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Scattering theory on black hole type spacetimes and related
subjects

I 1975 : Hawking effect. Contributions by many others including
Gibbons, Unruh, Wald,...

I 1980’s program by Dimock, Kay on scattering theory on the Schwarzschild
metric. Related work by Fredenhagen, Haag. “Conformal scattering” by
Friedlander.

I 1990’s Further developed by Alain Bachelot giving a mathematically
rigorous description of the Hawking effect in the spherically symmetric
setting in 1999. Further contributions by Nicolas, Melnyk, Daudé,...

I 2000’s Kerr
I Scattering theory on Kerr H, H-Nicolas, rigorous description of the

Hawking effect for fermions (H ’09).
I Decay of the local energy for field equations. Andersson-Blue,

Dafermos-Rodnianski, Shlapentokh-Rothman, Dyatlov,
Finster-Kamran-Smoller-Yau, Tataru-Tohaneanu, Vasy,...

I 2010’s Nonlinear stability of the De Sitter Kerr metric : Hintz, Vasy
(2016). Nonlinear stability of Schwarzschild for axial symmetric
polarized perturbations : Klainerman, Szeftel (2017).
Scattering theory for Klein-Gordon equations without positive conserved
energy (Kako, Gérard, Bachelot, Georgescu-Gérard-H.), on (De Sitter) Kerr
(Georgescu-Gérard-H., Dafermos-Rodnianski-Shlapentokh-Rothman),
scattering theory via vector field methods (Mason, Nicolas, Joudioux,
Dafermos-Rodnianski-Shlapentokh-Rothman).



The (De Sitter) Kerr metric
De Sitter Kerr metric in Boyer-Lindquist coordinates
MBH = Rt × Rr × S2

ω, with spacetime metric

g =
∆r − a2 sin2 θ∆θ

λ2ρ2 dt2 +
2a sin2 θ((r 2 + a2)2∆θ − a2 sin2 θ∆r )

λ2ρ2 dtdϕ

− ρ2

∆r
dr 2 − ρ2

∆θ
dθ2 − sin2 θσ2

λ2ρ2 dϕ2,

ρ2 = r 2 + a2 cos2 θ, ∆r =

(
1− Λ

3
r 2
)

(r 2 + a2)− 2Mr ,

∆θ = 1 +
1
3

Λa2 cos2 θ, σ2 = (r 2 + a2)2∆θ − a2∆r sin2 θ, λ = 1 +
1
3

Λa2.

Λ ≥ 0 : cosmological constant (Λ = 0 : Kerr), M > 0 : masse, a : angular
momentum per unit masse (|a| < M).

I ρ2 = 0 is a curvature singularity, ∆r = 0 are coordinate singularities.
∆r > 0 on some open interval r− < r < r+. r = r− : black hole
horizon, r = r+ cosmological horizon.

I ∂ϕ and ∂t are Killing. There exist r1(θ), r2(θ) s. t. ∂t is
I timelike on {(t , r , θ, ϕ) : r1(θ) < r < r2(θ)},
I spacelike on
{(t , r , θ, ϕ) : r− < r < r1(θ)}∪{(t , r , θ, ϕ : r2(θ) < r < r+} =: E−∪E+.
The regions E−, E+ are called ergospheres.



The Penrose diagram (Λ = 0)
I Kerr-star coordinates :

t∗ = t + r∗, r , θ, ϕ∗ = ϕ+ Λ(r),
dr∗
dr

=
r 2 + a2

∆
,

dΛ(r)

dr
=

a
∆
.

.
Along incoming principal null geodesics : ṫ∗ = θ̇ = ϕ̇∗ = 0, ṙ = −1.

I Form of the metric in Kerr-star coordinates :
g = gttdt∗2+2gtϕdt∗dϕ∗+gϕϕdϕ∗2+gθθdθ2−2dt∗dr+2a sin2 dϕ∗dr .

I Future event horizon : H+ := Rt∗ × {r = r−} × S2
θ,ϕ∗ .

I The construction of the past event horizon H− is based on outgoing
principal null geodesics (star-Kerr coordinates). Similar
constructions for future and past null infinities I+ and I− using the
conformally rescaled metric ĝ = 1

r2 g.



Part 1 :
Scattering theory for massless Dirac fields on the Kerr

metric
D.H., J.-P. Nicolas, Rev. Math. Phys. 16(1) : 29-123, 2004.



1.1 The Dirac equation and the Newman-Penrose formalism

Weyl equation :
∇A

A′φA = 0.

Conserved current :

V a = φAφ
A′
, C(t) =

1√
2

∫
Σt

VaT adσΣt = const .

T a : normal to Σt .
I Newman-Penrose tetrad la, na,ma,ma :

lala = nana = mama = lama = nama = 0.
I Normalization lana = 1 , mama = −1
I la, na : Scattering directions.

I Spin frame oAoA′ = la , ιAιA
′

= na , oAιA
′

= ma

ιAoA′ = ma , oAι
A = 1

I Components in the spin frame : φ0 = φAoA, φ1 = φAι
A

I Weyl equation :{
na∂aφ0 −ma∂aφ1 + (µ− γ)φ0 + (τ − β)φ1 = 0,
la∂aφ1 −ma∂aφ0 + (α− π)φ0 + (ε− ρ̃)φ1 = 0.



A new Newman Penrose tetrad

Problem : The Kerr metric is at infinity a long range perturbation of the
Minkowski metric. In the long range situation asymptotic completeness is
generically false without modification of the wave operators.

Dirac equation on Schwarzschild :

i∂t Ψ = D/SΨ,D/S = Γ1Dr∗ +
(1− 2M

r )1/2

r
D/S2 + V .

ok because of spherical symmetry.

Tetrad adapted to the foliation : la + na = T a. Conserved quantity :

1√
2

∫
Σt

(|φ0|2 + |φ1|2)dσΣt .

la, na ∈ span{T a, ∂r}. Ψ spinor multiplied by a certain weight :

i∂t Ψ = D/K Ψ, D/K = hD/symh + VϕDϕ + V .

Well adapted to time dependent scattering : h2 − 1, Vϕ, V short range.



1.2 Principal results

Comparison dynamics

H = L2((R× S2); dr∗dω);C2), DH = γDr∗ − a
r2
++a2 Dϕ,D∞ = γDr∗ ,

γ =

(
1 0
0 −1

)
, H− = {(ψ0, 0) ∈ H} (resp.H+ = {(0, ψ1) ∈ H}).

Theorem (Asymptotic velocity)

There exist bounded selfadjoint operators s.t. for all J ∈ C∞(R) :

J(P±) = s − lim
t→±∞

e−itD/K J
( r∗

t

)
eitD/K ,

J(∓γ) = s − lim
t→±∞

e−itDH J
( r∗

t

)
eitDH

= s − lim
t→±∞

e−itD∞J
( r∗

t

)
eitD∞ .

In addition we have :
σ(P+) = {−1, 1} .



Theorem (Asymptotic completeness)

The classical wave operators defined by the limits

W±H := s − lim
t→±∞

e−itD/K eitDH PH∓ ,

W±∞ := s − lim
t→±∞

e−itD/K eitD∞PH± ,

Ω±H := s − lim
t→±∞

e−itDH eitD/K 1R−(P±) ,

Ω±∞ := s − lim
t→±∞

e−itD∞eitD/K 1R+ (P±)

exist.

Remark
1. Proof based on Mourre theory.
2. The same theorem holds with more geometric comparison dynamics.
3. Generalized by Daudé to the massive charged case.
4. Results valid for quite general perturbations of Kerr.
5. Schwarzschild : Nicolas (95), Melnyk (02), Daudé (04).



1.3 Geometric interpretation

FIGURE – Penrose compactification of block I

I I± are constructed using the conformally rescaled metric ĝ = 1
r2 g.

I The Weyl equation is conformally invariant :
∇̂AA′ φ̂A = 0, where φ̂A = rφA.
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I limr→r+ Ψ0(γ−V ,θ,ϕ](r)) =: Ψ0|H+ (0,V , θ, ϕ]),
limr→r+ Ψ1(γ−V ,θ,ϕ](r)) = 0.
Ψ is solution of the Dirac equation. γ−V ,θ,ϕ] is the principal incoming
null geodesic meeting H+ at (0,V , θ, ϕ]).

I Trace operators :

T +
H :

C∞0 (Σ0,C2) → C∞(H+,C)
ΨΣ0 7→ Ψ0|H+ .

I H : Hilbert space associated to Σ0, HH± Hilbert spaces associated
to H±.

Theorem

The trace operators T ±H extend in a unique manner to bounded operators
from H to HH± .

IRemark

Let F±H be the C∞ diffeomorphisms from H± onto Σ0 defined by
identifying points along incoming (resp. outgoing) principal null geodesics
and Ω±H,pn inverse wave operators with comparison dynamics given by
the principal null directions. Then T ±H = (F±H )∗Ω±H,pn. Comparison

dynamics PN = γDr∗ − a2

r2+a2 Dϕ.

I
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Same construction for T ±I and HI± . T ±I can be extended to bounded
operators from H to HI± .

ΠF :
H → HH+ ⊕HI+ =: HF

ΨΣ0 7→ (T +
H ΨΣ0 , T

+
I ΨΣ0 ).

Theorem (Goursat problem)
ΠF is an isometry. In particular for all Φ ∈ HF , there exists a unique
solution of the Dirac equation Ψ ∈ C(Rt ,H) s.t. Φ = ΠF Ψ(0).

Remark
1) First constructions of this type : Friedlander (Minkowski, 80, 01),
Bachelot (Schwarzschild, 91).
2) The inverse is possible : Mason, Nicolas (04), Joudioux (10)
(asymptotically simple space-times),
Dafermos-Rodnianski-Shlapentokh-Rothman (Kerr).



Part 2 : The Hawking effect as a scattering problem

D. H., Creation of fermions by rotating charged black holes, Mémoires de
la SMF 117 (2009), 158 pp.



2.1 The collapse of the star

Mcol =
⋃

t

Σcol
t , Σcol

t = {(t , r̂ , ω) ∈ Rt × Rr̂ × S2
ω; r̂ ≥ ẑ(t , θ)}.

Assumptions :

I For r̂ > ẑ(t , θ), the metric is the Kerr Newman metric.
I ẑ(t , θ) behaves asymptotically like certain timelike geodesics in the

Kerr-Newman metric. We suppose for the conserved quantities L
(angular momentum), Q (Carter constant) and Ẽ (rotational
energy) : L = Q = Ẽ = 0. We also suppose an asymptotic condition
on the surface of the star :

ẑ(t , θ) = −t−Â(θ)e−2κ−t +O(e−4κ− t ), t →∞.

κ− > 0 is the surface gravity of the outer horizon, Â(θ) > 0.

Remark
1. r̂ is a coordinate adapted to simple null geodesics.
2. Dirac inMcol : we add a boundary condition (MIT)
→ Ψ(t) = U(t , 0)Ψ0.

I
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2.2 Dirac quantum fields
Dimock ’82.

Mcol =
⋃
t∈R

Σcol
t , Σcol

t = {(t , r̂ , θ, ϕ); r̂ ≥ ẑ(t , θ)}.

Dirac quantum field Ψ0 and the CAR-algebra U(H0) constructed in the
usual way. Fermi-Fock representation.

Scol :
(C∞0 (Mcol ))4 → H0

Φ 7→ Scol Φ :=
∫
R U(0, t)Φ(t)dt

Quantum spin field :

Ψcol :
(C∞0 (Mcol ))4 → L(F(H0))

Φ 7→ Ψcol (Φ) := Ψ0(Scol Φ)

Ucol (O) = algebra generated by Ψ∗col (Φ1)Ψcol (Φ2), suppΦj ⊂ O.

Ucol (Mcol ) =
⋃

O⊂Mcol

Ucol (O).

Same procedure onMBH :

S : Φ ∈ (C∞0 (MBH))4 7→ SΦ :=

∫
R

e−itHΦ(t)dt .



States

I Ucol (Mcol )
Vacuum state :

ωcol (Ψ∗col (Φ1)Ψcol (Φ2)) := ωvac(Ψ∗0 (Scol Φ1)Ψ0(Scol Φ2))

= 〈1[0,∞)(H0)Scol Φ1,Scol Φ2〉.

I UBH(MBH)
I Vacuum state

ωvac(Ψ∗BH (Φ1)ΨBH (φ2)) = 〈1[0,∞)(H)Sφ1,Sφ2〉.
I Thermal Hawking state

ωη,σHaw (Ψ∗BH (Φ1)ΨBH (Φ2)) = 〈µeσH (1 + µeσH )−1SΦ1,SΦ2〉H
=: ωη,σKMS(Ψ∗(SΦ1)Ψ(SΦ2)),

THaw = σ−1, µ = eση , σ > 0.

THaw Hawking temperature, µ chemical potential.



The Hawking effect

Φ ∈ (C∞0 (Mcol ))4, ΦT (t , r̂ , ω) = Φ(t − T , r̂ , ω).

Theorem (Hawking effect)

Let Φj ∈ (C∞0 (Mcol ))4, j = 1, 2. We have

lim
T→∞

ωcol (Ψ∗col (ΦT
1 )Ψcol (ΦT

2 ))

= ωη,σHaw (Ψ∗BH(1R+ (P−)Φ1)ΨBH(1R+ (P−)Φ2))

+ ωvac(Ψ∗BH(1R−(P−)Φ1)ΨBH(1R−(P−)Φ2)),

THaw = 1/σ = κ−/2π, µ = eση, η =
qQr−

r 2
− + a2

+
aDϕ

r 2
− + a2

.



2.3 Explanation

FIGURE – Collapse of the star

Change in frequencies : mixing of positive and negative frequencies.



2.4 The analytic problem

lim
T→∞

||1[0,∞)(D/0)U(0,T )f ||20

= 〈1R+ (P−)f , µeσD/(1 + µeσD/)−11R+ (P−)f 〉
+ ||1[0,∞)(D/)1R−(P−)f ||2.(1)

Remark
1) Hawking 1975,
2) Bachelot (99), Melnyk (04).
3) Schwarzschild : Moving mirror, equation with potential.



2.5 Toy model : The moving mirror

z(t) = −t − Ae−2κt ; A > 0, κ > 0,
∂tψ = iD/ψ,

ψ1(t , z(t)) =
√

1−ż
1+ż ψ2(t , z(t))

ψ(t = s, .) = ψs(.)

, D/ =

(
1 0
0 −1

)
Dx .

Solution given by a unitary propagator U(t , s). Conserved L2 norm :

||ψ||2Ht =

∫ ∞
z(t)
|ψ|2(t , x)dx .

Explicit calculation :

lim
T→∞

||1[0,∞)(D/0)U(0,T )f ||20 = 〈e
2π
κ

D/
(

1 + e
2π
κ

D/
)−1

P2f ,P2f 〉

+ ||1[0,∞)(D/)P1f ||2.

Scattering problem : show that the real system behaves the same way.



2.6 Some remarks on the proof

I We compare to a dynamics for which the radiation can be explicitly
computed.

I Can’t compare dynamics on Cauchy surfaces→ characteristic
Cauchy problem.

I Three time intervals :
I [T/2 + c0,T ] no boundary involved→ use asymptotic

completeness+propagation estimates.
I [tε,T/2 + c0] use Duhamel formula + construction of tetrad and

coordinates :
I There exists a coordinate system (t, r̂ , ω) such that r̂ = −t + c along

incoming simple null geodesics (L = Q = 0).
I There exists a Newman Penrose tetrad such that :

D/ = ΓDr̂ + Pω + W , Γ = Diag(1,−1,−1, 1). Pω is a differential operator
with derivatives only in the angular directions and W is a potential.

I [0, tε] :
‖1[0,∞](D/0)U(0, tε)UH (tε,T )Ω−H f‖ ∼ ‖1[0,∞)(DH,0)UH (0,T )Ω−H f‖ if
evolution is essentially given by the group (and not the evolution
system). For this

I UH (tε, T )Ω−H f ⇀ 0.
I The hamiltonian flow stays outside the surface of the star for data in the

given regime (|ξ| >> |Θ|).
I Propagation of singularities, compact Sobolev embeddings.
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Part 3 : Scattering theory for the Klein-Gordon
equation on the De Sitter Kerr metric

V. Georgescu, C. Gérard, D. H., Asymptotic completeness for
superradiant Klein-Gordon equations and applications to the De Sitter
Kerr metric , J. Eur. Math. Soc. 19, 2171-2244.



3.1 The Klein-Gordon equation on the De Sitter Kerr metric
De Sitter Kerr metric in Boyer-Lindquist coordinates
MBH = Rt × Rr × S2

ω, with spacetime metric

g =
∆r − a2 sin2 θ∆θ

λ2ρ2 dt2 +
2a sin2 θ((r 2 + a2)2∆θ − a2 sin2 θ∆r )

λ2ρ2 dtdϕ

− ρ2

∆r
dr 2 − ρ2

∆θ
dθ2 − sin2 θσ2

λ2ρ2 dϕ2,

ρ2 = r 2 + a2 cos2 θ, ∆r =

(
1− Λ

3
r 2
)

(r 2 + a2)− 2Mr ,

∆θ = 1 +
1
3

Λa2 cos2 θ, σ2 = (r 2 + a2)2∆θ − a2∆r sin2 θ, λ = 1 +
1
3

Λa2.

Λ > 0 : cosmological constant, M > 0 : masse, a : angular momentum
per unit masse.

I ρ2 = 0 is a curvature singularity, ∆r = 0 are coordinate singularities.
∆r > 0 on some open interval r− < r < r+. r = r− : black hole
horizon, r = r+ cosmological horizon.

I ∂ϕ and ∂t are Killing. There exist r1(θ), r2(θ) s. t. ∂t is
I timelike on {(t , r , θ, ϕ) : r1(θ) < r < r2(θ)},
I spacelike on
{(t , r , θ, ϕ) : r− < r < r1(θ)}∪{(t , r , θ, ϕ : r2(θ) < r < r+} =: E−∪E+.

The regions E−, E+ are called ergospheres.



3.1 The Klein-Gordon equation on the De Sitter Kerr metric
We now consider the unitary transform

U :
L2(M; σ2

∆r ∆θ
drdω) → L2(M; drdω)

ψ 7→ σ√
∆r ∆θ

ψ

If ψ fulfills (2g + m2)ψ = 0, then u = Uψ fulfills

(∂2
t − 2ik∂t + h)u = 0.(2)

with

k =
a(∆r − (r 2 + a2)∆θ)

σ2 Dϕ,

h = − (∆r − a2 sin2 θ∆θ)

sin2 θσ2
∂2
ϕ −
√

∆r ∆θ

λσ
∂r ∆r∂r

√
∆r ∆θ

λσ

−
√

∆r ∆θ

λ sin θσ
∂θ sin θ∆θ∂θ

√
∆r ∆θ

λσ
+
ρ2∆r ∆θ

λ2σ2 m2.

h is not positive inside the ergospheres. This entails that the natural
conserved quantity

Ẽ(u) = ‖∂tu‖2 + (hu|u)

is not positive.



3+1 decomposition, energies, Killing fields

Let v = e−iktu. Then u is solution of (2) if and only if v is solution of

(∂2
t + h(t))v = 0, h(t) = e−ikth0eikt , h0 = h + k2 ≥ 0.

Natural energy :
‖∂tv‖2 + (h(t)v |v).

Rewriting for u :
Ė(u) = ‖(∂t − ik)u‖2 + (h0u|u).

This energy is positive, but may grow in time→ superradiance.

Remark
I ∂t − ik = ∇t

(∇b t∇b t) .

I k = ΩDϕ and Ω has finite limits Ω−/+ when r → r∓. These limits are
called angular velocities of the horizons. The Killing fields
∂t − Ω−/+∂ϕ on the De Sitter Kerr metric are timelike close to the
black hole (-) resp. cosmological (+) horizon.



3.2 The abstract equation

H Hilbert space. h, k selfadjoint, k ∈ B(H). (∂2
t − 2ik∂t + h)u = 0,

u|t=0 = u0,
∂tu|t=0 = u1.

(3)

Hyperbolic equation

(A1) h0 := h + k2 ≥ 0.

Formally u = eiztv solution if and only if

p(z)v = 0

with p(z) = h0 − (k − z)2 = h + z(2k − z), z ∈ C. p(z) is called the
quadratic pencil.

Conserved quantities

〈u|u〉` := ‖u1 − `u0‖2 + (p(`)u0|u0),

where p(`) = h0 − (k − `)2. Conserved by the evolution, but in general
not positive definite, because none of the operators p(`) is in general
positive.



Spaces and operators

Hi : scale of Sobolev spaces associated to h0.

(A2) 0 /∈ σpp(h0); h1/2
0 kh−1/2

0 ∈ B(H).

Homogeneous energy spaces

Ė = Φ(k)h−1/2
0 H⊕H, Φ(k) =

(
1l 0
k 1l

)
.

where Ė is equipped with the norm ‖(u0, u1)‖2
Ė = ‖u1− ku0‖2 + (h0u0|u0).

Klein Gordon operator

ψ = (u,
1
i
∂tu), (∂t − iH)ψ = 0, H =

(
0 1l
h 2k

)
,

(H − z)−1 = p−1(z)

(
z − 2k 1l

h z

)
.

We note Ḣ the Klein-Gordon operator on the homogeneous energy
space.



3.3 Results in the De Sitter Kerr case

Uniform boundedness of the evolution

(4) Hn = {u ∈ L2(R× S2) : (Dϕ − n)u = 0}, n ∈ Z.

We construct the homogeneous energy space Ėn as well as the
Klein-Gordon operator Ḣn as in Sect. 3.2.

Theorem

There exists a0 > 0 such that for |a| < a0 the following holds : for all
n ∈ Z, there exists Cn > 0 such that

(5) ‖e−itḢn
u‖Ėn ≤ Cn‖u‖Ėn , u ∈ Ėn, t ∈ R.

Remark

1. Note that for n = 0 the Hamiltonian Ḣn = Ḣ0 is selfadjoint, therefore
the only issue is n 6= 0.
2. Different from uniform boundedness on Cauchy surfaces crossing the
horizon.



Asymptotic dynamics

Regge-Wheeler type coordinate dx
dr = r2+a2

∆r
.

x ± t = const . along principal null geodesics.

Unitary transform :

V :
L2(R(r−,r+) × S2) → L2(R× S2, dxdω),

v(r , ω) 7→
√

∆r
r2+a2 v(r(x), ω).

Asymptotic equations :

(∂2
t − 2Ω−/+∂ϕ∂t + h−/+)u−/+ = 0,(6)

h−/+ = Ω2
−/+∂

2
ϕ − ∂2

x .

The conserved quantities :

‖(∂t − iΩ−/+Dϕ)u−/+‖2 + ((h−/+ − Ω2
−/+∂

2
ϕ)u−/+|u−/+)

= ‖(∂t − iΩ−/+Dϕ)u−/+‖2 + (−∂2
x u−/+|u−/+)

are positive.



Asymptotic profiles

Let `−/+ = Ω−/+n. Also let i−/+ ∈ C∞(R), i− = 0 in a neighborhood of
∞, i+ = 0 in a neighborhood of −∞ and i2

− + i2
+ = 1. Let

hn
−/+ = −∂2

x − `2
−/+, k−/+ = `−/+, Hn

−/+ =

(
0 1l

h−/+ 2k−/+

)
acting on Hn defined in (4).

We associate to these operators the natural homogeneous energy
spaces Ėn

l/r . Let {q(q + 1) : q ∈ N} = σ(−∆S2 ) and
Zq = 1l{q(q+1)}(−∆S2 )H. Let

Wq := (Zq ⊗ L2(R))⊕ (Zq ⊗ L2(R)), Eq,n
−/+ := En

−/+ ∩Wq ,

Efin,n
−/+ :=

{
u ∈ En

−/+ : ∃Q > 0, u ∈ ⊕q≤QEq,n
−/+

}
.



Theorem

There exists a0 > 0 such that for all |a| < a0 and n ∈ Z \ {0} the
following holds :

I i) For all u ∈ Efin,n
−/+ the limits

W−/+u = lim
t→∞

eitḢn
i2
−/+e−itḢn

−/+ u

exist in Ėn. The operators W−/+ extend to bounded operators
W−/+ ∈ B(Ėn

−/+; Ėn).
I ii) The inverse wave operators

Ω−/+ = s- lim
t→∞

eitḢn
−/+ i2

−/+e−itḢn

exist in B(Ėn; Ėn
−/+).

i), ii) also hold for n = 0 if m > 0.

Remark
1. We can also compare to comparison dynamics given by a product of
transport equations along principal null geodesics. The appropriate
energy space is the energy space of this comparison dynamics.
2. Results uniform in n recently obtained by Dafermos, Rodnianski,
Shlapentokh-Rothman for the wave equation on Kerr.



3.4 Basic resolvent estimates and existence of the dynamics

Lemma (Basic resolvent estimates)

Let ε > 0. We have

‖p−1(z)u‖ . |z|−1|Imz|−1‖u‖,
‖h1/2

0 p−1(z)u‖ . |Imz|−1‖u‖.

uniformly in |z| ≥ (1 + ε)‖k‖B(H), |Imz| > 0.

Remark
i) Interpretation : superradiance does not occur for |z| ≥ (1 + ε)‖k‖.
ii) Explanation : p(z) = h0 − (k − z)2, h0 ≥ 0.

Lemma (Existence of the dynamics)

(Ḣ,D(Ḣ)) is the generator of a C0− group e−itḢ on Ė .



3.5 Klein-Gordon operators with “two ends”
M = R× S2

ω, h second order differential operator, k bounded
multiplication operator. We suppose{

w = w(x), w ∈ C∞(R),
wi+ki+w , wi−(k − `)i−w ∈ B(H).

j- j+
i- i+

1

x

y


k± = k ∓ `j2

∓,

h± = h0 − k2
±

h̃− = h− + 2`k− − `2 = h0 − (`− k−)2.

(TE) For ε > 0 (h+, k+), (h̃−, k− − `) satisfy

h+ ≥ 0, h̃− ≥ 0, w−ε(h+ − z2)−1w−ε, w−ε(h̃− − z2)−1w−ε

extend meromorphically to Imz > −δε.

Remark
In the De Sitter Kerr case the meromorphic extension follows from a
result of Mazzeo-Melrose.



Construction of the resolvent

Ė+ = h−1/2
+ H⊕H, Ė− = Φ(`)h̃−1/2

− H⊕H.

Ḣ± =

(
0 1l

h± 2k±

)
.

are selfadjoint. We note Ṙ±(z) := (Ḣ± − z)−1.

Proposition

Let ε > 0. Then w−εṘ±(z)w−ε extends finite meromorphically to
Imz > −δε/2 as an operator valued function with values in B(Ė±).

Proposition

There exists a finite set Z ⊂ C \ R with Z = Z such that the spectrum of
Ḣ is included in R ∪ Z and such that the resolvent Ṙ(z) is a finite
meromorphic function on C \ R. Moreover the set Z consists of
eigenvalues of finite multiplicity of Ḣ.

Idea of the proof.

Q(z) := i−(Ḣ− − z)−1i− + i+(Ḣ+ − z)−1i+.

Then computation of (H − z)Q(z)+meromorphic Fredholm theory.



Smooth functional calculus

‖f‖m := sup
λ∈R, α≤m

|f (α)(λ)|.

Proposition

(i) Let f ∈ C∞0 (R). Let f̃ be an almost analytic extension of f such that
supp f̃ ∩ σC

pp(Ḣ) = ∅. Then the integral
f (Ḣ) := 1

2πi

∫
C
∂ f̃
∂z (z)Ṙ(z)dz ∧ dz

is norm convergent in B(Ė) and independent of the choice of the almost
analytic extension of f .
(ii) The map C∞0 (R) 3 f 7→ f (Ḣ) ∈ B(Ė) is a homomorphism of algebras
with
f (Ḣ)∗ = f (Ḣ∗), ‖f (Ḣ)‖B(Ė) ≤ ‖f‖m for some m ∈ N.

Proposition

Let χ ∈ C∞0 (R), χ ≡ 1 in a neighborhood of zero. Then
s − limL→∞ χ

(
Ḣ
L

)
= 1l− 1lCpp(Ḣ).



3.6 Resonances and Propagation estimates
Lemma

w−εṘ(z)w−ε can be extended meromorphically from the upper half
plane to Imz > −δε, δε > 0 with values in B∞(Ė). poles : resonances.

Proposition

Let ε > 0. There exists a discrete closed set ṪH ⊂ R, ν > 0 such that for
all χ ∈ C∞0 (R \ ṪH) we have
(7)

sup
‖u‖Ė=1, ν≥δ>0

∫
R

(‖w−εṘ(λ+iδ)χ(Ḣ)u‖2
Ė+‖w−εṘ(λ−iδ)χ(Ḣ)u‖2

Ė)dλ <∞.

Definition

We call λ ∈ R a regular point of Ḣ if there exists χ ∈ C∞0 (R), χ(λ) = 1
such that (7) holds. Otherwise we call it a singular point.

Remark

Note that in the selfadjoint case ṪH is the set of real resonances by
Kato’s theory of H-smoothness.



Propagation estimates
Proposition

Let ε > 0. Then there exists a discrete closed set Ṫ ⊂ R such that for all
χ ∈ C∞0 (R \ Ṫ ) and all k ∈ N we have

‖w−εe−itḢχ(Ḣ)w−ε‖B(Ė) . 〈t〉
−k .

Proposition

Let ε > 0. Then we have for all χ ∈ C∞0 (R \ ṪH) :∫
R
‖w−εe−itḢχ(Ḣ)ϕ‖2

Ėdt . ‖ϕ‖2
Ė .

Theorem

Suppose that λ0 ∈ R is neither a resonance of w−εṘ(λ)w−ε nor of
w−εQ(λ)w−ε. Then λ0 is a regular point of Ḣ.

Proof.
w−εṘ(z) = w−εQ(z)− w−εṘ(z)w−εwεξK (z).

Q(z), K (z) constructed using only resolvents of selfadjoint operators,
ξ ∈ C∞0 .



3.7 Uniform boundedness of the evolution

For χ ∈ C∞(R) and µ > 0 we put χµ(.) = χ
(
.
µ

)
.

Theorem

i) Let χ ∈ C∞(R), suppχ ⊂ R \ [−1, 1], χ ≡ 1 on R \ (−2, 2). Then there
exists µ0 > 0,C1 > 0 such that we have for µ ≥ µ0

‖e−itḢχµ(Ḣ)u‖Ė ≤ C1‖χµ(Ḣ)u‖Ė ∀u ∈ Ė , ∀t ∈ R.

ii) Let ϕ ∈ C∞0 (R \ ṪH). Then there exists C2 > 0 such that for all u ∈ Ė
and t ∈ R we have

‖e−itḢϕ(Ḣ)u‖Ė ≤ C2‖ϕ(Ḣ)u‖Ė .

Remark
The general abstract framework, the work of Dyatlov and an
hypoellipticity argument gives the uniform boundedness of the evolution
and then the asymptotic completeness result.



Part 4 : Convergence rate for the Hawking radiation in
the De Sitter Schwarzschild case

Alexis Drouot, A Quantitative version of Hawking’s radiation, Annales
Henri Poincaré 18 (2017), 757-806.



4.1 Local energy decay for the wave equation on the De Sitter
Schwarzschild spacetime (a=0)

Dsitribution of resonances (Sa Barreto-Zworski ’97) :

Modified energy space :
‖(u0, u1)‖2

E(mod) = ‖u1‖2 + 〈Pu0, u0〉+
(∫ 1

0

∫
S2 |u0(s, ω)|2ds dω

)
.

Theorem (Bony-Ha ’08)

Let χ ∈ C∞0 (M). There exists ε > 0 such that χe−itHχu =

γ

(
rχ〈r , χu2〉

0

)
+ R2(t)u, ‖R2(t)u‖Emod . e−εt

∥∥−∆ωu
∥∥
Emod .

Remark
1. No resonance 0 for Klein Gordon equation with positive masse of the
field m > 0.
2. Similar picture in much more general situations, see Vasy ’13.



Consequence for asymptotic completeness

Theorem (Alexis Drouot ’15)
Consider u solution inM of (m > 0)

(2 + m2)u = 0, u|t=0 = u0, ∂tu|t=0 = u1

with u0, u1 in C1. There exists C1 functions (called radiation fields of u)
u∗± :M→ R and C ∈ R (depending only on supp(u0; u1)) such that

u∗±(x , ω) = 0 for x ≤ C; u∗± = OC∞(e−ν0〈x〉),

and

u(t , x , ω) = u∗+(−(t + x), ω) + u∗−(−t + x , ω) +OC∞(M−)(e
ct ), c > 0.

Proof uses results of Bony-H. ’08 and Melrose-Sa-Barreto-Vasy ’14.



Convergence rate for the Hawking effect

Theorem (Alexis Drouot ’15)
There exists Λ0 > 0 such that for all Λ < Λ0 the following is true. Let

ET (u0, u1) = EH0,T0 (u(0), ∂tu(0)),

where u solves for m > 0
(2g + m2) = 0,

u|B = 0,
u(T ) = u0,

∂tu(T ) = u1

Then

ET (u0, u1) = ED2
x ,T0

+ (u∗+,Dx u∗+)+ED2
x ,THaw
− (u∗−,Dx u∗−)+O(e−cT ), T →∞.

for some c > 0.



Comments

I Scattering theory
I The fact that the mixed term has two different limits makes it more

complicated than for the Klein-Gordon equation coupled to an electric
field. Mourre theory on Krein spaces : Georgescu-Gérard-H. ’14.

I Time dependent scattering should depend only on the behavior of the
resolvent on the real axis.

I Hawking effect
I Proof of a theorem about the Hawking effect for bosons should now

work in the same way. Temperature depends on n.
I Highly idealized model.



Thank you for your attention !
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