From Nernst branes to S-branes

Thomas Mohaupt

Department of Mathematical Sciences
University of Liverpool

Hamburg, March 2018

Outline

- Vector multiplet theories in four dimensions
- Dimensional reduction to three dimensions
- Construction of four-dimensional solutions by lifting three-dimensional solutions
- Nernst branes (planar solutions with vanishing entropy density in the zero temperature limit)
- S-branes/negative tension branes (cosmological solutions)
- Outlook: formal thermodynamical relations
(Mostly) based on:
- V. Cortés, P. Dempster, T.M. and O. Vaughan, Special Geometry of Euclidean Supersymmetry IV: the local c-map, arXiv:1507.04620, JHEP1510 (2015) 066.
- P. Dempster, D. Errington and T.M., Nernst branes from special geometry, arXiv:1501.07863, JHEP1505 (2015) 079.
- P. Dempster, D. Errington, J. Gutowski and T.M. Five dimensional Nernst branes from special geometry, arXiv:1609.05062, JHEP1611 (2016) 114
- Work in progress with G. Pope (PhD student, Liverpool), and with J. Gutowski (Surrey).
I will be sparse with references, please see above and forthcoming papers for complete references.

Four-dimensional $\mathcal{N}=2$ vector multiplets coupled to supergravity

Four-dimensional $\mathcal{N}=2$ vector multiplets

Bosonic Lagrangian:

$$
\begin{aligned}
e_{4}^{-1} \mathcal{L}_{4}= & -\frac{1}{2} R_{(4)}-g_{A \bar{B}}(z) \partial z^{A} \partial \overline{z^{B}}+\frac{1}{4} \mathcal{I}_{I J}(z) F_{\hat{\mu} \hat{\nu}}^{l} F^{J \mid \hat{\mu} \hat{\nu}} \\
& +\frac{1}{4} \mathcal{R}_{I J}(z) F_{\hat{\mu} \hat{\nu}}^{\prime} \tilde{F}^{J \mid \hat{\mu} \hat{\nu}}-V .
\end{aligned}
$$

Special Kähler geometry:
Couplings $g_{A \bar{B}}, \mathcal{I}_{I J}, \mathcal{R}_{I J}$ determined by a holomorphic prepotential $F\left(X^{\prime}\right), I=0,1, \ldots n$, homogeneous of degree two in 'homogeneous scalars' X^{\prime}, which are subject to complex rescalings $X^{\prime} \rightarrow \lambda X^{\prime}, \lambda \in \mathbb{C}^{*}$.
n physical scalars:

$$
z^{A}=\frac{X^{A}}{X^{0}}, \quad A=1, \ldots, n
$$

$n+1$ physical vector fields, including 'graviphoton.'

Electric-magnetic duality

Field equations invariant under $\operatorname{Sp}(2 n+2, \mathbb{R})$, which acts linearly on 'symplectic vectors':

$$
\binom{X^{\prime}}{F_{I}}, \quad\binom{F_{\hat{\mu} \hat{\nu}}^{ \pm \mid I}}{G_{I \mid \hat{\mu} \hat{\nu}}^{ \pm}}, \ldots
$$

where

$$
F_{I}=\frac{\partial F}{\partial X^{\prime}}, \quad G_{I \mid \hat{\mu} \hat{\nu}}^{ \pm} \propto \frac{1}{e} \frac{\partial \mathcal{L}}{\partial F_{\hat{\mu} \hat{\nu}}^{ \pm \mid l}} .
$$

Affine special Kähler manifolds

(N, g, J, ∇), where

- (N, g, J) Kähler with Kähler form $\omega=g(J \cdot, \cdot)$.
- ∇ is a flat, torsion-free, symplectic connection satisfying

$$
d^{\nabla} J=0,
$$

equivalently:
∇g totally symmetric rank 3 tensor.
Thus Kähler and Hessian.
Kähler potential has a holomorphic prepotential:

$$
K=-i\left(X^{\prime} \bar{F}_{I}-\bar{X}^{\prime} F_{l}\right) .
$$

Special real coordinates $=\nabla$-affine coordinates which are ω-Darboux coordinates: $\left(q^{a}\right)=\left(x^{l}, y_{l}\right)$, where

$$
\begin{aligned}
X^{\prime} & =x^{\prime}+i u^{\prime}(x, y) \\
F_{I} & =y_{I}+i v_{I}(x, y)
\end{aligned}
$$

Metric has a Hesse potential:

$$
g_{a b}=H_{a b}:=\frac{\partial H}{\partial q^{a} \partial q^{b}} .
$$

Hesse potential $H\left(q^{a}\right)$ and holomorphic prepotential $F\left(X^{\prime}\right)$ are related by a Legendre transformation

$$
H(x, y)=2\left(\operatorname{lm}(F(x, u(x, y)))-y_{I} u^{\prime}(x, y)\right) .
$$

Conical affine special Kähler manifolds

(N, g, J, ∇, ξ) such that

- (N, g, J, ∇) is ASK.
- ξ is a vector field such that

$$
D \xi=\nabla \xi=\operatorname{ld}_{T N}
$$

Vector fields
$\xi=q^{a} \frac{\partial}{\partial q^{a}}=X^{\prime} \frac{\partial}{\partial X^{\prime}}+$ c.c. and $\quad J \xi=\frac{1}{2} H_{a} \Omega^{a b} \frac{\partial}{\partial q^{b}}=i X^{\prime} \frac{\partial}{\partial X^{\prime}}+$ c.c.
generate a homothetic, holomorphic \mathbb{C}^{*} action.
Assuming group action can take Kähler quotient to define the projective special Kähler manifold $\bar{N}=N / \mathbb{C}^{*}=N / / U(1)$.
$F\left(X^{\prime}\right)$ is homogeneous of degree two in the special holomorphic coordinates X^{\prime}.
$H\left(q^{a}\right)$ is $U(1)$ invariant and homogeneous of degree two in the special real coordinates q^{a}.

Superconformal calculus uses gauge equivalence between:

- $n+1$ vector multiplets with local superconformal symmetry, scalar manifold N is conical affine special Kähler.
- n vector multiplets coupled to Poincaré supergravity, scalar manifold $\bar{N}=N / / U(1)$.

Scalar potential

Potential:

$$
V(X, \bar{X})=N^{I J} \partial_{I} W \partial_{J} \bar{W}-2 \kappa^{2}|W|^{2}, \quad\left(N^{I J}\right)=\left(2 \operatorname{lm} F_{I J}\right)^{-1}
$$

Superpotential:

$$
W=2\left(g^{\prime} F_{I}-g_{I} X^{\prime}\right)
$$

(g^{l}, g_{I}) parameters of magnetic/electric FI gauging.
Potential (real coordinates):

$$
V=g^{a} g^{b}\left[H_{a b}+\frac{H_{a} H_{b}+4(\Omega q)_{a}(\Omega q)_{b}}{H}\right], \quad-2 H \stackrel{D}{=} \kappa^{-2} .
$$

Superpotential (real coordinates)

$$
W=W\left(q^{a}\right)=i g^{a}\left(H_{a b}-2 i \Omega_{a b}\right) q^{b}, \quad\left(\Omega_{a b}\right)=\left(\begin{array}{cc}
0 & \mathbb{1} \\
-\mathbb{1} & 0
\end{array}\right)
$$

where $\left(g^{a}\right):=\left(g^{\prime}, g_{l}\right)$.

ε-complex structures

Almost complex structure:

$$
J \in \Gamma(\operatorname{End}(T M)), \quad J^{2}=-\operatorname{ld}_{T M}
$$

Almost para-complex structure:

$$
J \in \Gamma(\operatorname{End}(T M)), \quad J^{2}=\operatorname{ld}_{T M}
$$

with the eigendistributions having equal dimension.
Unified notation: ε-complex structure:

$$
J \in \Gamma(\operatorname{End}(T M)), \quad J^{2}=\varepsilon \operatorname{ld}_{T M}, \quad \varepsilon= \pm 1
$$

Various concepts of complex geometry (Hermitian, Kähler, hyper-Kähler, quaternionic-Kähler, affine and projective special Kähler) can be adapted to para-complex geometry.

Euclidean vector multiplets

Remark: The special geometry of $\mathcal{N}=2$ vector multiplets in Euclidean space-time signature is (affine/projective) special para-Kähler.

Reduction to three dimensions

Dimensional reduction to three dimensions

Metric	$g_{\hat{\mu} \hat{\nu}}$	Metric KK vector KK scalar	$g_{\mu \nu} \sim \tilde{\phi}$ ϕ
$n+1$ Vector fields	$A_{\hat{\mu}}^{\prime}$	$n+1$ Vector fields $n+1$ scalars	$A_{\mu}^{\prime} \sim \tilde{\zeta}_{I}$ $A_{\star}^{\prime}=\zeta^{\prime}$
n complex scalars	z^{A}	n complex scalars	z^{A}

$4 n+4$ independent real scalar fields: $z^{A}, \zeta^{I}, \tilde{\zeta}_{l}, \phi, \tilde{\phi}$.

Observation: an alternative parametrization based on using the four-dimensional special real coordinates provides new insights into scalar geometry of the reduced theory, and helps to find explicit solutions.

Re-packaging: use homogeneous variables X^{\prime} or q^{a} to encode the physical scalars z^{A}, and absorbe the KK-scalar ϕ by a field redefinition:

$$
Y^{\prime}=e^{\phi / 2} X^{\prime}, \quad q_{\text {new }}^{a}=e^{\phi / 2} q_{\text {old }}^{a}
$$

$4 n+5$ real scalar fields $\left(q^{a}, \hat{q}^{a}, \tilde{\phi}\right)$, subject to $U(1)$ transformations $=4 n+4$ independent fields. Advantage of keeping $U(1)$: covariance with respect to symplectic transformations is maintained.

3d Lagrangian

$$
\begin{aligned}
e_{3}^{-1} \mathcal{L}_{3}= & -\frac{1}{2} R_{(3)}-\tilde{H}_{a b}\left(\partial_{\mu} q^{a} \partial^{\mu} q^{b}-\epsilon \partial_{\mu} \hat{q}^{a} \partial^{\mu} \hat{q}^{b}\right)+\frac{1}{2 H} V \\
& -\frac{1}{H^{2}}\left(q^{a} \Omega_{a b} \partial_{\mu} q^{b}\right)^{2}+\epsilon \frac{2}{H^{2}}\left(q^{a} \Omega_{a b} \partial_{\mu} \hat{q}^{b}\right)^{2} \\
& -\frac{1}{4 H^{2}}\left(\partial_{\mu} \tilde{\phi}+2 \hat{q}^{a} \Omega_{a b} \partial_{\mu} \hat{q}^{b}\right)^{2} .
\end{aligned}
$$

where

$$
\Omega_{a b}=\left(\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right), \quad \tilde{H}_{a b}=\partial_{a, b}^{2} \tilde{H}, \quad \tilde{H}=-\frac{1}{2} \log (-2 H)
$$

Hesse potentials H, \tilde{H} are functions of the scalars q^{a}.
$\epsilon=-1(\epsilon=1)$ for space-like (time-like)reduction.
\mathcal{L}_{3} is locally $U(1)$-invariant, only $4 n+4$ propagating scalar fields.

Hypermultiplet geometry

Three-dimensional fields organise into hypermultiplets. Scalar geometry is quaternionic-Kähler for spacelike reduction and para-quaternionic Kähler for timelike reduction.

ε-quaternionic structures

$J_{1}, J_{2}, J_{3} \in \operatorname{End}(V)$, pairwise anti-commuting, $J_{1} J_{2}=J_{3}$.

- Quaternionic structure:

$$
J_{1}^{2}=J_{2}^{2}=J_{3}^{2}=-\mathrm{Id}
$$

- Para-quaternionic structure:

$$
J_{1}^{2}=J_{2}^{2}=-J_{3}^{2}=\mathrm{Id}
$$

- Unified notation: ε-quaternionic structure:

$$
J_{1}^{2}=J_{2}^{2}=-\varepsilon J_{3}^{2}=\varepsilon \mathrm{ld} .
$$

ε-hyper Kähler manifold: J_{α} (anti-)isometric, and parallel $(\Rightarrow$ integrable).
ε-quaternionic Kähler manifold: J_{α} (anti-)isometric, and distribution spanned by them is parallel (J_{α} in general not integrable).

The supergravity c-map

\bar{N}, \bar{Q} : scalar manifolds of the $4 d / 3 d$ theory.
N scalar manifold of auxiliary 4d superconformal theory.

\mathcal{L}_{3} defines a projectable symmetric tensor field on $P \rightarrow \bar{Q}$, which induces the same ε-quaternionic-Kähler metric on \bar{Q} as direct reduction in terms of physical scalars.

Solutions

PI field configurations

For a certain class of field configurations, interesting solutions can be found by integrating the field equations elementarily.

For today, impose the following conditions:

- 4d field configuration is static.
- Impose that 4d scalars are 'purely imaginary' ('axion-free').
- Impose analogous conditions on gauge fields (and, in presence of a potential, gauging parameters).
This sets half of the three-dimensional scalars constant, while the remaining scalars parametrize a para-Kähler submanifold.

$$
\begin{aligned}
\left.\left(q^{a}\right)\right|_{\mathrm{PI}} & =\left(x^{0}, 0, \ldots, 0 ; 0, y_{1}, \ldots, y_{n}\right), \\
\left.\left(\partial_{\mu} \hat{q}^{a}\right)\right|_{\mathrm{PI}} & =\frac{1}{2}\left(\partial_{\mu} \zeta^{0}, 0, \ldots, 0 ; 0, \partial_{\mu} \tilde{\zeta}_{1}, \ldots, \partial_{\mu} \tilde{\zeta}_{n}\right), \\
\left.\left(g^{a}\right)\right|_{\mathrm{PI}} & =\left(g^{0}, 0, \ldots, 0 ; 0, g_{1}, \ldots, g_{n}\right) .
\end{aligned}
$$

Additional assumption: prepotential is of 'very special type' \Leftrightarrow can lift to five dimensions:

$$
F=\frac{f\left(Y^{1}, \ldots, Y^{n}\right)}{Y^{0}}, \quad f \text { homogeneous of degree } 3
$$

(This can be relaxed, essential point is to have some factorization of variables and some homogeneity property.)

Then one can obtain an explicit formula for Hesse potential
$H=-\frac{1}{4}\left(-q_{0} f\left(q_{1}, \ldots, q_{n}\right)\right)^{-\frac{1}{2}}, \quad$ dual scalars $\quad q_{a}:=\tilde{H}_{a}:=\frac{\partial \tilde{H}}{\partial q^{a}}$.
(Have shifted indices $a=0, n+2, n+3, \ldots, 2 n+1 \rightarrow$
$n=0,1, \ldots n$.)

Integrating the equations of motion

- Rewrite equations of motion in terms of dual real variables $q_{a}, \hat{q}_{a} .\left(\partial_{\mu} \hat{q}_{a}:=\tilde{H}_{a b} \partial_{\mu} \hat{q}^{a}\right)$
- \hat{q}_{a} equations are trivial to integrate.
- Einstein equation can be solved in terms of q_{a}.
- Block decomposition of $\tilde{H}_{a b}$ leads to partial decoupling of the scalar equations of motion.
- Homogeneity always allows to solve the scalar equations of motion by taking fields q_{a} which appear in the same block to be proportional to one another.

General observations

- Solutions are generically neither supersymmetric (not BPS, no Killing spinors), nor extremal (Killing horizons have finite surface gravity)
- We solve the second order field equations directly, without imposing a reduction to first order field equations, as with other methods (BPS squares, fake/pseudo-supersymmetry, etc.)
- By imposing regularity of the solution at the Killing horizon, half of the intergration constants get fixed, so that the number of undetermined integration constants corresponds to a first order system.

Example so far include: black holes and black strings in four and five dimensions, Nernst branes, and most recently planar solutions with static patches containing a timelike singularity (interpreted as a negative tension brane) related by analytic continuation to cosmological patches asymptotic to Kasner solutions.

Solutions with planar symmetry

Metric:

$$
\begin{aligned}
d s_{4}^{2} & =-e^{\phi}\left(d t+V_{\mu} d x^{\mu}\right)^{2}+e^{\phi} d s_{3}^{2} \\
d s_{3}^{2} & =e^{4 \psi} d \tau^{2}+e^{2 \psi}\left(d x^{2}+d y^{2}\right)
\end{aligned}
$$

$\phi=\phi(\tau)$ (absorbed into scalars), $V_{\mu}=0$, and $\psi=\psi(\tau)$.
Scalars $q_{a}(\tau), \hat{q}_{a}(\tau)$.
\hat{q}_{a}-equations (four-dimensional gauge field equations) trivial:

$$
\ddot{\hat{q}}_{a}=0 \Rightarrow \dot{\hat{q}}_{a}=K_{a} .
$$

No further integration required as this determines the four-dimensional field strengths.

Cases where the field equations have been integrated

One charge solutions ('Nernst branes')
Charges:

$$
\left(-Q_{0}, 0, \ldots, 0 \mid 0, \ldots, 0\right)
$$

Gauging:
$\left(0, \ldots, 0 \mid 0, g_{1}, g_{2}, \ldots, g_{n}\right)$
Hesse potential: $\quad H=-\frac{1}{4}\left(-q_{0} f\left(q_{1}, \ldots, q_{n}\right)\right)$

Two charge solutions:
Charges: $\quad\left(-Q_{0}, 0, \ldots, 0 \mid 0, P^{1}, 0, \ldots, 0\right)$
Gauging:
$\left(0, \ldots, 0 \mid 0,0, g_{2}, \ldots, g_{n}\right)$
Hesse potential: $\quad H=-\frac{1}{4}\left(-q_{0} q_{1} f\left(q_{2}, \ldots, q_{n}\right)\right)$

Three charge solutions (gauged STU model):
Charges: $\quad\left(-Q_{0}, 0,0,0 \mid 0, P^{1}, P^{2}, 0\right)$
Gauging: $\quad\left(0,0,0,0 \mid 0,0,0, g_{3}\right)$
Hesse potential: $\quad H=-\frac{1}{4}\left(-q_{0} q_{1} q_{2} q_{3}\right)$

Four charge solutions (ungauged STU model):
Charges:
$\left(-Q_{0}, 0,0,0 \mid 0, P^{1}, P^{2}, P^{3}\right)$
Gauging:
($0,0,0,0 \mid 0,0,0,0$)
Hesse potential: $\quad H=-\frac{1}{4}\left(-q_{0} q_{1} q_{2} q_{3}\right)$

Three charge and four charge solutions show the same qualitative behaviour. We focus on the four charge solution.

One charge solutions: Nernst branes

One charge solution in 3 dimensions

$$
\begin{aligned}
q_{0} & = \pm-\frac{Q_{0}}{B_{0}} \sinh \left(B_{0} \tau+B_{0} \frac{h_{0}}{Q_{0}}\right), \\
q_{A} & = \pm \frac{1}{8 g_{A}} B_{0}^{-\frac{1}{2}} e^{\frac{1}{2} B_{0} \tau}\left(\sinh \left(B_{0} \tau\right)\right)^{\frac{1}{2}} \quad \text { for } \quad A=1, \ldots, n \\
\dot{\hat{q}}_{0} & =-Q_{0} \\
e^{-4 \psi} & =\frac{1}{B_{0}^{3}} \sinh ^{3}\left(B_{0} \tau\right) e^{B_{0} \tau} \\
e^{\phi} & =\frac{1}{2}\left(-q_{0}\right)^{-\frac{1}{2}}\left(f\left(q_{1}, \ldots, q_{n}\right)\right)^{-\frac{1}{2}} .
\end{aligned}
$$

$4 d$ regularity \Rightarrow two integration constants (apart from Q_{0}): $B_{0} \geq 0$, extremality parameter (temperature), h_{0} (chemical potential).

One charge solution in 4 dimensions

New transverse coordinate:

$$
e^{-2 B_{0} \tau}=1-\frac{2 B_{0}}{\rho}=: W(\rho)
$$

Asymptotic region: $\rho \rightarrow \infty$, horizon: $\rho=2 B_{0}$.
4d metric:

$$
d s_{4}^{2}=-\mathcal{H}^{-\frac{1}{2}} W \rho^{\frac{3}{4}} d t^{2}+\mathcal{H}^{\frac{1}{2}} \rho^{-\frac{7}{4}} \frac{d \rho^{2}}{W}+\mathcal{H}^{\frac{1}{2}} \rho^{\frac{3}{4}}\left(d x^{2}+d y^{2}\right)
$$

where

$$
\mathcal{H}(\rho) \equiv \pm 4\left(\frac{1}{8}\right)^{3} f\left(\frac{1}{g_{1}}, \ldots, \frac{1}{g_{n}}\right) \mathcal{H}_{0}(\rho), \quad \mathcal{H}(\rho)=-\left[\frac{Q_{0}}{B_{0}} \sinh \left(\frac{B_{0} h_{0}}{Q_{0}}\right)+\frac{Q_{0} e^{-\frac{B_{0} h_{0}}{Q_{0}}}}{\rho}\right] .
$$

Black brane thermodynamics

Temperature (surface gravity or Euclidean method):

$$
4 \pi T=Z^{-1 / 2}\left(2 B_{0}\right)^{3 / 4} e^{-\frac{B_{0} h_{0}}{2 Q_{0}}}
$$

$Z=$ combination of constants.
Chemical potential:

$$
\mu \equiv A_{t}(\tau=0)=\frac{1}{2}\left(\frac{B_{0}}{Q_{0}}\right)\left[\operatorname{coth}\left(\frac{B_{0} h_{0}}{Q_{0}}\right)-1\right]
$$

diverges for $h_{0} \rightarrow 0$.
Entropy density:

$$
s=Z^{1 / 2}\left(2 B_{0}\right)^{1 / 4} e^{\frac{B_{0} h_{0}}{2 Q_{0}}}
$$

Note limits: $T=0 \Leftrightarrow B_{0}=0$ and $\mu=\infty \Leftrightarrow h_{0}=0$.

Can eliminate B_{0} :

$$
B_{0}=2 \pi s T
$$

Equation of state:

$$
s^{3}=4 \pi Z^{2} T\left(1+\frac{2 \pi s T}{Q_{0} \mu}\right)
$$

Nernst law:

$$
s \xrightarrow[T \rightarrow 0]{ } 0, \quad \mu, Q_{0} \text { fixed }
$$

Scaling regimes:

$$
\begin{array}{rll}
s \sim T^{1 / 3} & \text { for } & T / \mu \ll 1 \\
s \sim T & \text { for } & T / \mu \gg 1
\end{array}
$$

Remark: for $T \rightarrow 0$ we recover the extremal Nernst brane solution of S. Barisch, G. Lopes Cardoso, M. Haack, S. Naampuri and N.A. Obers, JHEP 1111 (2011) 090, [arXiv: 1108.02960].

hvLif geometries

Hyperscaling violating Lifshitz geometries hvLif ${ }_{z, \theta}$ with d transverse spatial dimensions:

$$
d s_{d+2}^{2}=r^{-\frac{2(d-\theta)}{d}}\left(-r^{-2(z-1)} d t^{2}+d r^{2}+d x_{i}^{2}\right)
$$

Scaling behaviour:

$$
\left(r, x_{i}\right) \mapsto \lambda\left(r, x_{i}\right), \quad t \mapsto \lambda^{z} t, \quad d s_{d+2}^{2} \mapsto \lambda^{2 \theta / d} d s_{d+2}^{2}
$$

$z=$ Lifshitz exponent, measures deviations from relativistic symmetry $(\lambda \neq 1)$.
$\theta=$ hyperscaling violating exponent, measures deviation from scale invariance $(\theta \neq 0)$.

Thought to be dual to $\mathrm{QFT}_{1, d}$, with above scaling behaviour, i.p.

$$
s \sim T^{(d-\theta) / z}
$$

Asymptotic behaviour of 4d Nernst branes

Chem. Pot, Temp.	Infinity	Horizon
$\mu<\infty, T>0$	$\begin{aligned} & \text { hvLif }_{1,-1}=\text { CAdS }_{4} \\ & \text { Scalars } \rightarrow \infty \\ & R, K \rightarrow 0 \end{aligned}$	bvLif $_{0,2}=$ Rindler $\times \mathbb{R}^{2}$.
$\mu<\infty, T=0$	$\operatorname{hvLif}_{1,-1}=\text { CAdS }_{4}$ as above	hvLif ${ }_{3,1}$ Scalars $\rightarrow \infty$ infinite tidal forces
$\mu=\infty, T>0$,	hvLif ${ }_{3,1}$ Scalars $\rightarrow 0$ $R, K \rightarrow \infty$	hvLif $_{0,2}=$ Rindler $\times \mathbb{R}^{2}$.
$\mu=\infty, T=0$	hvLif ${ }_{3,1}$ as above	hvLif ${ }_{3,1}$ as above

For $\rho \rightarrow \infty$ the solution degenerates, and the equation of state we found does not show the asymptotic behaviour $s \sim T^{3}$ expected for $z=1, \theta=-1$.

Interpretation: decompactification limit, solution must be interpreted from a 5 d perspective. Clue AdS_{5} has $d=3, z=1, \theta=0$ and therefore $s \sim T^{3}$.

One charge solution in five dimensions

Boosted AdS Schwarzschild Black Brane:

$$
\begin{aligned}
d s_{(5)}^{2}= & \frac{1^{2} d r^{2}}{r^{2} W(r)}+\frac{r^{2}}{1^{2}}\left[-W(r)\left(u_{t} d t+u_{z} d z\right)^{2}+\left(u_{z} d t+u_{t} d z\right)^{2}\right. \\
& \left.+d x^{2}+d y^{2}\right]
\end{aligned}
$$

where

$$
W(r)=1-\frac{r_{+}^{4}}{r^{4}}, \quad r_{+}^{4}:=2 B_{0}, \quad u_{t}=\sqrt{1+\tilde{\Delta}}, \quad u_{z}=\sqrt{\tilde{\Delta}}
$$

and $I=\operatorname{AdS}_{5}$-radius.
Temperature from surfrace gravity or absence of conical singularity in Euclidean continuation:

$$
\pi T=\frac{r_{+}}{1^{2} u_{t}}, \quad r_{+}^{4}=2 B_{0}
$$

Remark: 'linear' version of rotating black hole, i.p. ergoregion. Remark: Generalized Carter-Novotný-Horský metric.

Mass and Momentum

Using quasilocal stress tensor obtain:

- Mass

$$
M=\frac{\left(4 u_{t}^{2}-1\right) r_{+}^{4}}{16 \pi G l^{5}} V_{3}
$$

- Linear momentum

$$
P_{z}=\frac{4 r_{+}^{4} u_{t} u_{z}}{16 \pi G / 5} V_{3}
$$

Boundary stress tensor has perfect fluid form with pressure proportional to $r_{+}^{4} \sim T^{4}$ (ultra-relativistic).

Entropy and First Law

Entropy:

$$
S=\frac{r_{+}^{3}}{4 G I^{3}} u_{t} v_{3}
$$

First law (important consistency check!)

$$
\delta M=T \delta S-w \delta P_{z}
$$

$w=$ boost velocity.
Smarr-type relation:

$$
\frac{1}{4} M=\frac{1}{3} T S-\frac{1}{4} w P_{Z}
$$

Stability

Mass relation:

$$
M(T, w)=\frac{\rho^{3}}{16 \pi G} V_{3} \frac{3+w^{2}}{\left(1-w^{2}\right)^{3}}(\pi T)^{4}
$$

Heat capacity

$$
C_{T}=\left.\frac{\partial M}{\partial T}\right|_{w}>0
$$

Entropy-Temperature relation

$$
S(T, w)=\frac{\beta^{3}}{4 G} V_{3} \frac{(\pi T)^{3}}{\left(1-w^{2}\right)^{2}}
$$

- High temperature (small boost velocity)

$$
u_{z} \rightarrow 0, \quad r_{+} \rightarrow \infty, \quad u_{z}^{2} r_{+}^{4} \rightarrow \Delta, \quad \Rightarrow|w| \ll 1 \Rightarrow S \sim T^{3}
$$

Scaling relation for AdS_{5}.

- Low temperature (high boost velocity)
$u_{t} \rightarrow \infty, \quad r_{+} \rightarrow 0, \quad u_{t}^{2} r_{+}^{4} \rightarrow \Delta \Rightarrow 1-w^{2} \sim T^{4 / 3} \Rightarrow S \sim T^{1 / 3}$
Same scaling as for 4d IR geometry.

Extremal limit

Extremal limit: zero temperature $r_{+} \rightarrow 0$, infinite boost $u_{t} \rightarrow \infty$, with $u_{t}^{2} r_{+}^{4}=\Delta$ fixed.

$$
w=-1, \quad T=0, \quad M=\left|P_{z}\right|
$$

Ergosphere disappears.
Horizon moves with speed of light.
Kaigorodov metric, gravitational wave in AdS_{5}.
Solution is $\frac{1}{4}$ BPS (2 Killing spinors).

$5 d$ vs $4 d$ solution

- 5d solution 'regularizes' 4d solution: geometry at infinity is AdS_{5}.
- Continuous parameters in 5d: $\left(T, P_{z}\right)$. Upon compactification momentum becomes (discrete!) charge Q. Continuous parameters in 4d (T, μ). Where does the chemical potential come from.
- Answer: the radius of compactified dimension varies along the transverse coordinate. Chemical potential determined by minimal value of the radius.
- Can recover 4d thermodynamic relations from 5d.

Four charge solution: Negative tension branes and cosmological solutions

Four charge solution in three dimensions

Three-dimensional scalars

$$
\begin{aligned}
& q_{0}(\tau)=\mp \frac{Q_{0}}{B_{0}} \sinh \left(B_{0} \tau+B_{0} \frac{h_{0}}{Q_{0}}\right) \\
& q_{a}(\tau)= \pm \frac{P^{a}}{B_{a}} \sinh \left(B_{a} \tau+B_{a} \frac{h_{a}}{P^{a}}\right), \quad a=1,2,3 .
\end{aligned}
$$

8 integration constants $B_{0}, B_{a}, h_{0}, h_{a}$.
3d metric:

$$
e^{-4 \psi}=A \exp \left(2 \sqrt{B_{0}^{2}+B_{1}^{2}+B_{2}^{2}+B_{3}^{2}} \tau\right)
$$

Four-dimensional physical scalars:

$$
z^{A}=-i\left(\frac{q_{0} q_{A}^{2}}{q_{1} q_{2} q_{3}}\right)^{1 / 2}
$$

Four-dimensional metric:

$$
d s_{4}^{2}=-e^{\phi} d t^{2}+e^{-\phi+4 \psi} d \tau^{2}+e^{-\phi+2 \psi}\left(d x^{2}+d y^{2}\right),
$$

where

$$
e^{\phi}=\frac{1}{2}\left(-q_{0} q_{1} q_{2} q_{3}\right)^{-1 / 2} .
$$

Regularity of 4 d scalars and metric for $\tau \rightarrow \infty$ (Killing horizon) requires: $B_{0}=B_{1}=B_{2}=B_{3}=B$. Reduction of number of integration constants to $4+1$ (initial conditions for the scalars + non-extremality parameter).

Introduce new transverse coordinate

$$
W(\zeta):=1-\alpha \zeta:=e^{-2 B \tau}
$$

Define:

$$
H_{a}(\zeta):=\bar{K}_{a}\left[\frac{2}{\alpha} \sinh \left(\frac{\alpha h_{a}}{2 K_{a}}\right)+e^{-\frac{\alpha h_{a}}{2 K_{a}}} \zeta\right]
$$

Metric:

$$
d s_{4}^{2}=-\frac{W(\zeta)}{H(\zeta)} d t^{2}+\frac{H(\zeta)}{W(\zeta)} d \zeta^{2}+H(\zeta)\left(d x^{2}+d y^{2}\right)
$$

where $H(\zeta)=2 \sqrt{H_{0} H_{1} H_{2} H_{3}}$.
Scalars:

$$
z^{A}=-i H_{A}\left(\frac{H_{0}}{H_{1} H_{2} H_{3}}\right)^{1 / 2}
$$

Expectation from previous spherical and planar solutions:
Killing horizon at $\tau \rightarrow \infty \Leftrightarrow \zeta=\alpha^{-1}$, and asympotic spacetime at $\tau \rightarrow 0 \Leftrightarrow \zeta=0$.
Instead, first zero of any H_{a} at $\zeta=\zeta_{S}<\alpha^{-1}$ gives rise to a curvature singularity at finite distance.

$\zeta=\zeta_{s}$	curvature singularity
$\zeta_{s}<\zeta<\alpha^{-1}$	static patch
$\zeta=\alpha^{-1}$	Killing horizon
$\alpha^{-1}<\zeta<\infty$	time dependent, cosmological patch
$\zeta \rightarrow \infty$	asymptotic to vacuum typ D Kasner solution

'Extremal limit' $\alpha \rightarrow 0$ moves the Killing horizon to infinity and removes the cosmologcial patch.

Conformal diagram

'Schwarzschild rotated by 90 degrees,' and 'inside-out': patches with singularities are static, asymptotic regions are time-dependent.

This type of conformal diagram has appeared before in Einstein and Einstein-Maxwell theory and more recently in Einstein-Maxwell-Dilaton theories, C. Grojean, F. Quevedo, G. Tasinato, I. Zavala, hep-th/0106120, JHEP08 (2001) 005, and discussed in C.P. Burgess, F. Quevedo, I. Zavala, S.-J. Rey, G. Tasinato, hep-th/0207104, JHEP10 (2002) 028 . (See there for earlier references).

Our solutions generalize previous solutions to the case of multiple vector and scalar fields, and allow an embedding into string theory. They reduce to Einstein-Maxwell solutions upon choosing the scalars constant.

Solutions with constant scalars

Set scalars constant by

$$
Q_{0}=P^{1}=P^{2}=P^{3}=K, \quad h_{0}=h^{1}=h^{2}=h^{3}=h
$$

Further rewriting.
Static patch $r<\frac{e^{2}}{m}$:

$$
d s_{4}^{2}=-f(r) d t^{2}+\frac{d r^{2}}{f(r)}+r^{2}\left(d x^{2}+d y^{2}\right), \quad f(r)=-\frac{m}{r}+\frac{e^{2}}{r^{2}}
$$

Cosmological patch $t>\frac{e^{2}}{m}$, (relabel $\left.r \leftrightarrow t\right)$:

$$
d s_{4}^{2}=-\frac{d t^{2}}{f(t)}+f(t) d t^{2}+t^{2}\left(d x^{2}+d y^{2}\right), \quad f(t)=\frac{m}{t}-\frac{e^{2}}{r^{2}} .
$$

Planar Reissner-Nordström/Schwarzschild $(e=0)$ solution and its analytic continuations (asymptotic to Kasner).

Figure 1: Conformal diagram for the four charge solution. Patches I and III are cosmological (non-stationary), Patches II and II' are static with repulsive time-like singularities ('negative tensions branes'). The orange line is a generic timelike geodesic. The solution is complete for timelike geodesics, but (at least) the past horizon $I / I I, I I^{\prime}$ is unstable (like the inner horizon of the Reissner-Nordström solution.) The future horizon $I I, I I^{\prime} / I I I$ passes some tests for stability. The metric is asymptotic to a Kasner solution at early and late times. While it remains to clarify how physical (i.p. stable) the solution is, one can establish versions of standard 'thermodynamic' relations, at least at a formal level. Solutions with the same conformal diagram have been discussed in the literature in the context of Einstein-Maxwell-Dilaton theories in 2002.

Formal thermodynamic relations.

Thermodynamics in the static patch

Burgess et al, JHEP10 (2002) 028:

- Komar integrals can be used to define a 'position-dependent' mass/tension and chemical potential in the static patch. Position dependent $=$ depends on endpoint value of the transverse coordinate of the hypersurface we integrate over. Expressions diverge for $r \rightarrow 0$ (curvature singularity). Dependence on transverse 'cut-off.'
- Mass/tension is negative, consistent with repulsive behaviour of the singularity.
- Smarr-type relation involving position dependent quantities:

$$
W=-T \log Z=T I_{E}=T S+Q \Phi(r)-T(r)
$$

Thermodynamics in the cosmological patch?

The cosmological patch has an asymptotic boundary at $t \rightarrow \infty$, and the boundary terms contributing to Komar- or Gibbons-Hawking-York type expressions for 'mass' and other charges turn out to be finite.

Mere curiosity or physically relevant?

Metric in cosmological patch

$$
d s_{4}^{2}=-\frac{d t^{2}}{f(t)}+f(t) d r^{2}+t^{2}\left(d x^{2}+d y^{2}\right), \quad f(t)=\frac{m}{t}-\frac{e^{2}}{t^{2}}, \quad t>t_{h}=\frac{e^{2}}{m} .
$$

Temperature. Defined either through surface gravity of Killing horizon, or absence of conical singularity of Euclidean continuation $(r, x, y) \rightarrow-i(r, x, y)$.

$$
T=\frac{m^{3}}{4 \pi e^{4}}
$$

Entropy (density) defined through 'area density,' include conventional factor $1 / 4$:

$$
s=\frac{1}{4} t_{h}^{2}=\frac{e^{4}}{4 m^{2}}, \quad S=s \int d x d y
$$

or through Euclidean action (boundary terms evaluated for $t \rightarrow \infty$)
'Mass/Tension' (momentum? analytic regularization?) defined using Komar integral

$$
M=-\frac{1}{8 \pi} \int \star d \xi
$$

or Gibbons-Hawking-York mass gives

$$
M=-\frac{m}{8 \pi} \int d x d y
$$

Chemical potentials. Defined using limit

$$
A_{r}(t \rightarrow \infty), \quad \text { with boundary condition } A_{r}\left(t_{h}\right)=0
$$

We have four chemical potentials $\mu^{0}, \tilde{\mu}_{a}, a=1,2,3$.
Electric and magnetic charges Q_{0}, P^{A} defined by flux integrals.

We seem to be close to proving that a 'first law' of the form

$$
d M=T d S+\mu^{0} d Q_{0}+\tilde{\mu}_{1} d P^{1}+\tilde{\mu}_{2} d P^{2}+\tilde{\mu}_{3} d P^{3}
$$

together with other thermodynamic relations holds for the general 4 -charge and 3 -charge solution.

Further remarks

Extremal limit

Limit $B \rightarrow 0$:

- 'Horizon' moves to infinite distance, cosmological patch disappears.
- $T \rightarrow 0$. Extremal limit.
- $s \rightarrow \infty$. Entropy density diverges. Since also $m \rightarrow 0$ could indicate 'tensionless limit.'

Negative tension branes in string theory

- Arise in orbifold/orientifold constructions. Located at fixed points.
- Required when extending network of string dualities by time-like T-duality transformations.

Future directions

- Properties of field equations, relation 1st order formulations (BPS squares, pseudo/fake-supersymmetry), Einstein-Maxwell-Dilaton theories.
- Physical interpretation of formal thermodynamic relations. E.g. does this imply anything about stability?
- Embedding into higher-dimensional supergravity and string theory.
- Negative tension branes and string dualities.

