇠) such that

I (N, g , J,r) is ASK.

I ⇠ is a vector field such that

D⇠ = r⇠ = IdTN

Vector fields

⇠ = q
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generate a homothetic, holomorphic ⇤ action.

Assuming group action can take Kähler quotient to define the
projective special Kähler manifold N̄ = N/ ⇤ = N//U(1).



F (X I ) is homogeneous of degree two in the special holomorphic
coordinates X I .
H(qa) is U(1) invariant and homogeneous of degree two in the
special real coordinates qa.

Superconformal calculus uses gauge equivalence between:

I n + 1 vector multiplets with local superconformal symmetry,
scalar manifold N is conical a�ne special Kähler.

I n vector multiplets coupled to Poincaré supergravity, scalar
manifold N̄ = N//U(1).



Scalar potential
Potential:

V (X , X̄ ) = N
IJ@IW @JW̄ � 22|W |

2, (N IJ) = (2ImFIJ)
�1 ,

Superpotential:

W = 2
⇣
g
I
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⌘
.

(g I , gI ) parameters of magnetic/electric FI gauging.

Potential (real coordinates):
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a
g
b


Hab +

HaHb + 4 (⌦q)
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Superpotential (real coordinates)

W = W (qa) = ig
a (Hab � 2i⌦ab) q
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@ 0
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A ,

where (ga) := (g I , gI ).



"-complex structures

Almost complex structure:

J 2 �(End(TM)) , J
2 = �IdTM .

Almost para-complex structure:

J 2 �(End(TM)) , J
2 = IdTM ,

with the eigendistributions having equal dimension.
Unified notation: "-complex structure:

J 2 �(End(TM)) , J
2 = "IdTM , " = ±1 .

Various concepts of complex geometry (Hermitian, Kähler,
hyper-Kähler, quaternionic-Kähler, a�ne and projective special
Kähler) can be adapted to para-complex geometry.



Euclidean vector multiplets

Remark: The special geometry of N = 2 vector multiplets in
Euclidean space-time signature is (a�ne/projective) special
para-Kähler.



Reduction to three dimensions



Dimensional reduction to three dimensions

Metric gµ̂⌫̂ Metric gµ⌫

KK vector Aµ ⇠ �̃

KK scalar �

n + 1 Vector fields A
I

µ̂ n + 1 Vector fields A
I
µ ⇠ ⇣̃I

n + 1 scalars A
I
? = ⇣ I

n complex scalars z
A

n complex scalars z
A

4n + 4 independent real scalar fields: zA, ⇣ I , ⇣̃I ,�, �̃.



Observation: an alternative parametrization based on using the
four-dimensional special real coordinates provides new insights into
scalar geometry of the reduced theory, and helps to find explicit
solutions.

Re-packaging: use homogeneous variables X I or qa to encode the
physical scalars zA, and absorbe the KK-scalar � by a field
redefinition:

Y
I = e

�/2
X

I , q
a

new = e
�/2

q
a

old

4n+ 5 real scalar fields (qa, q̂a, �̃), subject to U(1) transformations
= 4n + 4 independent fields. Advantage of keeping U(1):
covariance with respect to symplectic transformations is
maintained.



3d Lagrangian
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Hesse potentials H, H̃ are functions of the scalars qa.
✏ = �1 (✏ = 1) for space-like (time-like)reduction.
L3 is locally U(1)-invariant, only 4n + 4 propagating scalar fields.



Hypermultiplet geometry

Three-dimensional fields organise into hypermultiplets. Scalar
geometry is quaternionic-Kähler for spacelike reduction and
para-quaternionic Kähler for timelike reduction.



"-quaternionic structures
J1, J2, J3 2 End(V ), pairwise anti-commuting, J1J2 = J3.

I Quaternionic structure:

J
2
1 = J

2
2 = J

2
3 = �Id .

I Para-quaternionic structure:

J
2
1 = J

2
2 = �J

2
3 = Id .

I Unified notation: "-quaternionic structure:

J
2
1 = J

2
2 = �"J23 = "Id .

"-hyper Kähler manifold: J↵ (anti-)isometric, and parallel ()
integrable).
"-quaternionic Kähler manifold: J↵ (anti-)isometric, and
distribution spanned by them is parallel (J↵ in general not
integrable).



The supergravity c-map

N̄, Q̄: scalar manifolds of the 4d/3d theory.
N scalar manifold of auxiliary 4d superconformal theory.

N
c //

/ ⇤

✏✏

TN ff
✏HK/✏QK

&&

P = TN ⇥ �̃

/
oo

/U(1)
✏✏

N̄
c̄ // Q̄

L3 defines a projectable symmetric tensor field on P ! Q̄, which
induces the same "-quaternionic-Kähler metric on Q̄ as direct
reduction in terms of physical scalars.



Solutions



PI field configurations
For a certain class of field configurations, interesting solutions can
be found by integrating the field equations elementarily.

For today, impose the following conditions:

I 4d field configuration is static.

I Impose that 4d scalars are ‘purely imaginary’ (‘axion-free’).

I Impose analogous conditions on gauge fields (and, in presence
of a potential, gauging parameters).

This sets half of the three-dimensional scalars constant, while the
remaining scalars parametrize a para-Kähler submanifold.

(qa)|PI = (x0, 0, . . . , 0; 0, y1, . . . , yn),

(@µq̂
a)|PI =

1

2
(@µ⇣

0, 0, . . . , 0; 0, @µ⇣̃1, . . . , @µ⇣̃n),

(ga)|PI = (g0, 0, . . . , 0; 0, g1, . . . , gn) .



Additional assumption: prepotential is of ‘very special type’ , can
lift to five dimensions:

F =
f (Y 1, . . . ,Y n)

Y 0
, f homogeneous of degree 3.

(This can be relaxed, essential point is to have some factorization
of variables and some homogeneity property.)

Then one can obtain an explicit formula for Hesse potential

H = �
1

4
(�q0f (q1, . . . , qn))

� 1
2 , dual scalars qa := H̃a :=

@H̃

@qa
.

(Have shifted indices a = 0, n + 2, n + 3, . . . , 2n + 1 !

n = 0, 1, . . . n.)



Integrating the equations of motion

I Rewrite equations of motion in terms of dual real variables
qa, q̂a. (@µq̂a := H̃ab@µq̂a)

I q̂a equations are trivial to integrate.

I Einstein equation can be solved in terms of qa.

I Block decomposition of H̃ab leads to partial decoupling of the
scalar equations of motion.

I Homogeneity always allows to solve the scalar equations of
motion by taking fields qa which appear in the same block to
be proportional to one another.



General observations

I Solutions are generically neither supersymmetric (not BPS, no
Killing spinors), nor extremal (Killing horizons have finite
surface gravity)

I We solve the second order field equations directly, without
imposing a reduction to first order field equations, as with
other methods (BPS squares, fake/pseudo-supersymmetry,
etc.)

I By imposing regularity of the solution at the Killing horizon,
half of the intergration constants get fixed, so that the
number of undetermined integration constants corresponds to
a first order system.

Example so far include: black holes and black strings in four and
five dimensions, Nernst branes, and most recently planar solutions
with static patches containing a timelike singularity (interpreted as
a negative tension brane) related by analytic continuation to
cosmological patches asymptotic to Kasner solutions.



Solutions with planar symmetry

Metric:

ds
2
4 = �e

�(dt + Vµdx
µ)2 + e

�
ds

2
3

ds
2
3 = e

4 
d⌧2 + e

2 (dx2 + dy
2)

� = �(⌧) (absorbed into scalars), Vµ = 0, and  =  (⌧).

Scalars qa(⌧), q̂a(⌧).

q̂a-equations (four-dimensional gauge field equations) trivial:

¨̂qa = 0 ) ˙̂qa = Ka .

No further integration required as this determines the
four-dimensional field strengths.



Cases where the field equations have been integrated

One charge solutions (‘Nernst branes’)

Charges: (�Q0, 0, . . . , 0|0, . . . , 0)

Gauging: (0, . . . , 0|0, g1, g2, . . . , gn)

Hesse potential: H = �
1
4(�q0f (q1, . . . , qn))

Two charge solutions:

Charges: (�Q0, 0, . . . , 0|0,P1, 0, . . . , 0)

Gauging: (0, . . . , 0|0, 0, g2, . . . , gn)

Hesse potential: H = �
1
4(�q0q1f (q2, . . . , qn))



Three charge solutions (gauged STU model):

Charges: (�Q0, 0, 0, 0|0,P1,P2, 0)

Gauging: (0, 0, 0, 0|0, 0, 0, g3)

Hesse potential: H = �
1
4(�q0q1q2q3)

Four charge solutions (ungauged STU model):

Charges: (�Q0, 0, 0, 0|0,P1,P2,P3)

Gauging: (0, 0, 0, 0|0, 0, 0, 0)

Hesse potential: H = �
1
4(�q0q1q2q3)

Three charge and four charge solutions show the same qualitative
behaviour. We focus on the four charge solution.



One charge solutions: Nernst branes



One charge solution in 3 dimensions
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4d regularity ) two integration constants (apart from Q0):
B0 � 0, extremality parameter (temperature), h0 (chemical
potential).



One charge solution in 4 dimensions

New transverse coordinate:

e
�2B0⌧ = 1�

2B0

⇢
=: W (⇢)

Asymptotic region: ⇢! 1, horizon: ⇢ = 2B0.

4d metric:
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Black brane thermodynamics

Temperature (surface gravity or Euclidean method):

4⇡T = Z
�1/2(2B0)

3/4
e
�B0h0

2Q0 .

Z = combination of constants.

Chemical potential:

µ ⌘ At(⌧ = 0) =
1

2

✓
B0

Q0

◆
coth

✓
B0h0

Q0

◆
� 1

�
,

diverges for h0 ! 0.

Entropy density:

s = Z
1/2(2B0)

1/4
e

B0h0
2Q0

Note limits: T = 0 , B0 = 0 and µ = 1 , h0 = 0.



Can eliminate B0:
B0 = 2⇡sT .

Equation of state:

s
3 = 4⇡Z 2

T

✓
1 +

2⇡sT

Q0µ

◆
.

Nernst law:
s ���!

T!0
0 , µ,Q0 fixed

Scaling regimes:

s ⇠ T
1/3 for T/µ ⌧ 1

s ⇠ T for T/µ � 1

Remark: for T ! 0 we recover the extremal Nernst brane solution of S. Barisch, G. Lopes Cardoso, M. Haack, S.

Naampuri and N.A. Obers, JHEP 1111 (2011) 090, [arXiv: 1108.02960].



hvLif geometries

Hyperscaling violating Lifshitz geometries hvLifz,✓ with d

transverse spatial dimensions:

ds
2
d+2 = r

� 2(d�✓)
d

⇣
�r

�2(z�1)
dt

2 + dr
2 + dx

2
i

⌘
,

Scaling behaviour:

(r , xi ) 7! �(r , xi ) , t 7! �z t , ds
2
d+2 7! �2✓/dds2

d+2 .

z = Lifshitz exponent, measures deviations from relativistic
symmetry (� 6= 1).
✓ = hyperscaling violating exponent, measures deviation from scale
invariance (✓ 6= 0).

Thought to be dual to QFT1,d , with above scaling behaviour, i.p.

s ⇠ T
(d�✓)/z .



Asymptotic behaviour of 4d Nernst branes
Chem. Pot, Temp. Infinity Horizon

µ < 1, T > 0 hvLif1,�1 = CAdS4 hvLif0,2 = Rindler ⇥ 2.

Scalars ! 1

R ,K ! 0

µ < 1, T = 0 hvLif1,�1 = CAdS4 hvLif3,1

as above Scalars ! 1

infinite tidal forces

µ = 1, T > 0, hvLif3,1 hvLif0,2 = Rindler ⇥ 2.

Scalars ! 0

R ,K ! 1

µ = 1, T = 0 hvLif3,1 hvLif3,1

as above as above



For ⇢! 1 the solution degenerates, and the equation of state we
found does not show the asymptotic behaviour s ⇠ T

3 expected
for z = 1, ✓ = �1.

Interpretation: decompactification limit, solution must be
interpreted from a 5d perspective. Clue AdS5 has
d = 3, z = 1, ✓ = 0 and therefore s ⇠ T

3.



One charge solution in five dimensions
Boosted AdS Schwarzschild Black Brane:

ds
2
(5) =

l
2
dr

2

r2W (r)
+

r
2

l2

⇥
�W (r)(utdt + uzdz)

2 + (uzdt + utdz)
2

+dx
2 + dy

2
⇤

where

W (r) = 1�
r
4
+

r4
, r

4
+ := 2B0 , ut =

p
1 + �̃ , uz =

p
�̃

and l = AdS5-radius.

Temperature from surfrace gravity or absence of conical singularity
in Euclidean continuation:

⇡T =
r+

l2ut
, r

4
+ = 2B0 .

Remark: ‘linear’ version of rotating black hole, i.p. ergoregion.
Remark: Generalized Carter-Novotný-Horský metric.



Mass and Momentum

Using quasilocal stress tensor obtain:

I Mass

M =
(4u2t � 1)r4+
16⇡Gl5

V3

I Linear momentum

Pz =
4r4+utuz
16⇡Gl5

V3

Boundary stress tensor has perfect fluid form with pressure
proportional to r

4
+ ⇠ T

4 (ultra-relativistic).



Entropy and First Law

Entropy:

S =
r
3
+

4Gl3
utV3

First law (important consistency check!)

�M = T �S � w�Pz

w = boost velocity.

Smarr-type relation:

1

4
M =

1

3
TS �

1

4
wPZ



Stability

Mass relation:

M(T ,w) =
l
3

16⇡G
V3

3 + w
2

(1� w2)3
(⇡T )4

Heat capacity

CT =
@M

@T

����
w

> 0



Entropy-Temperature relation

S(T ,w) =
l
3

4G
V3

(⇡T )3

(1� w2)2

I High temperature (small boost velocity)

uz ! 0 , r+ ! 1 , u
2
z r

4
+ ! � , ) |w | ⌧ 1 ) S ⇠ T

3

Scaling relation for AdS5.

I Low temperature (high boost velocity)

ut ! 1 , r+ ! 0 , u
2
t r

4
+ ! � ) 1�w

2
⇠ T

4/3
) S ⇠ T

1/3

Same scaling as for 4d IR geometry.



Extremal limit

Extremal limit: zero temperature r+ ! 0, infinite boost ut ! 1,
with u

2
t r

4
+ = � fixed.

w = �1 , T = 0 , M = |Pz | .

Ergosphere disappears.
Horizon moves with speed of light.
Kaigorodov metric, gravitational wave in AdS5.
Solution is 1

4 BPS (2 Killing spinors).



5d vs 4d solution

I 5d solution ‘regularizes’ 4d solution: geometry at infinity is
AdS5.

I Continuous parameters in 5d: (T ,Pz). Upon compactification
momentum becomes (discrete!) charge Q. Continuous
parameters in 4d (T , µ). Where does the chemical potential
come from.

I Answer: the radius of compactified dimension varies along the
transverse coordinate. Chemical potential determined by
minimal value of the radius.

I Can recover 4d thermodynamic relations from 5d.



Four charge solution: Negative tension branes and
cosmological solutions



Four charge solution in three dimensions

Three-dimensional scalars

q0(⌧) = ⌥
Q0

B0
sinh

✓
B0⌧ + B0

h0

Q0

◆

qa(⌧) = ±
P
a

Ba

sinh

✓
Ba⌧ + Ba

ha

Pa

◆
, a = 1, 2, 3 .

8 integration constants B0,Ba, h0, ha.

3d metric:

e
�4 = A exp

✓
2
q
B2
0 + B2

1 + B2
2 + B2

3 ⌧

◆



Four-dimensional physical scalars:

z
A = �i

✓
q0q

2
A

q1q2q3

◆1/2

Four-dimensional metric:

ds
2
4 = �e

�
dt

2 + e
��+4 

d⌧2 + e
��+2 (dx2 + dy

2) ,

where

e
� =

1

2
(�q0q1q2q3)

�1/2 .

Regularity of 4d scalars and metric for ⌧ ! 1 (Killing horizon)
requires: B0 = B1 = B2 = B3 = B . Reduction of number of
integration constants to 4 + 1 (initial conditions for the scalars +
non-extremality parameter).



Introduce new transverse coordinate

W (⇣) := 1� ↵⇣ := e
�2B⌧ .

Define:

Ha(⇣) := K̄a


2

↵
sinh

✓
↵ha
2Ka

◆
+ e

�↵ha

2Ka ⇣

�

Metric:

ds
2
4 = �

W (⇣)

H(⇣)
dt

2 +
H(⇣)

W (⇣)
d⇣2 + H(⇣)(dx2 + dy

2) .

where H(⇣) = 2
p
H0H1H2H3.

Scalars:

z
A = �iHA

✓
H0

H1H2H3

◆1/2

.



Expectation from previous spherical and planar solutions:
Killing horizon at ⌧ ! 1 , ⇣ = ↵�1, and asympotic spacetime at
⌧ ! 0 , ⇣ = 0.
Instead, first zero of any Ha at ⇣ = ⇣S < ↵�1 gives rise to a
curvature singularity at finite distance.

⇣ = ⇣S curvature singularity

⇣S < ⇣ < ↵�1 static patch

⇣ = ↵�1 Killing horizon

↵�1 < ⇣ < 1 time dependent, cosmological patch

⇣ ! 1 asymptotic to vacuum typ D Kasner solution

‘Extremal limit’ ↵! 0 moves the Killing horizon to infinity and
removes the cosmologcial patch.



Conformal diagram

‘Schwarzschild rotated by 90 degrees,’ and ‘inside-out’: patches
with singularities are static, asymptotic regions are time-dependent.

This type of conformal diagram has appeared before in Einstein
and Einstein-Maxwell theory and more recently in
Einstein-Maxwell-Dilaton theories, C. Grojean, F. Quevedo,

G. Tasinato, I. Zavala, hep-th/0106120, JHEP08 (2001)

005, and discussed in C.P. Burgess, F. Quevedo, I.

Zavala, S.-J. Rey, G. Tasinato, hep-th/0207104,

JHEP10 (2002) 028 . (See there for earlier references).

Our solutions generalize previous solutions to the case of multiple
vector and scalar fields, and allow an embedding into string theory.
They reduce to Einstein-Maxwell solutions upon choosing the
scalars constant.



Solutions with constant scalars

Set scalars constant by

Q0 = P
1 = P

2 = P
3 = K , h0 = h

1 = h
2 = h

3 = h

Further rewriting.
Static patch r < e

2

m
:

ds
2
4 = �f (r)dt2 +

dr
2

f (r)
+ r

2(dx2 + dy
2) , f (r) = �

m

r
+

e
2

r2
.

Cosmological patch t > e
2

m
, (relabel r $ t):

ds
2
4 = �

dt
2

f (t)
+ f (t)dt2 + t

2(dx2 + dy
2) , f (t) =

m

t
�

e
2

r2
.

Planar Reissner-Nordström/Schwarzschild (e = 0) solution and its
analytic continuations (asymptotic to Kasner).
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Figure 1: Conformal diagram for the four charge solution. Patches I and III are cosmo-

logical (non-stationary), Patches II and II’ are static with repulsive time-like singularities

(‘negative tensions branes’). The orange line is a generic timelike geodesic. The solution

is complete for timelike geodesics, but (at least) the past horizon I/II, II 0 is unstable (like
the inner horizon of the Reissner-Nordström solution.) The future horizon II, II 0/III
passes some tests for stability. The metric is asymptotic to a Kasner solution at early

and late times. While it remains to clarify how physical (i.p. stable) the solution is, one

can establish versions of standard ‘thermodynamic’ relations, at least at a formal level.

Solutions with the same conformal diagram have been discussed in the literature in the

context of Einstein-Maxwell-Dilaton theories in 2002.



Formal thermodynamic relations.



Thermodynamics in the static patch

Burgess et al, JHEP10 (2002) 028:

I Komar integrals can be used to define a ‘position-dependent’
mass/tension and chemical potential in the static patch.
Position dependent = depends on endpoint value of the
transverse coordinate of the hypersurface we integrate over.
Expressions diverge for r ! 0 (curvature singularity).
Dependence on transverse ‘cut-o↵.’

I Mass/tension is negative, consistent with repulsive behaviour
of the singularity.

I Smarr-type relation involving position dependent quantities:

W = �TlogZ = TIE = TS + Q�(r)� T (r)



Thermodynamics in the cosmological patch?

The cosmological patch has an asymptotic boundary at t ! 1,
and the boundary terms contributing to Komar- or
Gibbons-Hawking-York type expressions for ‘mass’ and other
charges turn out to be finite.

Mere curiosity or physically relevant?



Metric in cosmological patch

ds
2
4 = �

dt
2

f (t)
+f (t)dr2+t

2(dx2+dy
2) , f (t) =

m

t
�
e
2

t2
, t > th =

e
2

m
.

Temperature. Defined either through surface gravity of Killing
horizon, or absence of conical singularity of Euclidean continuation
(r , x , y) ! �i(r , x , y).

T =
m

3

4⇡e4
.

Entropy (density) defined through ‘area density,’ include
conventional factor 1/4:

s =
1

4
t
2
h
=

e
4

4m2
, S = s

Z
dxdy

or through Euclidean action (boundary terms evaluated for t ! 1)



‘Mass/Tension’ (momentum? analytic regularization?) defined
using Komar integral

M = �
1

8⇡

Z
?d⇠ ,

or Gibbons-Hawking-York mass gives

M = �
m

8⇡

Z
dxdy .

Chemical potentials. Defined using limit

Ar (t ! 1) , with boundary condition Ar (th) = 0 .

We have four chemical potentials µ0, µ̃a, a = 1, 2, 3.

Electric and magnetic charges Q0,PA defined by flux integrals.



We seem to be close to proving that a ‘first law’ of the form

dM = TdS + µ0
dQ0 + µ̃1dP

1 + µ̃2dP
2 + µ̃3dP

3

together with other thermodynamic relations holds for the general
4-charge and 3-charge solution.



Further remarks



Extremal limit

Limit B ! 0:

I ‘Horizon’ moves to infinite distance, cosmological patch
disappears.

I T ! 0. Extremal limit.

I s ! 1. Entropy density diverges. Since also m ! 0 could
indicate ‘tensionless limit.’



Negative tension branes in string theory

I Arise in orbifold/orientifold constructions. Located at fixed
points.

I Required when extending network of string dualities by
time-like T-duality transformations.



Future directions

I Properties of field equations, relation 1st order formulations
(BPS squares, pseudo/fake-supersymmetry),
Einstein-Maxwell-Dilaton theories.

I Physical interpretation of formal thermodynamic relations.
E.g. does this imply anything about stability?

I Embedding into higher-dimensional supergravity and string
theory.

I Negative tension branes and string dualities.


